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Abstract Transfer Krull monoids are monoids which allow a weak transfer homo-
morphism to a commutative Krull monoid, and hence the system of sets of lengths
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lengths of any transfer Krull monoid.

Key words: transfer Krull monoids, weakly Krull monoids, sets of lengths, zero-
sum sequences

Mathematics Subject Classification (2010): 11B30, 11R27, 13A05, 13F05, 16H10,
16U30, 20M13

A. Geroldinger (corresponding author) and Q. Zhong
University of Graz, Institute for Mathematics, Heinrichstraße 36, 8010 Graz, Austria, e-mail:
alfred.geroldinger@uni-graz.at, qinghai.zhong@uni-graz.at

W.A. Schmid
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Lumières, Université Paris 8, CNRS, 93526 Saint-Denis cedex, France
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1 Introduction

By an atomic monoid we mean a cancellative semigroup with unit element such
that every nonunit can be written as a finite product of irreducible elements. Let
H be an atomic monoid. If a ∈ H is a nonunit and a = u1 · . . . · uk is a factoriza-
tion of a into k irreducible elements, then k is called a factorization length and the
set L(a) ⊂ N of all possible factorization lengths is called the set of lengths of a.
Then L (H) = {L(a) | a ∈ H} is the system of sets of lengths of H. Under a vari-
ety of noetherian conditions on H (e.g., H is the monoid of nonzero elements of a
commutative noetherian domain) all sets of lengths are finite. Furthermore, if there
is some element a ∈ H with |L(a)| > 1, then |L(aN)| > N for all N ∈ N. Sets of
lengths (together with invariants controlling their structure, such as elasticities and
sets of distances) are a well-studied means of describing the arithmetic structure of
monoids ([20, 11]).

Let H be a transfer Krull monoid. Then, by definition, there is a weak transfer
homomorphism θ : H → B(G0), where B(G0) denotes the monoid of zero-sum
sequences over a subset G0 of an abelian group, and hence L (H) = L

(
B(G0)

)
.

A special emphasis has always been on the case where G0 is a finite abelian
group. Thus let G be a finite abelian group and we use the abbreviation L (G) =
L
(
B(G)

)
. It is well-known that sets of lengths in L (G) are highly structured

(Proposition 3.2), and the standing conjecture is that the system L (G) is charac-
teristic for the group G. More precisely, if G′ is a finite abelian group such that
L (G) = L (G′), then G and G′ are isomorphic (apart from two well-known trivial
pairings; see Conjecture 3.4). This conjecture holds true, among others, for groups
G having rank at most two, and its proof uses deep results from additive combina-
torics which are not available for general groups. Thus there is a need for studying
L (G) with a new approach. In Section 3, we unveil a couple of properties of the
system L (G) which are first steps on a new way towards Conjecture 3.4.

In spite of all abstract work on systems L (G), they have been written down
explicitly only for groups G having Davenport constant D(G) ≤ 4, and this is not
difficult to do (recall that a group G has Davenport constant D(G) ≤ 4 if and only
if either |G| ≤ 4 or G is an elementary 2-group of rank three). In Section 4 we
determine the systems L (G) for all groups G having Davenport constant D(G) = 5.

Commutative Krull monoids are the classic examples of transfer Krull monoids.
In recent years a wide range of monoids and domains has been found which are
transfer Krull but which are not commutative Krull monoids. Thus the question
arose which monoids H have systems L (H) which are different from systems of
sets of lengths of transfer Krull monoids. Commutative v-noetherian weakly Krull
monoids and domains are the best investigated class of monoids beyond commuta-
tive Krull monoids (numerical monoids as well as one-dimensional noetherian do-
mains are v-noetherian weakly Krull). Clearly, weakly Krull monoids can be half-
factorial and half-factorial monoids are transfer Krull monoids. Similarly, it can
happen both for weakly Krull monoids as well as for transfer Krull monoids that
all sets of lengths are arithmetical progressions with difference 1. Apart from such
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extremal cases, we show in Section 5 that systems of sets of lengths of a variety of
classes of weakly Krull monoids are different from the system of sets of lengths of
any transfer Krull monoid.

2 Background on sets of lengths

We denote by N the set of positive integers, and for real numbers a,b ∈ R, we
denote by [a,b] = {x ∈ Z | a≤ x≤ b} the discrete interval between a and b, and by
an interval we always mean a finite discrete interval of integers.

Let A,B⊂Z be subsets of the integers. Then A+B = {a+b | a∈ A,b∈ B} is the
sumset of A and B. We set −A = {−a | a ∈ A} and for an integer m ∈ Z, m+A =
{m}+A is the shift of A by m. For m∈N, we denote by mA = A+ . . .+A the m-fold
subset of A and by m ·A = {ma | a ∈ A} the dilation of A by m. If A⊂ N, we denote
by ρ(A) = supA/minA ∈ Q≥1∪{∞} the elasticity of A and we set ρ({0}) = 1. A
positive integer d ∈ N is called a distance of A if there are a,b ∈ A with b− a = d
and the interval [a,b] contains no further elements of A. We denote by ∆(A) the set
of distances of A. Clearly, ∆(A) = /0 if and only if |A| ≤ 1, and A is an arithmetical
progression if and only if |∆(A)| ≤ 1.

Let G be an additive abelian group. An (ordered) family (ei)i∈I of elements of G
is said to be independent if ei 6= 0 for all i ∈ I and, for every family (mi)i∈I ∈ Z(I),

∑
i∈I

miei = 0 implies miei = 0 for all i ∈ I .

A family (ei)i∈I is called a basis for G if ei 6= 0 for all i ∈ I and G =
⊕

i∈I〈ei〉. A
subset G0 ⊂ G is said to be independent if the tuple (g)g∈G0 is independent. For
every prime p ∈ P, we denote by rp(G) the p-rank of G.

Sets of Lengths. We say that a semigroup S is cancellative if for all elements a,b,c∈
S, the equation ab = ac implies b = c and the equation ba = ca implies b = c.
Throughout this manuscript, a monoid means a cancellative semigroup with unit
element, and we will use multiplicative notation.

Let H be a monoid. An element a ∈ H is said to be invertible if there exists an
element a′ ∈ H such that aa′ = a′a = 1. The set of invertible elements of H will be
denoted by H×, and we say that H is reduced if H× = {1}. For a set P, we denote
by F (P) the free abelian monoid with basis P. Then every a ∈F (P) has a unique
representation in the form

a = ∏
p∈P

pvp(a) ,

where vp : F (P)→ N0 denotes the p-adic exponent.
An element a ∈ H is called irreducible (or an atom) if a /∈ H× and if, for all

u,v∈H, a= uv implies that u∈H× or v∈H×. We denote by A (H) the set of atoms
of H. The monoid H is said to be atomic if every a ∈H \H× is a product of finitely
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many atoms of H. If a ∈H and a = u1 · . . . ·uk, where k ∈N and u1, . . . ,uk ∈A (H),
then we say that k is the length of the factorization. For a ∈ H \H×, we call

LH(a) = L(a) = {k ∈ N | a has a factorization of length k} ⊂ N

the set of lengths of a. For convenience, we set L(a) = {0} for all a ∈ H×. By
definition, H is atomic if and only if L(a) 6= /0 for all a∈H. Furthermore, L(a) = {1}
if and only if a∈A (H) if and only if 1∈ L(a). If a,b∈H, then L(a)+L(b)⊂ L(ab).
We call

L (H) = {L(a) | a ∈ H}

the system of sets of lengths of H. We say that H is half-factorial if |L|= 1 for every
L ∈L (H). If H is atomic, then H is either half-factorial or for every N ∈ N there
is an element aN ∈ H such that |L(aN)|> N ([17, Lemma 2.1]). We say that H is a
BF-monoid if it is atomic and all sets of lengths are finite. Let

∆(H) =
⋃

L∈L (H)

∆(L) ⊂ N

denote the set of distances of H, and if ∆(H) 6= /0, then min∆(H) = gcd∆(H). We
denote by ∆1(H) the set of all d ∈ N with the following property:

For every k ∈ N there exists an L ∈L (H) of the form L = L′∪{y,y+d, . . . ,y+
kd}∪L′′ where y ∈ N and L′,L′′ ⊂ Z with maxL′ < y and y+ kd < minL′′.

By definition, ∆1(H) is a subset of ∆(H). For every k∈N we define the kth elasticity
of H. If H = H×, then we set ρk(H) = k, and if H 6= H×, then

ρk(H) = sup{supL | k ∈ L ∈L (H)} ∈ N∪{∞} .

The invariant

ρ(H) = sup{ρ(L) | L ∈L (H)}= lim
k→∞

ρk(H)

k
∈ R≥1∪{∞}

is called the elasticity of H (see [17, Proposition 2.4]). Sets of lengths of all monoids,
which are in the focus of the present paper, are highly structured (see Proposition 3.2
and Theorems 5.5 – 5.8). To summarize the relevant concepts, let d ∈ N, M ∈ N0
and {0,d} ⊂ D ⊂ [0,d]. A subset L ⊂ Z is called an almost arithmetical multi-
progression (AAMP for short) with difference d, period D , and bound M,
if

L = y+(L′∪L∗∪L′′) ⊂ y+D +dZ

where y ∈ Z is a shift parameter,

• L∗ is finite nonempty with minL∗ = 0 and L∗ = (D +dZ)∩ [0,maxL∗], and
• L′ ⊂ [−M,−1] and L′′ ⊂maxL∗+[1,M].
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We say that the Structure Theorem for Sets of Lengths holds for a monoid H if H
is atomic and there exist some M ∈ N0 and a finite nonempty set ∆ ⊂ N such that
every L ∈L (H) is an AAMP with some difference d ∈ ∆ and bound M.

Monoids of zero-sum sequences. We discuss a monoid having a combinatorial
flavor whose universal role in the study of sets of lengths will become evident at
the beginning of the next section. Let G be an additive abelian group and G0 ⊂ G a
subset. Then 〈G0〉 denotes the subgroup generated by G0, and we set G•0 = G0 \{0}.
In additive combinatorics, a sequence (over G0) means a finite sequence of terms
from G0 where repetition is allowed and the order of the elements is disregarded,
and (as usual) we consider sequences as elements of the free abelian monoid with
basis G0. Let

S = g1 · . . . ·g` = ∏
g∈G0

gvg(S) ∈F (G0)

be a sequence over G0. We set −S = (−g1) · . . . · (−g`), and we call

• supp(S) = {g ∈ G | vg(S)> 0} ⊂ G the support of S ,
• |S|= `= ∑g∈G vg(S) ∈ N0 the length of S ,
• σ(S) = ∑

l
i=1 gi the sum of S ,

• Σ(S) =
{

∑i∈I gi | /0 6= I ⊂ [1, `]
}

the set of subsequence sums of S ,

• k(S) = ∑
l
i=1

1
ord(gi)

the cross number of S .

The sequence S is said to be

• zero-sum free if 0 /∈ Σ(S),
• a zero-sum sequence if σ(S) = 0,
• a minimal zero-sum sequence if it is a nontrivial zero-sum sequence and every

proper subsequence is zero-sum free.

The set of zero-sum sequences B(G0) = {S ∈ F (G0) | σ(S) = 0} ⊂ F (G0) is
a submonoid, and the set of minimal zero-sum sequences is the set of atoms of
B(G0). For any arithmetical invariant ∗(H) defined for a monoid H, we write ∗(G0)
instead of ∗(B(G0)). In particular, A (G0) = A (B(G0)) is the set of atoms of
B(G0), L (G0) = L (B(G0)) is the system of sets of lengths of B(G0), and so on.
Furthermore, we say that G0 is half-factorial if the monoid B(G0) is half-factorial.
We denote by

D(G0) = sup{|S| | S ∈A (G0)} ∈ N0∪{∞}

the Davenport constant of G0. If G0 is finite, then D(G0) is finite. Suppose that G
is finite, say G ∼= Cn1 ⊕ . . .⊕Cnr , with r ∈ N0, 1 < n1 | . . . |nr, then r = r(G) is the
rank of G, and we have

1+
r

∑
i=1

(ni−1)≤ D(G)≤ |G| . (1)

If G is a p-group or r(G)≤ 2, then 1+∑
r
i=1(ni−1) = D(G). Suppose that |G| ≥ 3.

We will use that ∆(G) is an interval with min∆(G) = 1 ([26]), and that, for all k∈N,
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ρ2k(G) = kD(G),

kD(G)+1≤ ρ2k+1(G)≤ kD(G)+ bD(G)/2c, and
ρ(G) = D(G)/2 ,

(2)

([20, Section 6.3]).

3 Sets of lengths of transfer Krull monoids

Weak transfer homomorphisms play a critical role in factorization theory, in par-
ticular in all studies of sets of lengths. We refer to [20] for a detailed presentation
of transfer homomorphisms in the commutative setting. Weak transfer homomor-
phisms (as defined below) were introduced in [5, Definition 2.1] and transfer Krull
monoids were introduced in [17].

Definition 3.1. Let H be a monoid.

1. A monoid homomorphism θ : H → B to an atomic monoid B is called a weak
transfer homomorphism if it has the following two properties:

(T1) B = B×θ(H)B× and θ−1(B×) = H×.
(WT2) If a ∈ H, n ∈ N, v1, . . . ,vn ∈ A (B) and θ(a) = v1 · . . . · vn, then there

exist u1, . . . ,un ∈ A (H) and a permutation τ ∈ Sn such that a = u1 · . . . · un
and θ(ui) ∈ B×vτ(i)B× for each i ∈ [1,n].

2. H is said to be a transfer Krull monoid (over G0) it there exists a weak transfer
homomorphism θ : H →B(G0) for a subset G0 of an abelian group G. If G0 is
finite, then we say that H is a transfer Krull monoid of finite type.

If R is a domain and R• its monoid of cancellative elements, then we say that R
is a transfer Krull domain (of finite type) if R• is a transfer Krull monoid (of finite
type). Let θ : H → B be a weak transfer homomorphism between atomic monoids.
It is easy to show that for all a ∈ H we have LH(a) = LB(θ(a)) and hence L (H) =
L (B). Since monoids of zero-sum sequences are BF-monoids, the same is true for
transfer Krull monoids.

Let H∗ be a commutative Krull monoid (i.e., H∗ is commutative, completely in-
tegrally closed, and v-noetherian). Then there is a weak transfer homomorphism
β : H∗→B(G0) where G0 is a subset of the class group of H∗. Since monoids of
zero-sum sequences are commutative Krull monoids and since the composition of
weak transfer homomorphisms is a weak transfer homomorphism again, a monoid
is a transfer Krull monoid if and only if it allows a weak transfer homomorphism to
a commutative Krull monoid. In particular, commutative Krull monoids are transfer
Krull monoids. However, a transfer Krull monoid need neither be commutative nor
v-noetherian nor completely integrally closed. To give a noncommutative example,
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consider a bounded HNP (hereditary noetherian prime) ring R. If every stably free
left R-ideal is free, then its multiplicative monoid of cancellative elements is a trans-
fer Krull monoid ([34]). A class of commutative weakly Krull domains which are
transfer Krull but not Krull will be given in Theorem 5.8. Extended lists of com-
mutative Krull monoids and of transfer Krull monoids, which are not commutative
Krull, are given in [17].

The next proposition summarizes some key results on the structure of sets of
lengths of transfer Krull monoids.

Proposition 3.2.

1. Every transfer Krull monoid of finite type satisfies the Structure Theorem for Sets
of Lengths.

2. For every M ∈ N0 and every finite nonempty set ∆ ⊂ N, there is a finite abelian
group G such that the following holds : for every AAMP L with difference d ∈ ∆

and bound M there is some yL ∈ N such that

y+L ∈L (G) for all y≥ yL .

3. If G is an infinite abelian group, then

L (G) = {L⊂ N≥2 | L is finite and nonempty } ∪ {{0},{1}}.

Proof. 1. Let H be a transfer Krull monoid and θ : H→B(G0) be a weak transfer
homomorphism where G0 is a finite subset of an abelian group. Then L (H) =
L (G0), and B(G0) satisfies the Structure Theorem by [20, Theorem 4.4.11].

For 2. we refer to [33], and for 3. see [31] and [20, Section 7.4]. ut

The inequalities in (1) and the subsequent remarks show that a finite abelian
group G has Davenport constant D(G)≤ 4 if and only if G is cyclic of order |G| ≤ 4
or if it is isomorphic to C2⊕C2 or to C3

2 . For these groups an explicit description
of their systems of sets of lengths has been given, and we gather this in the next
proposition (in Section 4 we will determine the systems L (G) for all groups G
with D(G) = 5).

Proposition 3.3.

1. If G is an abelian group, then L (G) = {y+L | y ∈ N0, L ∈L (G•)} ⊃
{
{y}

∣∣
y ∈ N0

}
, and equality holds if and only if |G| ≤ 2.

2. L (C3) = L (C2⊕C2) =
{

y+2k+[0,k]
∣∣ y, k ∈ N0

}
.

3. L (C4) =
{

y+ k+1+[0,k]
∣∣ y, k ∈ N0

}
∪
{

y+2k+2 · [0,k]
∣∣ y, k ∈ N0

}
.

4. L (C3
2) =

{
y+(k+1)+ [0,k]

∣∣ y ∈ N0, k ∈ [0,2]
}

∪
{

y+ k+[0,k]
∣∣ y ∈ N0, k ≥ 3

}
∪
{

y+2k+2 · [0,k]
∣∣ y, k ∈ N0

}
.

Proof. See [20, Proposition 7.3.1 and Theorem 7.3.2]. ut
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Let G and G′ be abelian groups. Then their monoids of zero-sum sequences
B(G) and B(G′) are isomorphic if and only if the groups G and G′ are isomor-
phic ([20, Corollary 2.5.7]). The standing conjecture states that the systems of sets
of lengths L (G) and L (G′) of finite groups coincide if and only G and G′ are iso-
morphic (apart from the trivial cases listed in Proposition 3.3). Here is the precise
formulation of the conjecture (it was first stated in [17]).

Conjecture 3.4. Let G be a finite abelian group with D(G)≥ 4. If G′ is an abelian
group with L (G) = L (G′), then G and G′ are isomorphic.

The conjecture holds true for groups G having rank r(G) ≤ 2, for groups of the
form G =Cr

n (if r is small with respect to n), and others ([24, 27, 36]). But it is far
open in general, and the goal of this section is to develop new viewpoints of looking
at this conjecture.

Let G be a finite abelian group with D(G)≥ 4. If G′ is a finite abelian group with
L (G) = L (G′), then (2) shows that

D(G) = ρ2(G) = sup{supL | 2 ∈ L ∈L (G)}
= sup{supL | 2 ∈ L ∈L (G′)}= ρ2(G′) = D(G′) .

We see from the inequalities in (1) that there are (up to isomorphism) only finitely
many finite abelian groups G′ with given Davenport constant, and hence there are
only finitely many finite abelian groups G′ with L (G) = L (G′). Thus Conjec-
ture 3.4 is equivalent to the statement that for each m ≥ 4 and for each two non-
isomorphic finite abelian groups G and G′ having Davenport constant D(G) =
D(G′) = m the systems L (G) and L (G′) are distinct. Therefore we have to study
the set

Ωm = {L (G) | G is a finite abelian group with D(G) = m}

of all systems of sets of lengths stemming from groups having Davenport constant
equal to m. If a group G′ is a proper subgroup of G, then D(G′) < D(G) ([20,
Proposition 5.1.11]) and hence L (G′) ( L (G). Thus if D(G) = D(G′) for some
group G′, then none of the groups is isomorphic to a proper subgroup of the other
one. Conversely, if G′ is a finite abelian group with L (G′)⊂L (G), then D(G′) =
ρ2(G′)≤ ρ2(G) =D(G). However, it may happen that L (G′)(L (G) but D(G′) =
D(G). Indeed, Proposition 3.3 shows that L (C4)(L (C3

2), and we will observe this
phenomenon again in Section 4.

Theorem 3.5. For m ∈ N, let

Ωm = {L (G) | G is a finite abelian group with D(G) = m}.

Then L (Cm−1
2 ) is a maximal element and L (Cm) is a minimal element in Ωm (with

respect to set-theoretical inclusion). Furthermore, if G is an abelian group with
D(G) = m and L (G)⊂L (Cm−1

2 ), then G∼=Cm or G∼=Cm−1
2 .
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Proof. If m ∈ [1,2], then |Ωm|= 1 and hence all assertions hold. Since C3 and C2⊕
C2 are the only groups (up to isomorphism) with Davenport constant three, and since
L (C3) = L (C2

2) by Proposition 3.3, the assertions follow. We suppose that m ≥ 4
and proceed in two steps.

1. To show that L (Cm−1
2 ) is maximal, we study, for a finite abelian group G, the

set ∆1(G). We define

∆
∗(G) = {min∆(G0) | G0 ⊂ G with ∆(G0) 6= /0} ,

and recall that (see [20, Corollary 4.3.16])

∆
∗(G)⊂ ∆1(G)⊂ {d1 ∈ ∆(G) | d1 divides some d ∈ ∆

∗(G)} .

Thus max∆1(G) = max∆ ∗(G), and [29, Theorem 1.1] implies that max∆ ∗(G) =
max{exp(G)− 2, r(G)− 1}. Assume to the contrary that there is a finite abelian
group G with D(G) =m≥ 4 that is not an elementary 2-group such that L (Cm−1

2 )⊂
L (G). Then

m−2 = max∆
∗(Cm−1

2 ) = max∆1(Cm−1
2 )≤max∆1(G)

= max∆
∗(G) = max{exp(G)−2, r(G)−1} .

If r(G) ≥ m− 1, then D(G) = m implies that G ∼= Cm−1
2 , a contradiction. Thus

exp(G)≥ m, and since D(G) = m we infer that that G∼=Cm. If m = 4, then Propo-
sition 3.3.4 shows that L (C3

2) 6⊂L (C4), a contradiction. Suppose that m≥ 5. Then
∆ ∗(Cm−1

2 ) = ∆1(Cm−1
2 ) = ∆(Cm−1

2 ) = [1,m−2] by [20, Corollary 6.8.3]. For cyclic
groups we have max∆ ∗(Cm) = m−2 and max(∆ ∗(Cm)\{m−2}) = bm/2c−1 by
[20, Theorem 6.8.12]. Therefore L (Cm−1

2 )⊂L (Cm) implies that

[1,m−2] = ∆1(Cm−1
2 )⊂ ∆1(Cm) ,

a contradiction to m−3 /∈ ∆1(Cm).
2. We recall some facts. Let G be a group with D(G) = m. If U ∈ A (G) with

|U |=D(G), then {2,D(G)} ⊂ L
(
U(−U)

)
. Cyclic groups and elementary 2-groups

are the only groups G with the following property: if L ∈ L(G) with {2,D(G)} ⊂ L,
then L = {2,D(G)} ([20, Theorem 6.6.3]).

Now assume to the contrary that there is a finite abelian group G with D(G) = m
such that L (G) ⊂L (Cm). Let L ∈L (G) with {2,D(G)} ⊂ L. Then L ∈L (Cm)
whence L = {2,D(G)} which implies that G is cyclic or an elementary 2-group. By
1., G is not an elementary 2-group whence G is cyclic which implies G ∼= Cm and
hence L (G) = L (Cm).

The furthermore assertion on groups G with D(G) = m and L (G) ⊂L (Cm−1
2 )

follows as above by considering sets of lengths L with {2,D(G)} ⊂ L. ut

In Section 4 we will see that L (Cm−1
2 ) need not be the largest element in Ωm,

and that indeed L (Cm) ⊂L (Cm−1
2 ) for m ∈ [2,5], where the inclusion is strict for
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m≥ 4. On the other hand, it is shown in [28] that L (Cm) 6⊂L (Cm−1
2 ) for infinitely

many m ∈ N.

Theorem 3.6. We have⋂
L (G) =

{
y+2k+[0,k]

∣∣ y, k ∈ N0
}
,

where the intersection is taken over all finite abelian groups G with |G| ≥ 3.

Proof. By Proposition 3.3.2, the intersection on the left hand side is contained in the
set on the right hand side. Let G be a finite abelian group with |G| ≥ 3. If L∈L (G),
then y+L∈L (G). Thus it is sufficient to show that [2k,3k]∈L (G) for every k∈N.
If G contains two independent elements of order 2 or an element of order 4, then
the claim follows by Proposition 3.3. Thus, it remains to consider the case when G
contains an element g with ord(g) = p for some odd prime p ∈ N. Let k ∈ N and
Bk = ((2g)pgp)k. We assert that L(Bk) = [2k,3k].

We set U1 = gp, U2 =(2g)p, V1 =(2g)(p−1)/2g, and V2 =(2g)gp−2. Since U1U2 =
V 2

1 V2 and

Bk = (U1U2)
k = (U1U2)

k−ν(V 2
1 V2)

ν for all ν ∈ [0,k] ,

it follows that [2k,3k]⊂ L(Bk).
In order to show there are no other factorization lengths, we recall the concept

of the g-norm of sequences. If S = (n1g) · . . .(n`g) ∈ B(〈g〉), where ` ∈ N0 and
n1, . . . ,n` ∈ [1,ord(g)], then

||S||g =
n1 + . . .+n`

ord(g)
∈ N

is the g-norm of S. Clearly, if S = S1 · . . . ·Sm with S1, . . . ,Sm ∈A (G), then ||S||g =
||S1||g + . . .+ ||Sm||g.

Note that U2 = (2g)p is the only atom in A ({g,2g}) with g-norm 2, and all other
atoms in A ({g,2g}) have g-norm 1. Let Bk =W1 · . . . ·W` be a factorization of Bk,
and let `′ be the number of i ∈ [1, `] such that Wi = (2g)p. We have ‖Bk‖g = 3k and
thus 3k = 2`′+(`−`′) = `′+`. Since `′ ∈ [0,k], it follows that `= 3k−`′ ∈ [2k,3k].

ut

Theorem 3.7. Let L⊂ N≥2 be a finite nonempty subset. Then there are only finitely
many pairwise non-isomorphic finite abelian groups G such that L /∈L (G).

Proof. We start with the following two assertions.

A1. There is an integer nL ∈ N such that L ∈L (Cn) for every n≥ nL.
A2. For every p ∈ P there is an integer rp,L ∈ N such that L ∈ L (Cr

p) for every
r ≥ rp,L.
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Proof of A1. By Proposition 3.2.3, there is some B = ∏
k
i=1 mk ∏

`
j=1(−n j) ∈B(Z)

such that L(B) = L, where k, `,m1, . . . ,mk ∈ N and n1, . . . ,n` ∈ N0. We set nL =
n1+ . . .+n` and choose some n∈N with n≥ nL. If S∈F (Z) with S |B and f : Z→
Z/nZ denotes the canonical epimorphism, then S has sum zero if and only if f (S)
has sum zero. This implies that LB(Z/nZ)( f (B)) = LB(Z)(B) = L. ut

[Proof of A1]

Proof of A2. Let p ∈ P be a prime and let Gp be an infinite dimensional Fp-vector
space. By Proposition 3.2.3, there is some Bp ∈B(Gp) such that L(Bp) = L. If rp,L
is the rank of 〈supp(Bp)〉 ⊂ Gp, then

L = L(Bp) ∈L (〈supp(Bp)〉)⊂L (Cr
p) for r ≥ rp,L . ut[Proof ofA2]

Now let G be a finite abelian group such that L /∈L (G). Then A1 implies that
exp(G) < nL, and A2 implies that rp(G) < rp,L for all primes p with p | exp(G).
Thus the assertion follows. ut

4 Sets of lengths of transfer Krull monoids over small groups

Since the very beginning of factorization theory, invariants controlling the structure
of sets of lengths (such as elasticities and sets of distances) have been in the center
of interest. Nevertheless, (apart from a couple of trivial cases) the full system of
sets of lengths has been written down explicitly only for the following classes of
monoids:

• Numerical monoids generated by arithmetical progressions: see [1].
• Self-idealizations of principal ideal domains: see [10, Corollary 4.16], [4, Re-

mark 4.6].
• The ring of integer-valued polynomials over Z: see [15].
• The systems L (G) for infinite abelian groups G and for abelian groups G with

D(G)≤ 4: see Propositions 3.2 and 3.3.

The goal of this section is to determine L (G) for abelian groups G having Dav-
enport constant D(G) = 5. By inequality (1) and the subsequent remarks, a finite
abelian group G has Davenport constant five if and only if it is isomorphic to one of
the following groups:

C3⊕C3, C5, C2⊕C4, C4
2 .

Their systems of sets of lengths are given in Theorems 4.1, 4.3, 4.5, and 4.8. We
start with a brief analysis of these explicit descriptions (note that they will be needed
again in Section 5; confer the proof of Theorem 5.7).

By Theorem 3.5, we know that L (C4
2) is maximal in Ω5 = {L (C5),L (C2⊕

C4),L (C3⊕C3),L (C4
2)}. Theorems 4.1, 4.3, 4.5, and 4.8 unveil that L (C3⊕C3),
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L (C2⊕C4), and L (C4
2) are maximal in Ω5, and that L (C5) is contained in L (C4

2),
but it is neither contained in L (C3⊕C3) nor in L (C2⊕C4). Furthermore, Theorems
3.5, 4.3, and 4.8 show that L (Cm) ⊂ L (Cm−1

2 ) for m ∈ [2,5]. It is well-known
that, for all m ≥ 4, L (Cm) 6= L (Cm−1

2 ) ([16, Corollary 5.3.3]), and the standing
conjecture is that L (Cm) 6⊂L (Cm−1

2 ) holds true for almost all m ∈ N≥2 (see [28]).
The group C3⊕C3 has been handled in [24, Theorem 4.2].

Theorem 4.1. L (C2
3) = {y+[2k,5k] | y,k∈N0} ∪ {y+[2k+1,5k+2] | y∈N0, k∈

N}}.

Remark. An equivalent way to describe L (C2
3) is {y+

⌈ 2k
3

⌉
+ [0,k] | y ∈ N0,k ∈

N≥2}∪{{y},y+2+[0,1] | y ∈ N0}.
The fact that all sets of lengths are intervals is a consequence of the fact ∆(C2

3) =
{1}. Of course, each set of lengths L has to fulfill ρ(L)≤ 5/2 = ρ(C2

3). We observe
that the description shows that this is the only condition, provided minL ≥ 2. The
following lemma is frequently helpful in the remainder of this section.

Lemma 4.2. Let G be a finite abelian group, and let A ∈B(G).

1. If supp(A)∪{0} is a group, then L(A) is an interval.

2. If A1 is an atom dividing A with |A1|= 2, then maxL(A) = 1+maxL(AA−1
1 ).

3. If A is a product of atoms of length 2 and if every atom A1 dividing A has length
|A1|= 2 or |A1|= 4, then maxL(A)−1 /∈ L(A).

Proof. 1. See [20, Theorem 7.6.8].
2. Let ` = maxL(A) and A = U1 · . . . ·U`, where U1, . . . ,U` ∈ A (G). Let A1 =

g1g2, where g1,g2 ∈ G. If there exists i ∈ [1, `] such that A1 =Ui, then maxL(A) =
1 + maxL(AA−1

1 ). Otherwise there exist distinct i, j ∈ [1, `] such that g1 |Ui and
g2 |U j. Thus A1 divides UiU j and hence 1+maxL(AA−1

1 ) ≥ ` which implies that
maxL(A) = 1+maxL(AA−1

1 ) by the maximality of `.
3. If maxL(A)−1 ∈ L(A), then A =V1 · . . . ·VmaxL(A)−1 with |V1|= 4 and |V2|=

. . . = |VmaxL(A)−1| = 2. Thus V1 can only be a product two atoms of length 2, a
contradiction. ut

We now consider the groups C5, C2⊕C4, and C4
2 , each one in its own subsection.

In the proofs of the forthcoming theorems we will use Proposition 3.3 and Theorem
3.6 without further mention.

4.1 The system of sets of lengths of C5

The goal of this subsection is to prove the following result.
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Theorem 4.3. L (C5) = L1∪L2∪L3∪L4∪L5∪L6 , where

L1 = {{y} | y ∈ N0} ,
L2 = {y+2+{0,2} | y ∈ N0} ,
L3 = {y+3+{0,1,3} | y ∈ N0} ,
L4 = {y+2k+3 · [0,k] | y ∈ N0,k ∈ N} ,

L5 = {y+2
⌈

k
3

⌉
+[0,k] | y ∈ N0,k ∈ N\{3}}∪{y+[3,6] | y ∈ N0} , and

L6 = {y+2k+3+{0,2,3}+3 · [0,k] | y,k ∈ N0} .

We observe that all sets of lengths with many elements are arithmetic multi-
progressions with difference 1 or 3. Yet, there are none with difference 2. This is
because ∆ ∗(C5) = {1,3}. Moreover, we point out that the condition for an interval
to be a set of lengths is different from that of the other groups with Davenport con-
stant 5. This is related to the fact that ρ2k+1(C5) = 5k+1, while ρ2k+1(G) = 5k+2
for the other groups with Davenport constant 5. Before we start the actual proof, we
collect some results on sets of lengths over C5.

Lemma 4.4. Let G be cyclic of order five, and let A ∈B(G).

1. If g ∈ G• and k ∈ N0, then

L
(
g5(k+1)(−g)5(k+1)(2g)g3)= 2k+3+{0,2,3}+3 · [0,k] .

2. If 2∈∆(L(A))⊂ [1,2], then L(A)∈ {{y,y+2} | y≥ 2}∪{{y,y+1,y+3} | y≥ 3}
or L(A) = 3+ {0,2,3}+ L(A′) where A′ ∈B(G) and L(A′) is an arithmetical
progression of difference 3.

3. ∆(G) = [1,3], and if 3 ∈ ∆(L(A)), then ∆(L(A)) = {3}.
4. ρ2k+1(G) = 5k+1 for all k ∈ N.

Proof. 1. and 2. follow from the proof of [24, Lemma 4.5].
3. See [20, Theorems 6.7.1 and 6.4.7] and [12, Theorem 3.3].
4. See [16, Theorem 5.3.1]. ut

Proof (Theorem 4.3). Let G be cyclic of order five and let g ∈ G•. We first show
that all the specified sets occur as sets of lengths, and then we show that no other
sets occur.
Step 1. We prove that for every L ∈L2 ∪L3 ∪L4 ∪L5 ∪L6, there exists an A ∈
B(G) such that L = L(A). We distinguish five cases.

If L = {y,y+2} ∈L2 with y≥ 2, then we set A = 0y−2g5(−g)3(−2g) and obtain
that L(A) = y−2+{2,4}= L.

If L = {y,y+ 1,y+ 3} ∈L3 with y ≥ 3, then we set A = 0y−3g5(−g)5g2(−2g)
and obtain that L(A) = y−3+{3,4,6}= {y,y+1,y+3}= L.

If L= y+2k+3·[0,k]∈L4 with k∈N and y∈N0, then we set A= g5k(−g)5k0y ∈
B(G) and hence L(A) = y+2k+3 · [0,k] = L.
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If L = y+2k+3+{0,2,3}+3 · [0,k] ∈L6 with k ∈ N0 and y ∈ N0, then we set
A= 0yg5(k+1)(−g)5(k+1)(2g)g3 and hence L(A)= y+2k+3+{0,2,3}+3 · [0,k] = L
by Lemma 4.4.1.

Now we suppose that L ∈ L5, and we distinguish two subcases. First, if L =
y+[3,6] with y ∈ N0, then we set A = 0y(2g(−2g))g5(−g)5 and hence L(A) = y+
[3,6] = L. Second, we assume that L = y+2d k

3e+[0,k] with y∈N0 and k ∈N\{3}.
If k ∈ N with k ≡ 0 (mod 3), then k ≥ 6 and by Lemma 4.2.1 we obtain that

L
(
0y(2g)5(−2g)5g5t(−g)5t)= y+[2t +2,5t +5] = y+2d k

3
e+[0,k] = L ,

where k = 3t +3.
If k ∈ N with k ≡ 1 (mod 3), then by Lemma 4.2.1 we obtain that

L
(
0y(2g(−g)2)(g2(−2g))g5t(−g)5t)= y+[2t +2,5t +3] = y+2d k

3
e+[0,k] = L ,

where k = 3t +1.
If k ∈ N with k ≡ 2 (mod 3), then by Lemma 4.2.1 we obtain that

L
(
0y(g3(2g))((−g)3(−2g))g5t(−g)5t)= y+[2t+2,5t+4] = y+2d k

3
e+[0,k] = L ,

where k = 3t +2.

Step 2. We prove that for every A ∈B(G•), L(A) ∈L2∪L3∪L4∪L5∪L6.
Let A ∈B(G•). We may suppose that ∆(L(A)) 6= /0. By Lemma 4.4.3 we distin-

guish three cases according to the form of the set of distances ∆(L(A)).
CASE 1: ∆(L(A)) = {1}.

Then L(A) is an interval and hence we assume that L(A) = [y,y+ k] = y+[0,k]
where y ≥ 2 and k ≥ 1. If k = 3 and y = 2, then L(A) = [2,5] and hence L(A) =
L(g5(−g)5) = {2,5}, a contradiction. Thus k = 3 implies that y ≥ 3 and hence
L(A) ∈L5. If k ≤ 2, then we obviously have that L(A) ∈L5. Suppose that k ≥ 4.
If y = 2t with t ≥ 2, then y+ k ≤ 5t and hence y = 2t ≥ 2d k

3e which implies that
L(A) ∈ L5. If y = 2t + 1 with t ≥ 1, then y+ k ≤ 5t + 1 and hence y = 2t + 1 ≥
1+2d k

3e which implies that L(A) ∈L5.
CASE 2: ∆(L(A)) = {3}.

Then L(A) = y+3 · [0,k] where y≥ 2 and k ≥ 1. If y = 2t ≥ 2, then y+3k ≤ 5t
and hence y= 2t ≥ 2k which implies that L(A)∈L4. If y= 2t+1≥ 3, then y+3k≤
5t +1 and hence y = 2t +1≥ 1+2k which implies that L(A) ∈L4.
CASE 3: 2 ∈ ∆(L(A))⊂ [1,2].

By Lemma 4.4.2, we infer that either L(A) ∈ L2 ∪L3 or that L(A) = 3 +
{0,2,3}+L(A′), where A′ ∈B(G) and L(A′) is an arithmetical progression of dif-
ference 3. In the latter case we obtain that L(A′) = y+2k+3 · [0,k], with y ∈N0 and
k ∈ N0, and hence L(A) = y+2k+3+{0,2,3}+3 · [0,k] ∈L6. ut
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4.2 The system of sets of lengths of C2⊕C4

We establish the following result, giving a complete description of the system of
sets of lengths of C2⊕C4.

Theorem 4.5. L (C2⊕C4) = L1∪L2∪L3∪L4∪L5 , where

L1 = {{y} | y ∈ N0} ,

L2 = {y+2
⌈

k
3

⌉
+[0,k] | y ∈ N0,k ∈ N\{3}}∪

{y+[3,6] | y ∈ N0,}∪{[2t +1,5t +2] | t ∈ N}

= {y+
⌈

2k
3

⌉
+[0,k] | y ∈ N0,k ∈ N\{1,3}}∪

{y+3+[0,3],y+2+[0,1] | y ∈ N0} ,
L3 = {y+2k+2 · [0,k] | y ∈ N0,k ∈ N} ,
L4 = {y+ k+1+({0}∪ [2,k+2]) | y ∈ N0,k ∈ N odd} , and

L5 = {y+ k+2+([0,k]∪{k+2}) | y ∈ N0,k ∈ N} .

We note that all sets of lengths are arithmetical progressions with difference 2 or
almost arithmetical progressions with difference 1 and bound 2. This is related to
the fact that ∆(C2⊕C4) = ∆ ∗(C2⊕C4) = {1,2}. We start with a lemma determining
all minimal zero-sum sequences over C2⊕C4.

Lemma 4.6. Let (e,g) be a basis of G = C2⊕C4 with ord(e) = 2 and ord(g) = 4.
Then the minimal zero-sum sequences over G• are given by the following list.

1. The minimal zero sum sequences of length 2 are :

S1
2 = {e2,(e+2g)2},

S2
2 = {(2g)2},

S3
2 = {g(−g),(e+g)(e−g)}

2. The minimal zero sum sequences of length 3 are :

S1
3 = {e(2g)(e+2g)} ,

S2
3 = {g2(2g),(−g)2(2g),(e+g)2(2g),(e−g)2(2g)} ,

S3
3 = {eg(e−g),e(−g)(e+g),(e+2g)g(e+g),(e+2g)(−g)(e−g)} .

3. The minimal zero sum sequences of length 4 are :
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S1
4 = {g4,(−g)4,(e+g)4,(e−g)4} ,

S2
4 = {g2(e+g)2,(−g)2(e−g)2,g2(e−g)2,(−g)2(e+g)2} ,

S3
4 = {eg2(e+2g),e(e+g)2(e+2g),e(−g)2(e+2g),e(e−g)2(e+2g)} ,

S4
4 = {eg(2g)(e+g),e(−g)(2g)(e−g),(e+2g)g(2g)(e−g),(e+2g)(−g)(2g)(e+g)} .

4. The minimal zero sum sequences of length 5 are :

S5 = {eg3(e+g),e(−g)3(e−g),e(e+g)3g,e(e−g)3(−g)

(e+2g)g3(e−g),(e+2g)(−g)3(e+g),

(e+2g)(e+g)3(−g),(e+2g)(e−g)3g} ,

Moreover, for each two atoms W1,W2 in any one of the above sets, there exists a
group isomorphism φ : G→ G such that φ(W1) =W2.

Proof. We give a sketch of the proof.
Since a minimal zero-sum sequence of length two is of the form h(−h) for some

non-zero element h ∈ G, the list given in 1. follows.
A minimal zero-sum sequence of length three contains either two elements of

order four or no element of order four. If there are two elements of order four, we
can have one element of order four with multiplicity two (see S2

3) or two distinct
elements of order four that are not the inverse of each other (see S3

3). If there is no
element of order four, the sequence consists of three distinct elements of order two
(see S1

3).
A minimal zero-sum sequence of length four contains either four elements of

order four or two elements of order four. If there are two elements of order four, the
sequence can contain one element with multiplicity two (see S3

4) or any two distinct
elements that are not each other’s inverse with multiplicity one (see S4

4). If there are
four elements of order four, the sequence can contain one element with multiplicity
four (see S1

4) or two elements with multiplicity two (see S2
4).

Since every minimal zero-sum sequence of length five contains an element with
multiplicity three, the list given in 4. follows (for details see [20, Theorem 6.6.5]).

The existence of the required isomorphism follows immediately from the given
description of the sequences. ut

The next lemma collects some basic results on L (C2⊕C4) that will be essential
for the proof of Theorem 4.5.

Lemma 4.7. Let G =C2⊕C4, and let A ∈B(G).

1. ∆(G) = [1,2], and if {2,5} ⊂ L(A), then L(A) = {2,4,5}.
2. ρ2k+1(G) = 5k+2 for all k ∈ N.
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3. If (e,g) is a basis of G with ord(e) = 2 and ord(g) = 4, then {0,g,2g,e+g,e+
2g} and {0,g,2g,e,e− g} are half-factorial sets. Furthermore, if supp(A) ⊂
{e,g,2g,e+g,e+2g} and ve(A) = 1, then |L(A)|= 1.

Proof. 1. The first assertion follows from [20, Theorem 6.7.1 and Corollary 6.4.8].
Let A ∈B(G) with {2,5} ⊂ L(A). Then there is an U ∈ A (G) of length |U | = 5
such that A = (−U)U . By Lemma 4.6 there is a basis (e,g) of G with ord(e) = 2
and ord(g) = 4 such that U = eg3(e+g). This implies that L(A) = {2,4,5}.

2. See [19, Corollary 5.2].
3. See [20, Theorem 6.7.9.1] for the first statement. Suppose that supp(A) ⊂

{e,g,2g,e + g,e + 2g} and ve(A) = 1. Then for every atom W dividing A with
e |W , we have that k(W ) = 3

2 . Since supp(AW−1) is half-factorial, we obtain that
L(AW−1) = {k(A)− 3/2} by [20, Proposition 6.7.3] which implies that L(A) =
{1+k(A)−3/2}= {k(A)−1/2}. ut

Proof (Theorem 4.5). Let (e,g) be a basis of G = C2 ⊕C4 with ord(e) = 2 and
ord(g) = 4. We start by collecting some basic constructions that will be useful.
Then, we show that all the sets in the result actually are sets of lengths. Finally, we
show there are no other sets of lengths.

Step 0. Some elementary constructions.
Let U1 = eg3(e + g), U2 = (e + 2g)(e + g)3(−g), U3 = e(e− g)3(−g), U4 =

(−g)2(e+g)2, and U5 = e(e+2g)g2. Then it is not hard to check that

L(U1(−U1)) = L(U2(−U2)) = {2,4,5},
L(U1U3)) = [2,4], L(U1(−U4)) = [2,3] ,
L(U1U3U4) = [3,7], L(U1(−U1)U2(−U2)) = [4,10] ,

L(U2
5 (−g)4) = {3,4,6}, L(U5(−U5)g4(−g)4) = {4,5,6,8} ,

L(U1(−U1)(e+2g)2) = [3,6] . (3)

Based on these results, we can obtain the sets of lengths of more complex zero-sum
sequences. Let k ∈ N.

Since [2k+2,4k+5]⊃ L(U1(−U1)g4k(−g)4k)⊃ L(U1(−U1))+L(g4k(−g)4k) =
2k+2+({0}∪ [2,2k+3]) and 2k+3 /∈ L(U1(−U1)g4k(−g)4k), we obtain that

L(U1(−U1)g4k(−g)4k) = 2k+2+({0}∪ [2,2k+3]) . (4)

Since [2(k + 1),5(k + 1)] ⊃ L(U1(−U1)Uk
2 (−U2)

k) ⊃ L(U1(−U1)U2(−U2)) +

L(Uk−1
2 (−U2)

k−1) = [2(k+1),5(k+1)], we obtain that

L(U1(−U1)Uk
2 (−U2)

k) = [2(k+1),5(k+1)] . (5)

Since [2(k+1),5(k+1)−1]⊃ L(U1U3Uk
2 (−U2)

k)⊃ L(U1U3)+L(Uk
2 (−U2)

k) =
[2(k+1),5(k+1)−1], we obtain that

L(U1U3Uk
2 (−U2)

k) = [2(k+1),5(k+1)−1] . (6)
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Since [2(k+1),5(k+1)−2]⊃ L(U1(−U4)Uk
2 (−U2)

k)⊃ L(U1(−U4))+L(Uk
2 (−U2)

k)
and L(U1(−U4))+L(Uk

2 (−U2)
k) = [2(k+1),5(k+1)−2], we obtain that

L(U1(−U4)Uk
2 (−U2)

k) = [2(k+1),5(k+1)−2] . (7)

Since

[2k+1,5k+2]⊃ L(U1U3U4Uk−1
2 (−U2)

k−1)⊃ L(U1U3U4)+L(Uk−1
2 (−U2)

k−1)

and L(U1U3U4)+L(Uk−1
2 (−U2)

k−1) = [2k+1,5k+2], we obtain that

L(U1U3U4Uk−1
2 (−U2)

k−1) = [2k+1,5k+2] . (8)

Since

[2k+1,4k+2]⊃ L(U2
5 (−g)4g4k−4(−g)4k−4)⊃ L(U2

5 (−g)4)+L(g4k−4(−g)4k−4),

L(U2
5 (−g)4)+L(g4k−4(−g)4k−4) = [2k+1,4k]∪{4k+2} and

4k+1 /∈ L(U2
5 (−g)4g4k−4(−g)4k−4)

by Lemma 4.2.3, we obtain that

L(U2
5 (−g)4g4k−4(−g)4k−4) = [2k+1,4k]∪{4k+2} . (9)

Suppose that k ≥ 2. Since

[2k,4k]⊃ L(U5(−U5)g4k−4(−g)4k−4)⊃ L(U5(−U5)g4(−g)4)+L(g4k−8(−g)4k−8) ,

L(U5(−U5)g4(−g)4)+L(g4k−8(−g)4k−8) = [2k,4k−2]∪{4k}, and

4k−1 /∈ L(U5(−U5)g4k−4(−g)4k−4)

by Lemma 4.2.3, we obtain that

L(U5(−U5)g4k−4(−g)4k−4) = [2k,4k−2]∪{4k} . (10)

Step 1. We prove that for every L ∈L2∪L3∪L4∪L5 there exists an A ∈B(G)
such that L = L(A).

We distinguish four cases.
First we suppose that L ∈ L2, and we distinguish several subcases. If L = y+

[3,6] with y ∈ N0, then we set A = 0yU1(−U1)(e + 2g)2 and hence L(A) = y +
[3,6] = L by Equation (3). If L = [2k + 1,5k + 2] with k ∈ N, then we set A =
U1U3U4Uk−1

2 (−U2)
k−1 and hence L(A) = L by Equation (8). Now we assume that

L = y+2d k
3e+[0,k] with y ∈ N0 and k ∈ N\{3}.

If k ≡ 0 (mod 3), then k ≥ 6 and by Equation (5) we infer that
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L
(
0yU1(−U1)U t

2(−U2)
t)= y+[2t+2,5t+5] = y+2d k

3
e+[0,k] =L , where k = 3t +3 .

If k ≡ 1 (mod 3), then by Equation (7) we infer that

L
(
0yU1(−U4)U t

2(−U2)
t)= y+[2t+2,5t+3] = y+2d k

3
e+[0,k] =L , where k = 3t +1 .

If k ≡ 2 (mod 3), then by Equation (6) we infer that

L
(
0yU1U3U t

2(−U2)
t)= y+[2t+2,5t+4] = y+2d k

3
e+[0,k] =L , where k = 3t +2 .

If L = y+2k+2 · [0,k]∈L3 with y∈N0 and k ∈N, then we set A = 0yg4k(−g)4k

and hence L(A) = L.
If L = y + 2t + 2 + ({0} ∪ [2,2t + 3]) ∈ L4 with y, t ∈ N0, then we set A =

0yU1(−U1)g4t(−g)4t and obtain that L(A) = y+2t +2+({0}∪ [2,2t +3]) = L by
Equation (4).

Finally we suppose that L = y + k + ([0,k− 2] ∪ {k}) ∈ L5 with k ≥ 3 and
y ∈ N0, and we distinguish two subcases. If k = 2t with t ≥ 2, then we set
A = 0yU5(−U5)g4t−4(−g)4t−4 and hence L(A) = y+ k+([0,k− 2]∪{k}) = L by
Equation (10). If k = 2t + 1 with t ≥ 1, then we set A = 0yU2

5 (−g)4g4t−4(−g)4t−4

and hence L(A) = y+ k+([0,k−2]∪{k}) = L by Equation (9).

Step 2. We prove that for every A ∈B(G•), L(A) ∈L2∪L3∪L4∪L5.
Let A ∈B(G•). We may suppose that ∆(L(A)) 6= /0. By Lemma 4.7.1 we have to

distinguish two cases.
CASE 1: ∆(L(A)) = {1}.

Then L(A) is an interval, say L(A) = [y,y+ k] = y+[0,k] with y ≥ 2 and k ≥ 1.
If k = 3 and y = 2, then L(A) = [2,5], a contradiction to Lemma 4.7.1. Thus k =
3 implies that y ≥ 3 and hence L(A) ∈ L2. If k ≤ 2, then obviously L(A) ∈ L2.
Suppose that k ≥ 4. If y = 2t with t ≥ 2, then y+ k ≤ 5t and hence y = 2t ≥ 2d k

3e
which implies that L(A) ∈L2. Suppose that y = 2t +1 with t ∈N. If y+k≤ 5t +1,
then y = 2t +1≥ 1+2d k

3e which implies that L(A) ∈L2. Otherwise y+k = 5t +2
and hence L(A) = [2t +1,5t +2] ∈L2.
CASE 2: 2 ∈ ∆(L(A))⊂ [1,2].

We freely use the classification of minimal zero-sum sequence given in Lemma
4.6. Since 2 ∈ ∆(L(A)), there are k ∈ N and U1, . . . ,Uk,V1, . . . ,Vk+2 ∈ A (G) with
|U1| ≥ |U2| ≥ . . .≥ |Uk| such that

A =U1 · . . . ·Uk =V1 · . . . ·Vk+2 and k+1 6∈ L(A) ,

and we may suppose that k is minimal with this property. Then [minL(A),k] ∈ L(A)
and there exists k0 ∈ [2,k] such that |Ui| ≥ 3 for every i ∈ [1,k0] and |Ui| = 2 for
every i ∈ [k0 +1,k]. We continue with two simple assertions.

A1. For each two distinct i, j ∈ [1,k0], we have that 3 6∈ L(UiU j).
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A2. |L(U1 · . . . ·Uk0)| ≥ 2.

Proof of A1. Assume to the contrary that there exist distinct i, j ∈ [1,k0] such that
3 ∈ L(UiU j). This implies that k+1 ∈ L(A), a contradiction. ut

[Proof of A1]
Proof of A2. Assume to the contrary that |L(U1 · . . . ·Uk0)|= 1. Then Lemma 4.2.2
implies that maxL(A) = maxL(U1 · . . . ·Uk0)+ k− k0 = k, a contradiction. ut

[Proof of A2]

We use A1 and A2 without further mention and freely use Lemma 4.6 together
with all its notation. We distinguish six subcases.

CASE 2.1: U1 ∈ S5.
Without loss of generality, we may assume that U1 = eg3(e + g). We choose

j ∈ [2,k0] and start with some preliminary observations. If |U j| = 5, then the fact
that 3 6∈ L(U1U j) implies that U j =−U1. If |U j|= 4, then 3 6∈ L(U1U j) implies that
U j ∈ {g2(e+ g)2,g4,(−g)4,(e+ g)4}. If |U j| = 3, then 3 6∈ L(U1U j) implies that
U j ∈ {(e+2g)g(e+g),g2(2g),(e+g)2(2g)}.

Now we distinguish three cases.
Suppose that |U2| = 5. Then U2 = −U1 and by symmetry we obtain that U j ∈

{g4,(−g)4} for every j ∈ [3,k0]. Let i ∈ [k0 +1,k]. If Ui 6= e2, then 4 ∈U1U2Ui and
hence k+1 ∈ L(A), a contradiction. Therefore we obtain that

A =U1(−U1)(g4)k1((−g)4)k2(e2)k3 where k1,k2,k3 ∈ N0 ,

and without loss of generality we may assume that k1 ≥ k2. Then it follows that L(A)
is equal to

k1−k2+k3+L(U1(−U1)(g4)k2((−g)4)k2)= k3+k1−k2+2k2+2+({0}∪[2,2k2+3]),

which is an element of L4.
Suppose that |U2|= 4 and there exists j ∈ [2,k0] such that U j = (−g)4, say j = 2.

Let i ∈ [3,k0]. If Ui ∈ {g2(e+ g)2,g2(2g)}, then 3 ∈ L(U2Ui) and hence k + 1 ∈
L(A), a contradiction. If Ui ∈ {(e+ g)4,(e+ g)2(2g),(e+ 2g)g(e+ g)}, then 4 ∈
L(U1U2Ui) and hence k + 1 ∈ L(A), a contradiction. Therefore Ui ∈ {g4,(−g)4}.
Let τ ∈ [k0 + 1,k]. If Uτ ∈ {(e+ 2g)2,(2g)2,(e+ g)(e− g)}, then 4 ∈ L(U1U2Uτ)
and hence k+1 ∈ L(A), a contradiction. Therefore Uτ ∈ {e2,g(−g)}. Therefore we
obtain that

A =U1(g4)k1((−g)4)k2(g(−g))k3(e2)k4 where k1,k3,k4 ∈ N0 and k2 ∈ N

and hence L(A) is equal to

L((g4)k1+1((−g)4)k2(g(−g))k3(e2)k4) = k4 +L(g4k1+4+k3(−g)4k2+k3)

which is in L3
Suppose that |U2| ≤ 4 and for every j ∈ [2,k0], we have U j 6= (−g)4. Then U j ∈

{g2(e+g)2,g4,(e+g)4,(e+2g)g(e+g),g2(2g),(e+g)2(2g)}. Since supp(U1 · . . . ·
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Uk0) ⊂ {e,g,2g,e+ g,e+ 2g} and ve(U1 · . . . ·Uk0) = 1, Lemma 4.7.3 implies that
|L(U1 · . . . ·Uk0)|= 1, a contradiction.

CASE 2.2: U1 ∈ S4
4.

Without loss of generality, we may assume that U1 = eg(2g)(e + g). Let j ∈
[2,k0].

Suppose that |U j|= 4. Since 3 6∈ L(U1U j), we obtain that U j ∈{g2(e+g)2,g4,(e+
g)4}. Thus U1U j =W1W2 with |W1|= 5, where W1,W2 are atoms and hence we are
back to CASE 2.1.

Suppose that |U j| = 3. Since 3 6∈ L(U1U j), we obtain that U j ∈ {(e+ 2g)g(e+
g),g2(2g),(e+ g)2(2g)}. If U j ∈ {g2(2g),(e+ g)2(2g)}, then U1U j = W1W2 with
|W1| = 5, where W1,W2 are atoms and hence we are back to CASE 2.1. Thus it
remains to consider the case where U j = (e+2g)g(e+g).

Therefore we have

U1 · . . . ·Uk0 =U1
(
(e+2g)g(e+g)

)k1 where k1 ∈ N .

Since supp(U1 · . . . ·Uk0)⊂ {e,g,2g,e+g,e+2g} and ve(U1 · . . . ·Uk0) = 1, Lemma
4.7.3 implies that |L(U1 · . . . ·Uk0)|= 1, a contradiction.

CASE 2.3: U1 ∈ S3
4 and for every i ∈ [2,k0], we have Ui 6∈ S4

4.
Without loss of generality, we may assume that U1 = eg2(e+2g). Let j ∈ [2,k0].
Suppose that |U j| = 4. Since 3 6∈ L(U1U j), we obtain that U j ∈ {−U1,g2(e+

g)2,g2(e−g)2,(e+g)4,(e−g)4,g4}. If U j ∈ {g2(e+g)2,g2(e−g)2,(e+g)4,(e−
g)4}, then U1U j = W1W2 with |W1| = 5, where W1,W2 are atoms and hence we are
back to CASE 2.1. Thus it remains to consider the cases where U j =−U1 or U j = g4.

Suppose that |U j| = 3. Since 3 6∈ L(U1U j), we obtain that U j ∈ {eg(e− g),(e+
2g)g(e+ g),g2(2g),(e+ g)2(2g),(e− g)2(2g)}. If U j ∈ {eg(e− g),(e+ 2g)g(e+
g)}, then U1U j = W1W2 with |W1| = 5, where W1,W2 are atoms and hence we are
back to CASE 2.1. If U j ∈ {(e+ g)2(2g),(e− g)2(2g)}, then U1U j = W1W2 with
W1 ∈ S4

4, where W1,W2 are atoms and hence we are back to CASE 2.2. Thus it
remains to consider the case where U j = g2(2g).

If Ui 6= −U1 for every i ∈ [2,k0], then U1 · . . . ·Uk0 = U1(g4)k1(g2(2g))k2 where
k1,k2 ∈N0. Since supp(U1 · . . . ·Uk0)⊂{e,g,2g,e+g,e+2g} and ve(U1 · . . . ·Uk0) =
1, Lemma 4.7.3 implies that |L(U1 · . . . ·Uk0)|= 1, a contradiction. Thus there exists
some i ∈ [2,k0], say i = 2, such that U2 =−U1. By symmetry we obtain that k0 = 2.
Let τ ∈ [3,k]. If Uτ ∈ {(2g)2,(e+g)(e−g)}, then 4∈ L(U1U2Uτ) and hence k+1∈
L(A), a contradiction. Therefore A = U1(−U1)(e2)k1((e+ 2g)2)k2(g(−g))k3 where
k1,k2,k3 ∈ N0. Since [minL(A),2+ k1 + k2 + k3] ⊂ L(A), we obtain that L(A) =
[minL(A),2+ y]∪{4+ y} where y = k1 + k2 + k3 ∈ N0. For every atom V dividing
A, we have that |V |= 2 or |V |= 4. Thus minL(A)≥ 2+ y

2 which implies that L(A)∈
L5.

CASE 2.4: U1 ∈ S2
4 and for every i ∈ [2,k0], we have Ui 6∈ S4

4∪S3
4.

Without loss of generality, we may assume that U1 = g2(e+g)2. Let j ∈ [2,k0].
Suppose that |U j|= 4. If U j ∈ {g2(e−g)2,(−g)2(e+g)2,(−g)4,(e−g)4}, then

3 ∈ L(U1U j), a contradiction. Thus U j ∈ {U1,−U1,g4,(e+g)4}.
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Suppose that |U j| = 3. If U j ∈ {(e+ 2g)(−g)(e− g),(−g)2(2g),(e− g)2(2g)},
then 3 ∈ L(U1U j), a contradiction. If U j ∈ {eg(e−g),e(−g)(e+g)}, then U1U j =
W1W2 with |W1| = 5, where W1,W2 are atoms and hence we are back to CASE 2.1.
If U j = e(2g)(e+ 2g), then U1U j =

(
e(e+ g)g(2g)

)(
g(e+ g)(e+ 2g)

)
and e(e+

g)g(e+ 2g) ∈ S4
4, going back to CASE 2.2. Thus it remains to consider the case

where U j = g2(2g) or U j = (e+g)2(2g).
If Ui 6=−U1 for every i∈ [2,k0], then supp(U1 · . . . ·Uk0)⊂ {g,2g,e+g,e+2g} is

half-factorial by Lemma 4.7.3, a contradiction. Thus there exists some i∈ [2,k0], say
i = 2, such that U2 =−U1. By symmetry we obtain that {U1, . . . ,Uk0}= {U1,−U1}.
Let τ ∈ [k0 + 1,k]. If Uτ ∈ {e2,(2g)2,(e+ 2g)2}, then 4 ∈ L(U1U2Uτ) and k+ 1 ∈
L(U1U2Uτ), a contradiction. Therefore A =Uk1

1 (−U1)
k2(g(−g))k3((e+g)(e−g))k4

where k1,k2 ∈ N and k3,k4 ∈ N0. If k1 + k2 ≥ 3, by symmetry we assume that
k1 ≥ 2, then U2

1 (−U1) = g4(−g)2(e+ g)2(e+ g)(e− g)(e+ g)(e− g) and hence
4 ∈ L(U2

1 (−U1)) which implies that k+ 1 ∈ L(A), a contradiction. Thus k1 = k2 =
1 and hence A = U1(−U1)(g(−g))k3((e + g)(e− g))k4 where k3,k4 ∈ N0. Since
[minL(A),2 + k3 + k4] ∈ L(A), we obtain that L(A) = [minL(A),2 + y]∪ {4 + y}
where y = k3 + k4 ∈ N0. For every atom V dividing A, we have that |V | = 2 or
|V |= 4. Thus minL(A)≥ 2+ y

2 which implies that L(A) ∈L5.

CASE 2.5: U1 ∈ S1
4 and for every i ∈ [2,k0], we have Ui 6∈ S4

4∪S3
4∪S2

4.
Without loss of generality, we may assume that U1 = g4. Let j ∈ [2,k0].
Suppose that |U j|= 4. If U j ∈ {(e+g)4,(e−g)4}, then U1U j =W1W2 with W1 ∈

S2
4, where W1,W2 are atoms and hence we are back to CASE 2.4. Thus it remains to

consider the case where U j =U1 or U j =−U1.
Suppose that |U j|= 3. If U j ∈ {(−g)2(2g)}, then 3∈ L(U1U j), a contradiction. If

U j ∈ {e(−g)(e+g),(e+2g)(−g)(e−g)}, then U1U j =W1W2 with |W1|= 5, where
W1,W2 are atoms and hence we are back to CASE 2.1. If U j ∈ {(e+ g)2(2g),(e−
g)2(2g)}, then U1U j = W1W2 with W1 ∈ S2

4, where W1,W2 are atoms and hence we
are back to CASE 2.4. If U j = e(2g)(e+ 2g), then U1U j = W1W2 with W1 ∈ S3

4,
where W1,W2 are atoms and hence we are back to CASE 2.3. Thus it remains to
consider the case where U j = g2(2g), or U j = eg(e−g), or U j = (e+2g)g(e+g).

First, suppose that Ui 6=−U1 for every i ∈ [2,k0]. Then

U1 · . . . ·Uk0 =Uk1
1 (eg(e−g))k2((e+2g)g(e+g))k3(g2(2g))k4 ,

where k1 ∈ N and k2,k3,k4 ∈ N0. If k2 ≥ 1 and k3 ≥ 1, then eg(e−g)(e+2g)g(e+
g) = eg2(e+ 2g)(e+ g)(e− g), eg2(e+ 2g) ∈ S3

4 and hence we are back to CASE
2.3. Thus we may assume that k2 = 0 or k3 = 0. Since {g,2g,e+ g,e+ 2g} and
{g,2g,e,e− g} are both half-factorial by Lemma 4.7.3, we obtain that |L(U1 · . . . ·
Uk0)|= 1, a contradiction.

Second, suppose that there exists some i ∈ [2,k0], say i = 2, such that U2 =−U1.
By symmetry we obtain that {U1, . . . ,Uk0}= {U1,−U1}. Since 4∈ L(U1 ·U2 ·(2g)2),
5∈ L(U1U2e2(e−g)(e+g)), and 5∈ L(U1U2(e+2g)2(e−g)(e+g)), we obtain that

{Uk0+1, . . . ,Uk} ⊂ {(e+g)(e−g),g(−g)} or
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{Uk0+1, . . . ,Uk} ⊂ {e2,(e+2g)2,g(−g)} .

This implies that

A = (g4)k1((−g)4)k2((e+g)(e−g))k3(g(−g))k4 or

A = (g4)k1((−g)4)k2(e2)k3((e+2g)2)k4(g(−g))k5 ,

where k1,k2 ∈ N and k3,k4,k5 ∈ N0.
Suppose that A = (g4)k1((−g)4)k2((e+g)(e−g))k3(g(−g))k4 , where k1,k2 ∈ N

and k3,k4,k5 ∈ N0. If k1 ≥ 2 and k3 ≥ 2, then g4 g4(−g)4(e+g)(e−g)(e+g)(e−
g) =

(
g(−g)

)4g2(e+ g)2g2(e− g)2 and hence 6 ∈ L(g4g4(−g)4(e+ g)(e− g)(e+
g)(e− g)). Thus k + 1 ∈ L(A), a contradiction. Therefore by symmetry k3 = 1 or
k1 = k2 = 1. If k3 = 1, then L(A) = 1+L((g4)k1((−g)4)k2(g(−g))k4) ∈L3. If k1 =
k2 = 1, then L(A) = [minL(A),2+ y]∪{4+ y} where y = k3 + k4 ∈ N0. For every
atom V dividing A, we have that |V | = 2 or |V | = 4. Thus minL(A) ≥ 2+ y

2 which
implies that L(A) ∈L5.

Suppose that A = (g4)k1((−g)4)k2(e2)k3((e+2g)2)k4(g(−g))k5 , where k1,k2 ∈N
and k3,k4,k5 ∈ N0. If k1 ≥ 2, k3 ≥ 1, and k4 ≥ 1, then g4g4(−g)4e2(e+ 2g)2 =(
g(−g)

)4(e(e + 2g)g2
)2 and hence 6 ∈ L(g4g4(−g)4e2(e + 2g)2). Thus k + 1 ∈

L(A), a contradiction. Therefore by symmetry k3 = 0, or k4 = 0, or k1 = k2 = 1.
If k3 = 0 or k4 = 0, then L(A) = k3 + k4 + L((g4)k1((−g)4)k2(g(−g))k5) ∈ L3. If
k1 = k2 = 1, then L(A) = [minL(A),2+ y]∪{4+ y} where y = k3 + k4 + k5 ∈ N0.
For every atom V dividing A, we have that |V | = 2 or 4. Thus minL(A) ≥ 2+ y

2
which implies that L(A) ∈L5.

CASE 2.6: |U1|= 3.
Let j ∈ [2,k0]. We distinguish three subcases.
First, we suppose that U1 ∈ S3

3, and without restriction we may assume that U1 =
eg(e−g). If U j =−U1, then 3 ∈ L(U1U j), a contradiction. If U j ∈ {(−g)2(2g),(e+
g)2(2g),e(2g)(e+ 2g)}, then U1U j = W1W2 with W1 ∈ S4

4 where W1,W2 are atoms
and hence we are back to CASE 2.2. If U j ∈{(e+2g)g(e+g),(e+2g)(−g)(e−g)},
then U1U j =W1W2 with W1 ∈ S3

4 where W1,W2 are atoms and hence we are back to
CASE 2.3. If U j =U1, then U1U j =W1W2 with W1 ∈ S2

4 where W1,W2 are atoms and
hence we are back to CASE 2.4. Thus it remains to consider the case where U j =
g2(2g) or (e− g)2(2g). Then U1 · . . . ·Uk0 = U1(g2(2g))k1((e− g)2(2g))k2 where
k1,k2 ∈ N0. Since {e,g,2g,e− g} is half-factorial by Lemma 4.7.3, we obtain that
|L(U1 · . . . ·Uk0)|= 1, a contradiction.

Second, we suppose that U1 ∈ S2
3, and without restriction we may assume that

U1 = g2(2g) and U j 6∈ S3
3. If U j =−U1, then 3 ∈ L(U1U j). If U j =U1, then U1U j =

W1W2 with W1 ∈ S1
4 where W1,W2 are atoms and hence we are back to CASE 2.5. If

U j ∈{(e+g)2(2g),(e−g)2(2g)}, then U1U j =W1W2 with W1 ∈ S2
4 where W1,W2 are

atoms and hence we are back to CASE 2.4. If U j = e(2g)(e+2g), then U1U j =W1W2
with W1 ∈ S3

4 where W1,W2 are atoms and hence we are back to CASE 2.3.
Third, we suppose that U1 ∈ S1

3, and without restriction we assume that U j ∈ S1
3.

Thus 3 ∈ L(U1U j), a contradiction. ut



24 Alfred Geroldinger and Wolfgang A. Schmid and Qinghai Zhong

4.3 The system of sets of lengths of C4
2

Now we give a complete description of the system of sets of lengths of C4
2 .

Theorem 4.8. L (C4
2) = L1∪L2∪L3∪L4∪L5∪L6∪L7∪L8, where

L1 =
{
{y} | y ∈ N0

}
,

L2 =
{

y+2k+3 · [0,k] | y,k ∈ N0
}
,

L3 =
{

y+[2,3],y+[2,4],y+[3,6],y+[3,7],y+[4,9] | y ∈ N0
}
∪{

y+[m,m+ k] | y ∈ N0,k ≥ 6,m minimal with m+ k ≤ 5m/2
}

=
{

y+
⌈

2k
3

⌉
+[0,k] | y ∈ N0,k ∈ N\{1,3}

}
∪

{y+3+[0,3],y+2+[0,1] | y ∈ N0},
L4 =

{
y+2k+2 · [0,k]

∣∣ y, k ∈ N0
}
,

L5 = {y+ k+2+([0,k]∪{k+2}) | y ∈ N0,k ∈ N},

L6 = {y+2
⌈

k
3

⌉
+2+({0}∪ [2,k+2]) | y ∈ N0,k ≥ 5 or k = 3},

L7 = {y+2k+3+{0,1,3}+3 · [0,k] | y,k ∈ N0} ∪
{y+2k+4+{0,1,3}+3 · [0,k]∪{y+5k+8} | y,k ∈ N0}, and

L8 = {y+2k+3+{0,2,3}+3 · [0,k] | y,k ∈ N0} ∪
{y+2k+4+{0,2,3}+3 · [0,k]∪{y+5k+9} | y,k ∈ N0}.

We note that the system of sets of lengths of C4
2 is richer than that of the other

groups we considered. A reason for this is that the set ∆ ∗(C4
2) is largest, namely

{1,2,3} (this fact was also crucial in the proof of Theorem 3.5). We recall some
useful facts in the lemma below.

Lemma 4.9. Let G =C4
2 , and let A ∈B(G).

1. ∆(G) = [1,3], and if 3 ∈ ∆(L(A)), then ∆(L(A)) = {3} and there is a basis
(e1, . . . ,e4) of G such that supp(A)\{0}= {e1, . . . ,e4,e1 + . . .+ e4}.

2. ρ2k+1(G) = 5k+2 for all k ∈ N.

Proof. 1. The first statement follows from [20, Theorem 6.8.3], and the second state-
ment from [25, Lemma 3.10].

2. See [20, Theorem 6.3.4]. ut

In the following result we characterize which intervals are sets of lengths for C4
2 .

It turns out that, with a single exception, the sole restriction is the one implied by
elasticity.
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Proposition 4.10. Let G =C4
2 and let 2 ≤ l1 ≤ l2 be integers. Then [l1, l2] ∈L (G)

if and only if l2/l1 ≤ 5/2 and (l1, l2) 6= (2,5).

Proof. Suppose that [l1, l2] ∈L (G) with integers 2≤ l1 ≤ l2. Then (2) implies that
l2/l1 ≤ ρ(G) = 5/2. Moreover, [2,5] = [2,D(G)] /∈L (G) by [20, Theorem 6.6.3].

Conversely, we need to show that for integers 2≤ l1 ≤ l2 with (l1, l2) 6= (2,5) and
l2/l1 ≤ 5/2, we have [l1, l2] ∈L (G). We start with an observation that reduces the
problem to constructing these sets of intervals for extremal choices of the endpoints.

Let k ∈ N. If m ∈ N such that [m,m+ k] ∈L (G), then y+ [m,m+ k] ∈L (G)
for all y ∈N0. Thus let mk = max{2,d 2k

3 e} if k ∈N\{3} and m3 = 3. Therefore we
only need to prove that [mk,mk + k] ∈L (G).

For k ∈ [1,5] we are going to realize sets [mk,mk +k] as sets of lengths. Then we
handle the case k ≥ 6.

If k ∈ {1,3}, then the sets [2,3], [3,6] ∈ L (C3
2) ⊂ L (G). To handle the case

k = 2, we have to show that [2,4] ∈ L (G). Let (e1, . . . ,e4) be a basis of G and
e0 = e1 + . . .+ e4. If

U1 = e0 · . . . · e4 and U2 = e1e2(e1 + e3)(e2 + e4)(e3 + e4),

then maxL(U1U2)< 5, and

U1U2 =
(

e0e1e2(e3 + e4)
)(

(e1 + e3)e1e3

)(
(e2 + e4)e2e4

)
=
(

e0(e1 + e3)(e2 + e4)
)(

e2
1

)(
e2

2

)(
(e3 + e4)e3e4

)
,

shows that L(U1U2) = [2,4]. It remains to verify the following assertions.

A1. [3,7] ∈L (G) (this settles the case k = 4).
A2. [4,9] ∈L (G) (this settles the case k = 5).
A3. Let k ≥ 6. Then [d 2k

3 e, d
2k
3 e+ k] ∈L (G).

Proof of A1. Clearly,

U1 = e0 · . . . · e4, U2 = e1e2(e1 + e3)(e2 + e4)(e3 + e4), and
U3 = (e1 + e3)(e2 + e4)e3e4(e1 + e2)

are minimal zero-sum sequences of lengths 5. Since

U1U2U3 =
(

e0(e1 + e2)(e3 + e4)
)(

e2
1

)(
e2

2

)(
e2

3

)(
e2

4

)(
(e1 + e3)

2
)(

(e2 + e4)
2
)

=
(

e0(e1 + e2)(e3 + e4)
)(

(e1 + e3)e1e3

)2(
(e2 + e4)

2
)(

e2
2

)(
e2

4

)
=
(

e0(e1 + e2)(e3 + e4)
)(

(e1 + e3)e1e3

)2(
(e2 + e4)e2e4

)2

=U2

(
e0(e1 + e2)(e1 + e3)e1e4

)(
(e2 + e4)e2e4

)(
e2

3

)
,

it follows that L(U1U2U3) = [3,7].
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Proof of A2. We use the same notation as in A1, set U4 = (e1 + e2)(e1 +
e3)(e2 + e4)(e3 + e4), and assert that L(U2

1 U2U4) = [4,9]. Clearly, 4 ∈ L(U2
1 U2U4)

and maxL(U2
1 U2U4)< 10. Since

U2
1 U2U4 =

(
e0e1e2(e3 + e4)

)(
(e1 + e3)e1e3

)(
(e2 + e4)e2e4

)
U1U4

=
(

e0(e1 + e3)(e2 + e4)
)(

e2
1

)(
e2

2

)(
(e3 + e4)e3e4

)
U1U4

=
4

∏
ν=0

(
e2

ν

)
U2U4

=
(
(e1 + e3)

2
)(

(e2 + e4)
2
)(

(e3 + e4)e3e4

)2(
e2

0

)(
e2

1

)(
e2

2

)(
(e1 + e2)e1e2

)
=
(
(e1 + e3)

2
)(

(e2 + e4)
2
)(

(e3 + e4)
2
)(

e2
3

)(
e2

4

)(
e2

0

)(
e2

1

)(
e2

2

)(
(e1 + e2)e1e2

)
,

the assertion follows.
Proof of A3. We proceed by induction on k. For k = 6, we have to verify that

[4,10] ∈ L (G). We use the same notation as in A1, and assert that L(U2
1 U2

2 ) =
[4,10]. Clearly, {4,10} ⊂ L(U2

1 U2
2 )⊂ [4,10]. Since

U2
1 U2

2 =
(

e0e1e2(e3 + e4)
)(

(e1 + e3)e1e3

)(
(e2 + e4)e2e4

)
U1U2

=
(

e0e1e2(e3 + e4)
)2(

(e1 + e3)e1e3

)2(
(e2 + e4)e2e4

)2

=
4

∏
ν=0

(
e2

ν

)
U2

2

=
(

e0(e1 + e3)(e2 + e4)
)2(

e2
1

)2(
e2

2

)2(
(e3 + e4)e3e4

)2

=
(
(e1 + e3)

2
)(

(e2 + e4)
2
)(

(e3 + e4)e3e4

)2(
e2

0

)(
e2

1

)2(
e2

2

)2

it follows that [5,9]⊂ L(U2
1 U2

2 ), and hence L(U2
1 U2

2 ) = [4,10].
If k = 7, then [5,12] ⊃ L(U3

1 U2U3) ⊃ L(U1U2U3) + L(U2
1 ) = [3,7] + {2,5} =

[5,12] which implies that [5,12] ∈ L (G). If k = 8, then [6,14] ⊃ L(U4
1 U2U4) ⊃

L(U2
1 U2U4)+L(U2

1 ) = [4,9] + {2,5} = [6,14] which implies that [6,14] ∈L (G).
Suppose that k ≥ 9, and that the assertion holds for all k′ ∈ [6,k − 1]. Then
the set [d 2(k−3)

3 e,d 2(k−3)
3 e+ k− 3] ∈ L (G). This implies that [d 2k

3 e,d
2k
3 e+ k] =

[d 2(k−3)
3 e,d 2(k−3)

3 e+ k−3]+{2,5} ∈L (G). ut

We now proceed to prove Theorem 4.8.

Proof (Theorem 4.8). Let (e1,e2,e3,e4) be a basis of G =C4
2 . We set e0 = e1 +e2 +

e3 + e4, U = e0e1e2e3e4, and V = e1e2e3(e1 + e2 + e3).

Step 0. Some elementary constructions.
Let t1 ≥ 2, t2 ≥ 2, t = t1 + t2, and
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Lt1,t2 =

{
{t}∪ [t +2,5bt1/2c+4(t/2−bt1/2c)] if t is even ,
{t}∪ [t +2,5bt1/2c+4((t−1)/2−bt1/2c)+1] if t is odd .

Since L(U2V 2)= {4}∪[6,9], we have that L(U t1V t2)⊃ L(U2V 2)+L(U t1−2V t2−2)=
Lt1,t2 . Note that for every atom W dividing U t1V t2 , we have

W =


U if |W |= 5 ,
V if |W |= 4 ,
e0e4(e1 + e2 + e3) if |W |= 3 .

Assume to the contrary that t + 1 ∈ L(U t1V t2). Then there exist t3, t4, t5 ∈ N0
and atoms W1, . . . ,Wt3+t4+1 such that U t3V t4 = W1 . . .Wt3+t4+1 with t3 + t4 ≥ 2,
t5 ≤ min{t3, t4}, |Wi| = 3 for i ∈ [1, t5], and |Wi| = 2 for i ∈ [t5 + 1, t3 + t4 + 1]. It
follows that 5t3+4t4 = 3t5+2(t3+ t4+1− t5)≤ 3t3+2t4+2 and hence t3+ t4 ≤ 1,
a contradiction. Therefore t +1 6∈ L(U t1V t2) and

L(U t1V t2) = Lt1,t2 . (11)

Note that for every atom W dividing U rV with r≥ 2 and e1+e2+e3 |W , we have
W =V or W = e0e4(e1 + e2 + e3). It follows that for all r ≥ 2

L(U rV )

=
(
1+L(U r)

)
∪
(
1+L(e2

1e2
2e2

3U r−1)
)

(12)

=

{
r+1+{0,2,3}+3 · [0,r/2−1], if r is even ,
r+1+{0,2,3}+3 · [0,(r−1)/2−1]∪{r+1+(3r−3)/2+2}, if r is odd .

Note that for every atom W dividing U rVe2
4e2

0 with r ≥ 2 and e1 +e2 +e3 |W , we
have W =V or W = e0e4(e1 + e2 + e3). It follows that for all r ≥ 2

L(U rVe2
4e2

0)

=
(
1+L(U re2

4e2
0)
)
∪
(
1+L(U r+1)

)
(13)

=

{
r+2+{0,1,3}+3 · [0,(r+1)/2−1], if r is odd ,
r+2+{0,1,3}+3 · [0,r/2−1]∪{r+2+3r/2+1}, if r is even .

.
Step 1. We prove that for every L∈L2∪L3∪L4∪L5∪L6∪L7∪L8, there exists
an A ∈B(G) such that L = L(A). We distinguish seven cases.

If L = y+2k+3 · [0,k] ∈L2 with y,k ∈ N0, then L = L(0yU2k) ∈L (G).
If L ∈L3, then the claim follows from Proposition 4.10.
If L = y+ 2k+ 2 · [0,k] ∈L4 with y,k ∈ N0, then Proposition 3.3.4 implies that

L ∈L (C3
2)⊂L (G).

Suppose that L = y+ k + 2+ ([0,k]∪ {k + 2}) ∈ L5 with k ∈ N and y ∈ N0.
Note that L(V 2(e1 + e4)

2(e2 + e4)
2(e3 + e4)

2(e1 + e2 + e3 + e4)
2) = [4,6]∪{8}. If
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k is even, then we set A = 0yV 2(e1 + e4)
k(e2 + e4)

k(e3 + e4)
k(e1 + e2 + e3 + e4)

k

and obtain that L(A) = L by Lemma 4.2.3. If k is odd, then we set A = 0yV 2(e1 +
e4)

k+1(e2 + e4)
k+1(e3 + e4)

k−1(e1 + e2 + e3 + e4)
k−1 and obtain that L(A) = L by

Lemma 4.2.3.
Suppose that L = y+ 2d k

3e+ 2+({0}∪ [2,k+ 2]) ∈L6 with
(
k ≥ 5 or k = 3

)
and y ∈ N0. If k ≡ 0 mod 3, then we set A = 0yU2k/3V 2 and hence L(A) = L by
Equation (11). If k ≡ 2 mod 3, then we set A = 0yU (2k−4)/3V 4 and hence L(A) = L
by (11). If k ≡ 1 mod 3, then we set A = 0yU (2k−8)/3V 6 and obtain that L(A) = L
by Equation (11).

Suppose that L ∈ L7. If L = y+ 2k + 3+ {0,1,3}+ 3 · [0,k] with y ∈ N0 and
k ∈N0, then we set A = 0yU2k+1Ve2

4(e1+e2+e3+e4)
2 and obtain that L(A) = L by

Equation (13). If L = y+2k+4+{0,1,3}+3 · [0,k]∪{y+5k+8} with y ∈N0 and
k ∈ N0, then we set A = 0yU2k+2Ve2

4(e1 + e2 + e3 + e4)
2 and obtain that L(A) = L

by Equation (13).
Suppose that L ∈ L8. If L = y+ 2k + 3+ {0,2,3}+ 3 · [0,k] with y ∈ N0 and

k ∈ N0, then we set A = 0yU2k+2V and hence L(A) = L by Equation (12). If L =
y+2k+4+{0,2,3}+3 · [0,k]∪{y+5k+9} with y ∈ N0 and k ∈ N0, then we set
A = 0yU2k+3Ve2

4(e1 + e2 + e3 + e4)
2 and obtain that L(A) = L by Equation (12).

Step 2. We prove that for every A ∈ B(G•), L(A) ∈ L2 ∪L3 ∪L4 ∪L5 ∪L6 ∪
L7∪L8.

Let A ∈B(G•). We may suppose that ∆(L(A)) 6= /0. By Lemma 4.9.1 we have to
distinguish four cases.
CASE 1: ∆(L(A)) = {3}.

By Lemma 4.9, there is a basis of G, say (e1,e2,e3,e4), such that supp(A) =
{e1, . . . ,e4,e0}. Let n ∈ N0 be maximal such that U2n |A. Then there exist a proper
subset I ⊂ [0,4], a tuple (mi)i∈I ∈ N(I)

0 , and ε ∈ {0,1} such that

A =UεU2n
∏
i∈I

(e2
i )

mi .

Using [25, Lemma 3.6.1], we infer that

L(A) = ε +∑
i∈I

mi +L(U2n) = ε +∑
i∈I

mi +(2n+3 · [0,n]) ∈L2 .

CASE 2: ∆(L(A)) = {1}.
Then L(A) is an interval, and it is a direct consequence of Proposition 4.10 that

L(A) ∈L3.
CASE 3: ∆(L(A)) = {2}.

The following reformulation turns out to be convenient. Clearly, we have to
show that for every L ∈ L (G) with ∆(L) = {2} there exist y′ ∈ N0 and k′ ∈ N
such that L = y′ + 2 · [k′,2k′], which is equivalent to ρ(L) = maxL/minL ≤ 2.
Assume to the contrary that there is an L ∈ L (G) with ∆(L) = {2} such that
maxL ≥ 2minL+ 1. We choose one such L ∈ L (G) with minL being minimal,
and we choose a B ∈B(G) with L(B) = L. Since minL is minimal, we obtain that
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0 - B. Consequently, |B| ≥ 2maxL ≥ 4minL+2. Since D(G) = 5, it follows that a
factorization of minimal length of B contains at least two (possibly equal) minimal
zero-sum sequences U1,U2 with |U1|= |U2|= 5, say U1 = e0 · . . . · e4.

If U1 =U2, then 5 ∈ L(U1U2) and thus minL+3 ∈ L, contradicting the fact that
∆(L) = {2}. Thus U1 6= U2. We assert that 3 ∈ L(U1U2), and thus obtain again a
contradiction to the fact that ∆(L) = {2}.

Let g ∈ G with g |U2 but g - U1. Then g is the sum of two elements from U1,
say g = e1 + e2. Therefore g(e1e2)

−1U1 is a minimal zero-sum sequence, whereas
the sequence (e1e2)g−1U2 cannot be a minimal zero-sum sequence because it has
length 6. Since g−1U2 is zero-sum free, every minimal zero-sum sequence dividing
(e1e2)g−1U2 must contain e1 or e2. This shows that L((e1e2)g−1U2) = {2} and thus
3 ∈ L(U1U2).
CASE 4: ∆(L(A)) = {1,2}.

Let k ∈ L(A) be minimal such that A has a factorization of the form A =U1 · . . . ·
Uk = V1 · . . . ·Vk+2, where k + 1 6∈ L(A) and U1, . . . ,Uk,V1, . . . ,Vk+2 ∈ A (G) with
|U1| ≥ |U2| ≥ . . .≥ |Uk|. Without restriction we may suppose that the tuple

(|{i ∈ [1,k] | |Ui|= 5}|, |{i ∈ [1,k] | |Ui|= 4}|, |{i ∈ [1,k] | |Ui|= 3}|) ∈ N3
0 (14)

is maximal (with respect to the lexicographic order) among all factorizations of A
of length k. By definition of k, we have [minL(A),k]∈ L(A). Let k0 ∈ [2,k] such that
|Ui| ≥ 3 for every i ∈ [1,k0] and |Ui| = 2 for every i ∈ [k0 + 1,k]. We start with the
following assertion.

A.

1. For each two distinct i, j ∈ [1,k0], we have 3 6∈ L(UiU j).
2. For each two distinct i, j ∈ [1,k0] with |Ui|= |U j|= 5, we have Ui =U j.
3. For each two distinct i, j∈ [1,k0] with |Ui|= 5 and |U j|= 4, we have |gcd(Ui,U j)|=

3.
4. Let i, j ∈ [1,k0] be distinct with |Ui| = |U j| = 4, say Ui = f1 f2 f3( f1 + f2 + f3)

where ( f1, f2, f3, f4) a basis of G. Then U j =Ui, or U j = ( f1 + f4)( f2 + f4)( f3 +
f4)( f1 + f2 + f3 + f4), or U j = f4( f1 + f2 + f4)( f2 + f3 + f4)( f1 + f3 + f4). Fur-
thermore, if Ui 6=U j, then for all t ∈ [1,k0]\{i, j}, we have |Ut | 6= 4.

5. Let i, j ∈ [1,k0] be distinct with |Ui|= 5 and |U j|= 3. Then there exist g1,g2,g3 ∈
G such that g1g2g3 |Ui and U j = (g1 + g2)(g2 + g3)(g3 + g1). Furthermore, for
all t ∈ [1,k0]\{i, j}, we have |Ut |= 3.

6. Let i, j ∈ [1,k0] be distinct with |Ui|= 4 and |U j|= 3. Then |gcd(Ui,U j)|= 0, and
there exist g,g1,g2 ∈ G such that g |U j, g1g2 |Ui and g = g1 + g2. Furthermore,
for all t ∈ [1,k0]\{i, j}, we have |Ut |= 3.

7. For each two distinct i, j ∈ [1,k0] with |Ui|= |U j|= 3, we have |gcd(Ui,U j)|= 0.

Proof of A.
1. If there exist distinct i, j ∈ [1,k0] such that 3 ∈ L(UiU j), then k+ 1 ∈ L(A), a

contradiction.



30 Alfred Geroldinger and Wolfgang A. Schmid and Qinghai Zhong

2. Since |Ui| = 5 and U j 6= Ui, there exist g,g1,g2 ∈ G with g |U j and g1g2 |Ui
such that g = g1 +g2. Thus Ui(g1g2)

−1g is an atom and U jg−1g1g1 is a product of
two atoms which implies that 3 ∈ L(UiU j), a contradiction.

3. Since |Ui| = 5 and U j 6= Ui, there exist g,g1,g2 ∈ G with g |U j and g1g2 |Ui
such that g = g1 + g2. Thus gg1g2 is an atom and UiU j(gg1g2)

−1 is a sequence of
length 6. By 1., 2 /∈ L(UiU j(gg1g2)

−1) which implies that L(UiU j(gg1g2)
−1) = {3}

and hence |gcd(Ui,U j)|= 3.
4. We set G1 = 〈 f1, f2, f3〉 and distinguish three cases.
Case (i): U j ∈B(G1). Since 3 /∈ L(UiU j), we obtain that U j =Ui.
Case (ii): U j = (g1 + f4)(g2 + f4)g3g4 with g1g2g3g4 ∈B(G1).
If g3,g4 ∈ { f1, f2, f3, f1+ f2+ f3}, then 3∈ L(UiU j), a contradiction. Thus, with-

out loss of generality, we may assume that g3 = f1 + f2 /∈ { f1, f2, f3, f1 + f2 + f3}.
Thus g3 f3( f1 + f2 + f3) is an atom and (g1 + f4)(g2 + f4) f1 f2g4 is a zero-sum se-
quence of length 5. Since 3 /∈ L(UiU j), we have that (g1 + f4)(g2 + f4) f1 f2g4 is an
atom of length 5, a contradiction to the maximality condition in Equation (14).

Case (iii): U j = (g1 + f4)(g2 + f4)(g3 + f4)(g4 + f4) with g1g2g3g4 ∈B(G1).
First, suppose that g1g2g3g4 is an atom. If g1g2g3g4 6= Ui, then there exist an

element h ∈ { f1, f2, f3, f1 + f2 + f3} and distinct t1, t2 ∈ [1,4], say t1 = 1, t2 = 2,
such that h = g1 + g2 = (g1 + f4) + (g2 + f4). Thus Uih−1(g1 + f4)(g2 + f4) is a
zero-sum sequence of length 5 and h(g3 + f4)(g4 + f4) is an atom. It follows that
Uih−1(g1 + f4)(g2 f4) is atom of length 5 since 3 /∈ L(UiU j), a contradiction to the
maximality condition in Equation (14). Therefore g1g2g3g4 =Ui which implies that
U j = ( f1 + f4)( f2 + f4)( f3 + f4)( f1 + f2 + f3 + f4).

Second, suppose that g1g2g3g4 is not an atom. Without loss of generality, we
may assume that g1 = 0 and g2g3g4 is an atom. If {g2,g3,g4} ∩ { f1, f2, f3, f1 +
f2 + f3} 6= /0, say g2 ∈ { f1, f2, f3, f1 + f2 + f3}, then g2(g3 + f4)(g4 + f4) is an
atom and Uig−1

2 f4(g2 + f4) is a zero-sum sequence of length 5. It follows that
Uig−1

2 f4(g2 + f4) is atom of length 5 because 3 /∈ L(UiU j), a contradiction to
the maximality condition in Equation (14). Therefore {g2,g3,g4}∩{ f1, f2, f3, f1 +
f2 + f3} = /0 which implies that g2g3g4 = ( f1 + f2)( f2 + f3)( f1 + f3) and hence
U j = f4( f1 + f2 + f4)( f2 + f3 + f4)( f1 + f3 + f4).

Now suppose that Ui 6= U j, and assume to the contrary there exists a t ∈
[1,k0] \ {i, j} such that |Ut | = 4. If Ut /∈ {Ui,U j}, then UiU jUt =

(
f1 f2 f3( f1 +

f2+ f3)
)(
( f1+ f4)( f2+ f4)( f3+ f4)( f1+ f2+ f3+ f4)

)(
f4( f1+ f2+ f4)( f2+ f3+

f4)( f1+ f3+ f4)
)
=
(

f1( f2+ f4)( f1+ f2+ f4)
)(

f2( f3+ f4)( f2+ f3+ f4)
)(

f3( f1+
f4)( f1 + f3 + f4)

)(
f4( f1 + f2 + f3)( f1 + f2 + f3 + f4)

)
. Thus 4 ∈ L(UiU jUt) and

hence k + 1 ∈ L(A), a contradiction. If Ut ∈ {Ui,U j}, then we still have that
4 ∈ L(UiU jUt) and hence k+1 ∈ L(A), a contradiction.

5. Since 3 /∈ L(UiU j), we obtain that |gcd(Ui,U j)| = 0. Every h ∈ supp(U j) is
the sum of two distinct elements from supp(Ui). Thus there exist g1,g2,g3 ∈G with
g1g2g3 |Ui such that U j = (g1 +g2)(g2 +g3)(g3 +g1). Now we choose an element
t ∈ [1,k0]\{i, j}, and have to show that |Ut |= 3. If |Ut |= 5, then Ut =Ui by 2. and
hence 4 ∈ L(UiUtU j) which implies that k+1 ∈ L(A), a contradiction. Suppose that
|Ut |= 4 and let Ui = g1g2g3g4g5, where g4,g5 ∈G. Then |gcd(Ui,Ut)|= 3 by 3. and
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by symmetry we only need to consider supp(Ut)\supp(Ui)⊂{g1+g2,g1+g4,g4+
g5}. All the three cases imply that 4 ∈ L(UiUtU j). It follows that that k+1 ∈ L(A),
a contradiction.

6. If |gcd(Ui,U j)| = 2, then 3 ∈ L(UiU j), a contradiction. If |gcd(Ui,U j)| = 1,
then U1U2 = W1W2 with W1,W2 ∈A (G) and |W2| = 5, a contradiction to the max-
imality condition in Equation (14). Thus we obtain that |gcd(Ui,U j)| = 0. Let
( f1, f2, f3, f4) be a basis and Ui = f1 f2 f3( f1 + f2 + f3). Since |U j| = 3, there ex-
ists a g ∈ supp(U j) such that g ∈ 〈 f1, f2, f3〉. Since |gcd(Ui,U j)| = 0, there exist
g1,g2 ∈ G such that g1g2 |Ui and g = g1 +g2.

Now we choose an element t ∈ [1,k0] \ {i, j} and have to show that |Ut | = 3.
Note that 5. implies that |Ut | 6= 5, and we assume to the contrary that |Ut | = 4.
Without restriction we may assume that g = f1 + f2, and by 4., we distinguish
three cases. If Ut = Ui, then f 2

1 , f 2
2 ,gUi( f1 f2)

−1,Ut( f1 f2)
−1U jg−1 are atoms and

hence 4 ∈ L(UiUtU j) which implies that k + 1 ∈ L(A), a contradiction. If Ut =
( f1 + f4)( f2 + f4)( f3 + f4)( f1 + f2 + f3 + f4), then g( f1 + f2 + f3)( f1 + f2 + f3 +
f4)( f1 + f4) f2 is an atom of length 5 dividing UiU jUt and UiU jUt(g( f1 + f2 +
f3)( f1+ f2+ f3+ f4)( f1+ f4) f2)

−1 is a product of two atoms, a contradiction to the
maximality condition in Equation (14). If Ut = f4( f1 + f2 + f4)( f2 + f3 + f4)( f1 +
f3 + f4), then g f2 f3 f4( f1 + f3 + f4) is an atom of length 5 dividing UiU jUt and
UiU jUt(g f2 f3 f4( f1 + f3 + f4))

−1 is a product of two atoms, a contradiction to the
maximality condition in Equation (14).

7. If |gcd(Ui,U j)| ≥ 2, then Ui = U j and hence 3 ∈ L(UiU j) which implies
that k + 1 ∈ L(A), a contradiction. If |gcd(Ui,U j)| = 1, then UiU j = W1W2 with
W1,W2 ∈A (G), |W1|= 2, and |W2|= 4, a contradiction to the maximality condition
in Equation (14). Therefore |gcd(Ui,U j)|= 0. This completes the proof of A. ut

Note that A.5 implies that {|Ui| | i∈ [1,k0]} 6= {3,4,5}. Thus it remains to discuss
the following six subcases.

CASE 4.1. {|Ui| | i ∈ [1,k0]}= {3,5}.
By A.5 and A.7, we obtain that |U1|= 5, |U2|= . . .= |Uk0 |= 3, and that U1 · . . . ·

Uk0 is square-free. This implies that maxL(U1 · . . . ·Uk0) = k0, and hence maxL(A) =
maxL(U0 · . . . ·Uk0)+ k− k0 = k, a contradiction.
CASE 4.2. {|Ui| | i ∈ [1,k0]}= {3,4}.

By A.6 and A.7, we obtain that |U1|= 4, |U2|= . . .= |Uk0 |= 3, and that U1 · . . . ·
Uk0 is square-free. This implies that maxL(U1 · . . . ·Uk0) = k0, and hence maxL(A) =
maxL(U0 · . . . ·Uk0)+ k− k0 = k, a contradiction.
CASE 4.3. {|Ui| | i ∈ [1,k0]}= {3}.

By A.7, we obtain that U1 · . . . ·Uk0 is square-free. This implies that maxL(U1 · . . . ·
Uk0) = k0, and hence maxL(A) = maxL(U0 · . . . ·Uk0)+ k− k0 = k, a contradiction.
CASE 4.4. {|Ui| | i ∈ [1,k0]}= {5}.

By A.2, it follows that A=Uk0
1 Uk0+1 · . . . ·Uk. If supp(Uk0+1 · . . . ·Uk)⊂ supp(U1),

then ∆(L(A)) = {3}, a contradiction. Thus there exists j ∈ [k0+1,k] such that U j =
g2 for some g 6∈ supp(U1). Then there exist g1,g2 ∈ G such that g1g2 |U1 and g =
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g1 +g2. It follows that U2
1 U j = g2

1g2
2(U1(g1g2)

−1g)2, where g2
1,g

2
2,U1(g1g2)

−1g are
atoms. Therefore 4 ∈ L(U2

1 U j) and hence k+1 ∈ L(A), a contradiction.
CASE 4.5. {|Ui| | i ∈ [1,k0]}= {4}.

Assume to the contrary, that k0 ≥ 3. Then A.4 implies that U1 · . . . ·Uk0 = Uk0
1 ,

and we set G1 = 〈supp(U1)〉. If there exists g ∈ supp(Uk0+1 · . . . ·Uk) such that
g ∈ G1 \ supp(U1), then 4 ∈ L(U2

1 g2) and hence k + 1 ∈ L(A), a contradiction. If
there exist distinct g1,g2 ∈ supp(Uk0+1 · . . . ·Uk) such that g1 /∈ G1 and g2 /∈ G1,
then g1 + g2 ∈ G1. Since g1 + g2 ∈ supp(U1) implies that 5 ∈ L(U2

1 g2
1g2

2) and
k + 1 ∈ L(A), we obtain that g1 + g2 ∈ G1 \ supp(U1). Then U2

1 g2
1g2

2 = W 2
1 W2W3

where W1,W2,W3 ∈ A (G) with |W1| = 4, W1 6= U1, and |W2| = |W3| = 2. Say
Uk0+1 = g2

1 and Uk0+2 = g2
2. Then W 2

1 U3 · . . . ·Uk0W1W2Uk0+3 · . . . ·Uk is a fac-
torization of A of length k satisfying the maximality condition of Equation (14)
and hence applying A.4 to this factorization, we obtain a contradiction. Therefore
supp(Uk0+1 · . . . ·Uk) ⊂ supp(U1)∪{g} where g is independent from supp(U1) and
hence supp(A) ⊂ supp(U1)∪{g} which implies that ∆(L(A)) = {2}, a contradic-
tion.

Therefore it follows that k0 = 2. Then U1 =U2 (since otherwise we would have
maxL(A) = k by U1U2 is square-free), and we obtain that L(A) = [minL(A),k]∪
{k+ 2}. Assume to the contrary that there exists a W ∈ A (G) such that W |A and
|W | = 5. Then there exist g,g1,g2 ∈ G such that g |U1, g1g2 |W , and g = g1 + g2,
and hence |{g1,g2} ∩ supp(U1)| ≤ 1. If {g1,g2} ∩ supp(U1) = /0, then there exist
distinct t1, t2 ∈ [k0 +1,k] such that Ut1 = g2

1 and Ut2 = g2
2. Thus 5 ∈ L(U1U2Ut1Ut2)

and hence k+1∈ L(A), a contradiction. Suppose that |{g1,g2}∩supp(U1)|= 1, say
g1 /∈ supp(U1) and g2 ∈ supp(U1). Then there exists t ∈ [k0+1,k] such that Ut = g2

1.
Therefore 4 ∈ L(U1U2Ut) and hence k+1 ∈ L(A), a contradiction.

Thus every atom W with W |A has length |W | < 5. It follows that minL(A) ≥
d 2maxL(A)

4 e= dmaxL(A)
2 e and hence L(A) ∈L5.

CASE 4.6. {|Ui| | i ∈ [1,k0]}= {4,5}.
By A.2, A.3, and A.4, we obtain that |{U1, . . . ,Uk0}| = 2. Without restriction

we may assume that U1 · . . . ·Uk0 = Uk1V k2 where k1,k2 ∈ N with k0 = k1 + k2 and
V = e1e2e3(e1+e2+e3) (recall that (e1, . . . ,e4) is a basis of G, e0 = e1+e2+e3+e4,
and U = e1e2e3e4e0). We claim that

• supp(Uk0+1 · . . . ·Uk)⊂ supp(UV ).
• If k1 ≥ 2, then supp(Uk0+1 · . . . ·Uk)⊂ supp(U), and
• if k2 ≥ 2, then {e4,e0} 6⊂ supp(Uk0+1 · . . . ·Uk).

Indeed, assume to the contrary that g ∈ supp(Uk0+1 · . . . ·Uk) \ supp(UV ). By
symmetry, we only need to consider g= e1+e2 and g= e1+e4 and both cases imply
that 4 ∈ L(UV g2), a contradiction to k+1 /∈ L(A). If k1 ≥ 2 and g = e1 + e2 + e3 ∈
supp(Uk0+1 · . . . ·Uk), then 4 ∈ L(U2g2) and k+ 1 ∈ L(A), a contradiction. Thus if
k1 ≥ 2, then supp(Uk0+1 · . . . ·Uk)⊂ supp(U). If k2 ≥ 2 and {e4,e0} ⊂ supp(Uk0+1 ·
. . . ·Uk), then 5 ∈ L(V 2e2

4e2
0) and hence k+1 ∈ L(A), a contradiction.

Thus all three claims are proved, and we distinguish three subcases.
CASE 4.6.1. k1 = 1.



Systems of sets of lengths 33

If {e4,e0} 6⊂ supp(Uk0+1 · . . . ·Uk), then L(A) = L(UV k2)+k−k0 = L(V k0)+k−
k0 and hence ∆(L(A)) = {2}, a contradiction. If {e4,e0} ⊂ supp(Uk0+1 · . . . ·Uk),
then k2 = 1 and we may assume that Uk0+1 = e2

4 and that Uk0+2 = e2
0. Then L(A) =

L(UVUk0+1Uk0+2)+k−k0−2 = {k−1,k,k+2} with k≥ 4, and hence L(A) ∈L5.
CASE 4.6.2. k1 ≥ 2 and k2 ≥ 2.

Thus supp(Uk0+1 · . . . ·Uk) is independent and it follows that supp(Uk0+1 · . . . ·
Uk)⊂{e1,e2,e3,e4} or supp(Uk0+1 · . . . ·Uk)⊂{e1,e2,e3,e0}. Then we have L(A) =
L(Uk1V k2)+ k− k0. By Equation (11), L(Uk1V k2) is equal to{
{k0}∪ [k0 +2,5bk1/2c+4(k0/2−bk1/2c)] if k0 = k1 + k2 is even ,
{k0}∪ [k0 +2,5bk1/2c+4((k0−1)/2−bk1/2c)+1] if k0 = k1 + k2 is odd .

Let `= maxL(Uk1V k2)− k0−2 and hence

`=


k0 + b

k1

2
c−2 if k0 ≥ 4 is even ,

k0 + b
k1

2
c−3 if k0 ≥ 5 is odd .

Since k1 ≥ 2 and k2 ≥ 2, we obtain that `≥ 3 and ` 6= 4. We also have that

`≤


k0 + b

k0−2
2
c−2 =

3k0

2
−3 if k0 is even ,

k0 + b
k0−2

2
c−3 =

3k0−9
2

if k0 is odd .

Therefore

k0 ≥


2`
3
+2 if k0 is even ,

2`
3
+3 if k0 is odd ,

and hence

k0 ≥


2d `

3
e+2 if k0 is even ,

2d `
3
e+2 if k0 is odd .

It follows that L(Uk1V k2) ∈L6 which implies that L(A) ∈L6.
CASE 4.6.3. k1 ≥ 2 and k2 = 1.

Then supp(Uk0+1 · . . . ·Uk)⊂{e1,e2,e3,e4,e0}. If {e4,e0} 6⊂ supp(Uk0+1 · . . . ·Uk),
then L(A) = L(Uk1V )+ k− k0 is equal to{

k+{0,2,3}+3 · [0,k1/2−1], if k1 is even ,
k+{0,2,3}+3 · [0,(k1−1)/2−1]∪{k+(3k1−3)/2+2}, if k1 is odd
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by Equation (12). Therefore L(A) ∈L8.
If {e4,e0} ⊂ supp(Uk0+1 · . . . ·Uk), then we may assume that Uk0+1 = e2

4 and that
Uk0+2 = e2

0. Thus

L(A) = L(Uk1VUk0+1Uk0+2)+ k− k0−2

=

{
k−1+{0,1,3}+3 · [0,(k1 +1)/2−1], if k1 is odd ,
k−1+{0,1,3}+3 · [0,k1/2−1]∪{k+3k1/2+1}, if k1 is even ,

by Equation (13) and hence L(A) ∈L7. ut

5 Sets of lengths of weakly Krull monoids

It is well-known that – under reasonable algebraic finiteness conditions – the Struc-
ture Theorem for Sets of Lengths holds for weakly Krull monoids (as it is true for
transfer Krull monoids of finite type, see Proposition 3.2). In spite of this common
feature we will demonstrate that systems of sets of lengths for a variety of classes of
weakly Krull monoids are different from the system of sets of lengths of any trans-
fer Krull monoid (apart from well-described exceptional cases; see Theorems 5.5
to 5.8). Since half-factorial monoids are transfer Krull monoids, and since there are
half-factorial weakly Krull monoids, half-factoriality is such a natural exceptional
case.

So far there are only a couple of results in this direction. In [15], Frisch showed
that Int(Z), the ring of integer-valued polynomials over Z, is not a transfer Krull
domain (nevertheless, the system of sets of lengths of Int(Z)• coincides with L (G)
for an infinite abelian group G). To mention a result by Smertnig, let O be the ring
of integers of an algebraic number field K, A a central simple algebra over K, and R
a classical maximal O-order of A. Then R is a non-commutative Dedekind domain
and in particular an HNP ring (see [32, Sections 5.2 and 5.3]). Furthermore, R is
a transfer Krull domain if and only if every stably free left R-ideal is free ([35,
Theorems 1.1 and 1.2]).

We gather basic concepts and properties of weakly Krull monoids and domains
(Propositions 5.1 and 5.2). In the remainder of this section, all monoids and domains
are supposed to be commutative.

Let H be a monoid (hence commutative, cancellative, and with unit element). We
denote by q(H) the quotient group of H, by Hred = H/H× the associated reduced
monoid of H, by X(H) the set of minimal nonempty prime s-ideals of H, and by
m = H \H× the maximal s-ideal. Let I ∗v (H) denote the monoid of v-invertible
v-ideals of H (with v-multiplication). Then Fv(H)× = q(I ∗v (H)) is the quotient
group of fractional v-invertible v-ideals, and Cv(H) = Fv(H)×/{xH | x ∈ q(H)}
is the v-class group of H (detailed presentations of ideal theory in commutative
monoids can be found in [30, 20]). We denote by Ĥ ⊂ q(H) the complete integral
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closure of H, and by (H : Ĥ) = {x ∈ q(H) | xĤ ⊂ H} ⊂ H the conductor of H. A
submonoid S ⊂ H is said to be saturated if S = q(S)∩H. For the definition and
discussion of the concepts of being faithfully saturated or being locally tame we
refer to [20, Sections 1.6 and 3.6].

To start with the local case, we recall that H is said to be

• primary if m 6= /0 and for all a,b ∈m there is an n ∈ N such that bn ⊂ aH.
• strongly primary if m 6= /0 and for every a ∈ m there is an n ∈ N such that mn ⊂

aH. We denote by M (a) the smallest n having this property.
• a discrete valuation monoid if it is primary and contains a prime element (equiv-

alently, Hred ∼= (N0,+)).

Furthermore, H is said to be

• weakly Krull ([30, Corollary 22.5]) if

H =
⋂

p∈X(H)

Hp and {p ∈ X(H) | a ∈ p} is finite for all a ∈ H .

• weakly factorial if one of the following equivalent conditions is satisfied ([30,
Exercise 22.5]) :

– Every non-unit is a finite product of primary elements.
– H is a weakly Krull monoid with trivial t-class group.

Clearly, every localization Hp of H at a minimal prime ideal p ∈ X(H) is primary,
and a weakly Krull monoid H is v-noetherian if and only if Hp is v-noetherian for
each p ∈ X(H). Every v-noetherian primary monoid H is strongly primary and v-
local, and if (H :Ĥ) 6= /0, then H is locally tame ([21, Lemma 3.1 and Corollary 3.6]).
Every strongly primary monoid is a primary BF-monoid ([20, Section 2.7]). There-
fore the coproduct of a family of strongly primary monoids is a BF-monoid, and
every coproduct of a family of primary monoids is weakly factorial. A v-noetherian
weakly Krull monoid H is weakly factorial if and only if Cv(H) = 0 if and only if
Hred ∼= I ∗v (H).

By a numerical monoid H we mean an additive submonoid of (N0,+) such that
N0 \H is finite. Clearly, every numerical monoid is v-noetherian primary, and hence
it is strongly primary. Note that a numerical monoid is half-factorial if and only if it
is equal to (N0,+).

Let R be a domain. Then R• = R \ {0} is a monoid, and all arithmetic and ideal
theoretic concepts introduced for monoids will be used for domains in the obvious
way. The domain R is weakly Krull (resp. weakly factorial) if and only if its multi-
plicative monoid R• is weakly Krull (resp. weakly factorial). Weakly Krull domains
were introduced by Anderson, Anderson, Mott, and Zafrullah ([2, 3]). We recall
some most basic facts and refer to an extended list of weakly Krull domains and
monoids in [22, Examples 5.7]. The monoid R• is primary if and only if R is one-
dimensional and local. If R is one-dimensional local Mori, then R• is strongly pri-
mary and locally tame ([23]). Furthermore, every one-dimensional semilocal Mori
domain with nontrivial conductor is weakly factorial and the same holds true for
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generalized Cohen-Kaplansky domains. It can be seen from the definition that one-
dimensional noetherian domains are v-noetherian weakly Krull domains.

Proposition 5.1 summarizes the main algebraic properties of v-noetherian weakly
Krull monoids and Proposition 5.2 recalls that their arithmetic can be studied via
weak transfer homomorphisms to weakly Krull monoids of very special form.

Proposition 5.1. Let H be a v-noetherian weakly Krull monoid.

1. The monoid I ∗v (H) is isomorphic to the coproduct of (Hp)red over all p ∈X(H).
In particular, I ∗v (H) is weakly factorial and v-noetherian.

2. Suppose that f= (H :Ĥ) 6= /0. We set P∗ = {p∈X(H) | p⊃ f}, and P =X(H)\
P∗.

a. Then Ĥ is Krull, P∗ is finite, and Hp is a discrete valuation monoid for each
p ∈P . In particular, I ∗v (H) is isomorphic to F (P)×∏p∈P∗(Hp)red.

b. If H = {aH | a ∈ H} is the monoid of principal ideals of H, then H ⊂
I ∗v (H) is saturated. Moreover, if H is the multiplicative monoid of a domain,
then all monoids Hp are locally tame and H ⊂I ∗v (H) is faithfully saturated.

Proof. 1. See [22, Proposition 5.3].
2. For (a) we refer to [20, Theorem 2.6.5] and for (b) we refer to [20, Theorems

3.6.4 and 3.7.1]. ut

Proposition 5.2. Let D = F (P)×∏
n
i=1 Di be a monoid, where P ⊂ D is a set

of primes, n ∈ N0, and D1, . . . ,Dn are reduced primary monoids. Let H ⊂ D be a
saturated submonoid, G = q(D)/q(H), and GP = { pq(H) | p ∈P} ⊂ G the set
of classes containing primes.

1. There is a saturated submonoid B⊂ F = F (GP)×∏
n
i=1 Di and a weak transfer

homomorphism θ : H → B. Moreover, if G is a torsion group, then there is a
monomorphism q(F)/q(B)→ G.

2. If G is a torsion group, then H is weakly Krull.

Proof. 1. See [20, Propositions 3.4.7 and 3.4.8].
2. See [22, Lemma 5.2]. ut

Note that, under the assumption of 5.1.2, the embedding H ↪→ I ∗v (H) fulfills
the assumptions imposed on the embedding H ↪→D in Proposition 5.2. Thus Propo-
sition 5.2 applies to v-noetherian weakly Krull monoids. For simplicity and in order
to avoid repetitions, we formulate the next results (including Theorem 5.7) in the ab-
stract setting of Proposition 5.2. However, v-noetherian weakly Krull domains and
their monoids of v-invertible v-ideals are in the center of our interest.

If (in the setting of Proposition 5.2) GP is finite, then F = F (GP)×∏
n
i=1 Di

is a finite product of primary monoids and B ⊂ F is a saturated submonoid. We
formulate the main structural result for sets of lengths in v-noetherian weakly Krull
monoids in this abstract setting.
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Proposition 5.3. Let D1, . . . ,Dn be locally tame strongly primary monoids and H ⊂
D = D1×. . .×Dn a faithfully saturated submonoid such that q(D)/q(H) is finite.

1. The monoid H satisfies the Structure Theorem for Sets of Lengths.

2. There is a finite abelian group G such that for every L ∈L (H) there is a y ∈ N
such that y+L ∈L (G).

Proof. 1. follows from [20, Theorem 4.5.4], and 2. follows from 1. and from Propo-
sition 3.2.2. ut

The next lemma on zero-sum sequences will be crucial in order to distinguish
between sets of lengths in weakly Krull monoids and sets of lengths in transfer
Krull monoids.

Lemma 5.4. Let G be an abelian group and G0 ⊂ G a non-half-factorial subset.

1. There exists a half-factorial subset G1 ⊂ G0 with B(G1) 6= {1}.
2. There are M ∈N and zero-sum sequences Bk ∈B(G0) for every k ∈N such that

2≤ |L(Bk)| ≤M but minL(Bk)→ ∞ as k→ ∞.

Proof. 1. Since G0 is not half-factorial, there is a B ∈B(G0) such that |L(B)| > 1.
Thus supp(B) is finite and not half-factorial, say supp(B) = {g1, . . . ,g`} with `≥ 2.
Without restriction we may suppose that every proper subset of {g1, . . . ,g`} is half-
factorial. Assume to the contrary that for every subset G1 ( {g1, . . . ,g`} we have
B(G1) = {1}. Since {g1, . . . ,g`} is minimal non-half-factorial, there is an atom
A1 ∈A ({g1, . . . ,g`}) such that vgi(A1)> 0 for every i ∈ [1, `]. Since {g1, . . . ,g`} is
not half-factorial, there is an atom A2 ∈A ({g1, . . . ,g`}) distinct from A1, say

A1 = gk1
1 · . . . ·g

k`
` and A2 = gt1

1 · . . . ·g
t`
`

where ki ∈ N and ti ∈ N0 for every i ∈ [1, `]. Let τ ∈ [1, `] such that tτ
kτ

= max{ t j
k j
|

j ∈ [1, `]}. Then k jtτ − t jkτ ≥ 0 for every j ∈ [1, `] whence

W = Atτ
2 A−kτ

1 ∈B({g1, . . . ,g`}\{gτ}) ,

which implies that W = 1. Therefore tτ
kτ

=
t j
k j

for every j ∈ [1, `] and hence A1 |A2

or A2 |A1, a contradiction.
2. Let B ∈ B(G0) with |L(B)| > 1. By 1., there exists a half-factorial subset

G1 ( G0 such that B(G1) 6= {1}. Let A ∈ A (G1) and Bk = AkB for every k ∈ N.
Obviously there exists k0 ∈N such that L(Bk) = L(Ak−k0)+L(Bk0) = k−k0+L(Bk0)
for every k≥ k0. Thus |L(Bk)| ≤maxL(Bk0)−minL(Bk0) and minL(Bk) = k−k0 +
minL(Bk0). ut

Now we consider strongly primary monoids and work out a feature of their sys-
tems of sets of lengths which does not occur in the system of sets of lengths of any
transfer Krull monoid. To do so we study the set {ρ(L) | L ∈L (H)} of elasticities
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of all sets of lengths. This set was studied first by Chapman et al. in a series of papers
(see [6, 13, 7, 8]). Among others they showed that in an atomic monoid H, which
has a prime element and an element a ∈ H with ρ(L(a)) = ρ(H), every rational
number q with 1 ≤ q ≤ ρ(H) can be realized as the elasticity of some L ∈L (H)
([6, Corollary 2.2]). Primary monoids, which are not discrete valuation monoids,
have no prime elements and their set of elasticities is different, as we will see in the
next theorem. Statement 1. of Theorem 5.5 was proved for numerical monoids in
[13, Theorem 2.2].

Theorem 5.5. Let H be a strongly primary monoid that is not half-factorial.

1. There is a β ∈Q>1 such that ρ(L)≥ β for all L ∈L (H) with ρ(L) 6= 1.

2. L (H) 6= L (G0) for any subset G0 of any abelian group. In particular, H is not
a transfer Krull monoid.

3. If one of the following two conditions holds, then H is locally tame.

• sup{minL(c) | c ∈ H}< ∞.

• There exists some u ∈ H \H× such that ρM (u)(H)< ∞.

If H is locally tame, then ∆(H) is finite, and there is an M ∈ N0 such that every
L ∈L (H) is an AAMP with period {0,min∆(H)} and bound M.

Remark. If H is the multiplicative monoid of a one-dimensional local Mori domain R
with nonzero conductor (R:R̂) 6= {0}, then one of the conditions in 3. is satisfied (see
[20, Proposition 2.10.7 and Theorem 3.1.5]). However, there are strongly primary
monoids for which none of the conditions holds and which are not locally tame ([21,
Proposition 3.7]).

Proof. 1. Let b∈H such that |L(b)| ≥ 2 and let u∈A (H). Since H is a strongly pri-
mary monoid, we have (H \H×)M (b) ∈ bH and (H \H×)M (u) ∈ uH. Thus b |uM (b)

and hence |L(uM (b))| ≥ 2. We define

β1 =
M (b)+M (u)+1

M (b)+M (u)
, β2 =

maxL(uM (b))+M (b)+M (u)
minL(uM (b))+M (b)+M (u)

,

and observe that β = min{β1,β2} > 1. Let a ∈ H with ρ(L(a)) 6= 1. We show that
ρ(L(a))≥ β .

Let k ∈ N0 be maximal such that uk | a, say a = uku′ with u′ ∈ H. Thus u - u′

and thus maxL(u′)<M (u). If k <M (b), then minL(a)≤minL(uk)+minL(u′)≤
M (b)+M (u), and hence

ρ(L(a)) =
maxL(a)
minL(a)

≥ minL(a)+1
minL(a)

≥ M (b)+M (u)+1
M (b)+M (u)

= β1 ≥ β .

If k≥M (b), then there exist t ∈N and t0 ∈ [0,M (b)−1] such that k = tM (b)+ t0,
and hence
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ρ(L(a)) =
maxL(a)
minL(a)

≥ maxL(uk)+maxL(u′)
minL(uk)+minL(u′)

≥ t maxL(uM (b))+maxL(ut0)+maxL(u′)
t minL(uM (b))+minL(ut0)+minL(u′)

≥ t maxL(uM (b))+ t0 +maxL(u′)
t minL(uM (b))+ t0 +maxL(u′)

≥ t maxL(uM (b))+M (b)+M (u)
t minL(uM (b))+M (b)+M (u)

≥ β2 ≥ β .

2. Assume to the contrary that there are an abelian group G and a subset G0 ⊂ G
such that L (H) =L (G0). Since H is not half-factorial, G0 is not half-factorial. By
1., there exists β ∈Q with β > 1 such that ρ(L)≥ β for every L ∈L (H). Lemma
5.4.2 implies that there are zero-sum sequences Bk ∈B(G0) such that ρ(L(Bk))→ 1
as k→ ∞, a contradiction.

3. This follows from [20, 3.1.1, 3.1.2, and 4.3.6]. ut

Sets of lengths of numerical monoids have found wide attention in the literature
(see, among others, [9, 1, 14]). As can be seen from Theorem 5.5.3, the structure of
their sets of lengths is simpler than the structure of sets of lengths of transfer Krull
monoids over finite abelian groups. Thus it is no surprise that there are infinitely
many non-isomorphic numerical monoids whose systems of sets of lengths coin-
cide, and that an analog of Conjecture 3.4 for numerical monoids does not hold true
([1]). It is open whether for every d ∈ N and every M ∈ N0 there is a strongly pri-
mary monoid D such that every AAMP with period {0,d} and bound M can (up to a
shift) be realized as a set of lengths in D (this would be the analog to the realization
theorem given in Proposition 3.2.2). However, for every finite set L ⊂ N≥2 there is
a v-noetherian primary monoid D and an element a ∈ D such that L = L(a) ([21,
Theorem 4.2]).

By Theorem 3.6 and Proposition 3.2.3, we know that {k,k+1} ∈L (G) for every
k≥ 2 and every abelian group G with |G| ≥ 3. Furthermore, Theorem 3.7 is in sharp
contrast to Theorem 5.6.1.

Theorem 5.6. Let D = D1 × . . .×Dn be the direct product of strongly primary
monoids D1, . . . ,Dn, which are not half-factorial.

1. For every finite nonempty set L ⊂ N, there is a yL ∈ N0 such that y+L /∈L (D)
for any y≥ yL.

2. We have L (D) 6= L (G0) for any subset G0 of any abelian group, and hence D
is not a transfer Krull monoid. If D1, . . . ,Dn are locally tame, then D satisfies the
Structure Theorem for Sets of Lengths.

Proof. For every i ∈ [1,n] we choose an element ai ∈ Di such that |L(ai)|> 1.
1. Let L ⊂ N be a finite nonempty set and let yL = |L|(M (a1)+ . . .+M (an)).

Assume to the contrary that there are y≥ yL and an element b = b1 · . . . ·bn ∈D such
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that L(b) = y+L. Then there is an i ∈ [1,n] such that minL(bi) ≥ |L|M (ai). Then
bi ∈ (Di \D×i )

minL(bi) ⊂ (Di \D×i )
|L|M (ai) ⊂ a|L|i Di. Thus there is a ci ∈Di such that

a|L|i ci = bi. This implies that |L|L(ai)+L(ci)⊂ L(bi). Since |L(ai)| ≥ 2, we infer that
|L(bi)| ≥ |L|+1 and hence |L|= |y+L|= |L(b)| ≥ |L(bi)| ≥ |L|+1, a contradiction.

2. By 1. and Lemma 5.4.2, the first conclusion follows.
If D1, . . . ,Dn are locally tame, then D satisfies the Structure Theorem by Propo-

sition 5.3.1. ut

Theorem 5.7. Let D = F (P)×D1 be the direct product of a free abelian monoid
with nonempty basis P and of a locally tame strongly primary monoid D1, and let
G be an abelian group. Then D satisfies the Structure Theorem for Sets of Lengths,
and the following statements are equivalent :

(a) L (D) = L (G).

(b) One of the following cases holds :

(b1) |G| ≤ 2 and ρ(D) = 1.

(b2) G is isomorphic either to C3 or to C2⊕C2, [2,3] ∈L (D), ρ(D) = 3/2,
and ∆(D) = {1}.

(b3) G is isomorphic to C3⊕C3, [2,5]∈L (D), ρ(D) = 5/2, and ∆(D) = {1}.

Remark. Let H be a v-noetherian weakly Krull monoid. If the conductor (H :Ĥ)∈ v-
max(H), then by Proposition 5.1, I ∗v (H) is isomorphic to a monoid D as given in
Theorem 5.7.

Proof. Since P is nonempty, L (D)= {y+L | y∈N0,L∈L (D1)}whence ∆(D)=
∆(D1) and ρ(D) = ρ(D1). In particular, D is half-factorial if and only if D1 is half-
factorial. Since D1 satisfies the Structure Theorem of Sets of Lengths by Theorem
5.5.3, the same is true for D.

If D is half-factorial and L (D) = L (G), then ρ(D) = ρ(D1) = 1 and G is half-
factorial whence |G| ≤ 2 by Proposition 3.3. Conversely, if |G| ≤ 2 and ρ(D) = 1,
then G and D are half-factorial and L (G) = L (D).

Thus from now on we suppose that D1 is not half-factorial and that (b1) does not
hold. Then ∆(D) 6= /0 and we set min∆(D) = d.

(a)⇒ (b) Theorem 5.5.3 and Proposition 3.2.3 imply that G is finite. Since G is
not half-factorial, it follows that |G| ≥ 3. Theorem 5.5.3 shows that ∆1(D) = {d},
and since 1 ∈ ∆1(G) = ∆1(D), we infer that d = 1. Corollary 4.3.16 in [20] and [29,
Theorem 1.1] imply that

max{exp(G)−2, r(G)−1}= max∆1(G) = max∆1(D) = 1 .

Therefore G is isomorphic to one of the following groups: C2⊕C2, C3, C3⊕C3. We
distinguish two cases.
CASE 1: G is isomorphic to C2⊕C2 or to C3.
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By Proposition 3.3, we have

L (D) = L (C2⊕C2) = L (C3) = {y+2k+[0,k] | y,k ∈ N0} .

In particular, we have 3/2 = ρ(G) = ρ(D) and {1}= ∆(G) = ∆(D).
CASE 2: G is isomorphic to C3⊕C3.

By Theorem 4.1, just using different notation, we have

L (D) = L (C2
3) = {[2k, `] | k ∈ N0, ` ∈ [2k,5k]}
∪ {[2k+1, `] | k ∈ N, ` ∈ [2k+1,5k+2]}∪{{1}} .

In particular, we have 5/2 = ρ(G) = ρ(D) and {1}= ∆(G) = ∆(D).

(b)⇒ (a) First suppose that Case (b2) holds. We show that

L (D) =
{

y+2k+[0,k]
∣∣ y, k ∈ N0

}
.

Then L (D) =L (G) by Proposition 3.3. Since ρ(D) = 3/2 and ∆(D) = {1}, it fol-
lows that L (D) is contained in the above family of sets. Thus we have to verify that
for every y,k ∈ N0, the set y+[2k,3k] ∈L (D). Since P is nonempty, D contains a
prime element and hence it suffices to show that [2k,3k] ∈L (D) for all k ∈ N. Let
a ∈ D with L(a) = {2,3}, and let k ∈ N. Then minL(ak)≤ 2k and maxL(ak)≥ 3k.
Since ρ(L(ak)) ≤ ρ(D) = 3/2, it follows that minL(ak) = 2k and maxL(ak) = 3k.
Since ∆(D) = {1}, we finally obtain that L(ak) = [2k,3k].

Now suppose that Case (b3) holds. We show that L (D) is equal to

{[2k, `] | k ∈ N0, ` ∈ [2k,5k]} ∪ {[2k+1, `] | k ∈ N, ` ∈ [2k+1,5k+2]}∪{{1}} .

Then L (D) = L (G) by Theorem 4.1. Since ρ(D) = 5/2 and ∆(D) = {1}, it fol-
lows that L (D) is contained in the above family of sets. Now the proof runs along
the same lines as the proof in Case (b2). ut

We show that the Cases (b2) and (b3) in Theorem 5.7 can actually occur. Recall
that numerical monoids are locally tame and strongly primary. Let D1 be a numerical
monoid distinct from (N0,+), say A (D1) = {n1, . . . ,nt} where t ∈ N≥2 and 1 <
n1 < .. . < nt . Then, by [13, Theorem 2.1] and [9, Proposition 2.9],

ρ(D1) =
nt

n1
and min∆(D1) = gcd(n2−n1, . . . ,nt −nt−1) .

Suppose that ρ(D1) = m/2 with m ∈ {3,5} and ∆(D1) = {1}. Then there is an
a ∈ D1 with L(a) = [2,m] ∈ L (D1). Clearly, there are non-isomorphic numerical
monoids with elasticity m/2 and set of distances equal to {1}.

Theorem 5.8. Let R be a v-noetherian weakly Krull domain with conductor {0} (
f = (R : R̂) ( R, and let π : X(R̂)→ X(R) be the natural map defined by π(P) =
P∩R for all P ∈ X(R̂).
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1. a. I ∗v (H) is locally tame with finite set of distances, and it satisfies the Structure
Theorem for Sets of Lengths.

b. If π is not bijective, then L
(
I ∗v (H)

)
6=L (G0) for any finite subset G0 of any

abelian group and for any subset G0 of an infinite cyclic group. In particular,
I ∗v (H) is not a transfer Krull monoid of finite type.

c. If R is seminormal, then the following statements are equivalent :
i. π is bijective.

ii. I ∗v (H) is a transfer Krull monoid of finite type.
iii. I ∗v (H) is half-factorial.

2. Suppose that the class group Cv(R) is finite.

a. The monoid R• of nonzero elements of R is locally tame with finite set of
distances, and it satisfies the Structure Theorem for Sets of Lengths.

b. If π is not bijective, then L (R•) 6= L (G0) for any finite subset G0 of any
abelian group and for any subset G0 of an infinite cyclic group. In particular,
R is not a transfer Krull domain of finite type.

c. If π is bijective, R is seminormal, every class of Cv(R) contains a p ∈ X(R)
with p 6⊃ f, and the natural epimorphism δ : Cv(R)→ Cv(R̂) is an isomor-
phism, then there is a weak transfer homomorphism θ : R• →B(Cv(R)). In
particular, R is a transfer Krull domain of finite type.

Proof. Since f 6= R, it follows that R 6= R̂ and that R is not a Krull domain. We use
the structural description of I ∗v (H) as given in Proposition 5.1.

1.(a) and 2.(a) Both monoids, R• and I ∗v (H), are locally tame with finite set
of distances by [20, Theorem 3.7.1]. Furthermore, they both satisfy the Structure
Theorem for Sets of Lengths by Proposition 5.3 (use Propositions 5.1 and 5.2).

1.(b) and 2.(b) Suppose that π is not bijective. Then ρ
(
I ∗v (H)

)
= ρ(R•) = ∞ by

[20, Theorems 3.1.5 and 3.7.1]. Let G0 be a finite subset of an abelian group G. Then
B(G0) is finitely generated, the Davenport constant D(G0) is finite whence the set
of distances ∆(G0) and the elasticity ρ(G0) are both finite (see [20, Theorems 3.4.2
and 3.4.11]). Thus L

(
I ∗v (H)

)
6=L (G0) and L (R•) 6=L (G0). If G0 is a subset of

an infinite cyclic group, then the set of distances is finite if and only if the elasticity
is finite by [18, Theorem 4.2], and hence the assertion follows again.

1.(c) Suppose that R is seminormal. By 1.(b) and since half-factorial monoids
are transfer Krull monoids of finite type, it remains to show that π is bijective if
and only if I ∗v (H) is half-factorial. Since R is seminormal, all localizations Rp with
p ∈ X(H) are seminormal. Thus I ∗v (H) is isomorphic to a monoid of the form
F (P)×D1×. . .×Dn, where n ∈N and D1, . . . ,Dn are seminormal finitely primary
monoids, and this monoid is half-factorial if and only if each monoid D1, . . . ,Dn
is half-factorial. By [22, Lemma 3.6], Di is half-factorial if and only if it has rank
one for each i ∈ [1,n], and this is equivalent to π being bijective (see [20, Theorem
3.7.1]).

2.(c) This follows from [22, Theorem 5.8]. ut
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Note that every order R in an algebraic number field is a v-noetherian weakly
Krull domain with finite class group Cv(R) such that every class contains a p∈X(R)
with p 6⊃ f. If R is a v-noetherian weakly Krull domain as above, then Theorems 5.5,
5.6, and 5.7 provide further instances of when R is not a transfer Krull domain, but
a characterization of the general case remains open. We formulate the following
problem (see also [17, Problem 4.7]).

Problem 5.9. Let H be a v-noetherian weakly Krull monoid with nonempty conduc-
tor (H :Ĥ) and finite class group Cv(H). Characterize when H and when the monoid
I ∗v (H) are transfer Krull monoids resp. transfer Krull monoids of finite type.
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