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ABSTRACT. Let H be a Krull monoid with class group G such that every
class contains a prime divisor. Then every nonunit @ € H can be written
as a finite product of irreducible elements. If a = wuj - ... up with
irreducibles uy, ..., ur € H, then k is called the length of the factorization
and the set L(a) of all possible k is the set of lengths of a. It is well-known
that the system L£(H) = {L(a) | a € H} depends only on the class group
G. We study the inverse question asking whether the system L(H) is
characteristic for the class group. Let H’ be a further Krull monoid with
class group G’ such that every class contains a prime divisor and suppose
that L(H) = L(H'). We show that, if one of the groups G and G’ is finite
and has rank at most two, then G and G’ are isomorphic (apart from two
well-known exceptions).

1. Introduction

Let H be a cancellative semigroup with unit element. If an element a € H
can be written as a product of k irreducible elements, say a = uy-...-ug, then k
is called the length of the factorization. The set L(a) of all possible factorization
lengths is the set of lengths of a, and L(H) = {L(a) | a € H} is called the system
of sets of lengths of H. Clearly, if H is factorial, then |L(a)| = 1 for each a € H.
Suppose there is some a € H with |L(a)| > 1, say k,l € L(a) with k& < . Then,
for every m € N, we observe that L(a™) D {km +v(l — k) | v € [0,m]} which
shows that sets of lengths can become arbitrarily large. Under mild conditions
on the ideal theory of H every nonunit of H, has a factorization into irreducibles
and all sets of lengths are finite.

Sets of lengths (together with parameters controlling their structure) are
the most investigated invariants in factorization theory. They occur in settings
ranging from numerical monoids, noetherian domains, monoids of ideals and
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of modules to maximal orders in central simple algebras (for recent progress
see [4,6,12]). The focus of the present paper is on Krull monoids with finite
class group such that every class contains a prime divisor. Rings of integers
in algebraic number fields are such Krull monoids, and classical notions from
algebraic number theory (dating back to the 19th century) state that the class
group determines the arithmetic of the ring of integers. This idea has been
formalized and justified. In the 1970s Narkiewicz posed the inverse question
whether or not arithmetical phenomena (in other words, phenomena describing
the non-uniqueness of factorizations) characterize the class group ([27, Problem
32; page 469]). Very quickly first affirmative answers were given by Halter-
Koch, Kaczorowski, and Rush ([23,26,29]). Indeed, it is not too difficult to
show that the system of sets of factorizations determines the class group ([15,
Sections 7.1 and 7.2]).

These answers are not really satisfactory because the given characterizations
are based on rather abstract arithmetical properties which play only little role
in other parts of factorization theory. Since, on the other hand, sets of lengths
are of central interest in factorization theory, it is natural to ask whether their
structure is rich enough to do characterizations.

Let H be a commutative Krull monoid with finite class group G and suppose
that every class contains a prime divisor (recall that an integral domain is a
Krull domain if and only if its monoid of nonzero elements is a Krull monoid).
It is classical that H is factorial if and only if |G| = 1, and by a result due
to Carlitz in 1960 we know that all sets of lengths are singletons (i.e., |L| =1
for all L € L£(H)) if and only if |G| < 2. Let us suppose now that |G| > 3.
Then the monoid B(G) of zero-sum sequences over G is again a Krull monoid
with class group isomorphic to G, every class contains a prime divisor, and
L(H) = L(B(G)) (as usual, we set L(G) = L(B(G))). The Characterization
Problem can be formulated as follows ([15, Section 7.3], [17, page 42], [33]).

Given two finite abelian groups G and G’ such that L(G) = L(G'). Does it
follow that G = G'?

The system of sets of lengths £(G) for finite abelian groups is studied with
methods from Additive Combinatorics. Zero-sum theoretical invariants, such
as the Davenport constant, play a central role. Recall that, although the precise
value of the Davenport constant is well-known for p-groups and for groups of
rank at most two (see Proposition 2.2), its precise value is unknown in general
(even for groups of the form G' = C32). Thus it is not surprising that all
answers to the Characterization Problem so far have been restricted to very
special groups including cyclic groups, elementary 2-groups, and groups of the
form C,, & C), ([7,32]). Apart from two well-known (trivial) pairings, the answer
is always positive. Starting from C,, ® C),, Zhong studied the Characterization
Problem for groups of the form C], in a series of papers ([21,37,38]). The goal
of the present paper is to settle the Characterization Problem for groups of
rank at most two. Here is our main result.
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Theorem 1.1. Let G be an abelian group such that L(G) = L(Cyp, ® Cy,)
where ny,ny € N with ny |ny and ny +ng > 4. Then G = C,, @ Cy,.

The difficulty of the Characterization Problem stems from the fact that most
sets of lengths over any finite abelian group are arithmetical progressions with
difference 1 (see Proposition 3.1.3, or [15, Theorem 9.4.11]). If G and G’ are
finite abelian groups with G C G’, then clearly £(G) C L(G"). Thus, in order
to characterize a group GG, we first have to find distinctive sets of lengths for G
(i.e., sets of lengths which do occur in £(G), but in no other or only in a small
number of further groups), and second we will have to show that certain sets are
not sets of lengths in £(G). These distinctive sets of lengths for rank two groups
are identified in Proposition 5.5 which is the core of our whole approach, and
Proposition 4.1 provides sets which do not occur as sets of lengths for rank two
groups. After gathering some background material in Section 2, we summarize
key results on the structure of sets of lengths in Propositions 3.1, 3.2, and 3.3.
Furthermore, we provide some explicit constructions which will turn out to be
crucial (Propositions 3.4-3.7). After that, we are well-prepared for the main
parts given in Sections 4 and 5.

2. The arithmetic of Krull monoids: Background

We gather the required tools from the algebraic and arithmetic theory of
Krull monoids. Our notation and terminology are consistent with the mono-
graphs [15,17,22]. Let N denote the set of positive integers, P C N the set
of prime numbers and put Nyg = NU {0}. For real numbers a, b € R, we set
[a,b) = {x € Z | a < x < b}. Let A, B C Z be subsets of the integers. We
denote by A+ B = {a+0b| a € Ab € B} their sumset, and by A(A) the
set of (successive) distances of A (that is, d € A(A) if and only if d = b —a
with a,b € A distinct and [a,b] N A = {a,b}). For k € N, we denote by
k-A={kal|ae€ A} the dilation of A by k. If A C N, then the elasticity of A
is defined as

sup A

m
p(A4) = sup{g [ m,n € A} " minA

Monoids and factorizations. By a monoid, we mean a commutative semi-
group with identity which satisfies the cancellation law (that is, if a,b,c are
elements of the monoid with ab = ac, then b = ¢ follows). The multiplicative
semigroup of non-zero elements of an integral domain is a monoid. Let H be a
monoid. We denote by H* the set of invertible elements of H, by A(H) the set
of atoms (irreducible elements) of H, and by Hyeq = H/H* = {aH* |a € H}
the associated reduced monoid of H. A monoid F' is free abelian, with basis
P C F, and we write F' = F(P) if every a € F has a unique representation of
the form

€ Q>1 U{oo} and we set p({0}) = 1.

a= H p'»( @ where v,(a) € Ny with v,(a) =0 for almost all p € P,
peP
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and we call
la|rp = |a] = Z vp(a) the length of a.
peP
The monoid Z(H) = F(A(Hyea)) is called the factorization monoid of H, and
the homomorphism 7: Z(H) — Hyeq, defined by 7(u) = u for each u € A(Hyeq)
is the factorization homomorphism of H. For a € H,

Zyu(a) =Z(a) = 7 Y(aH*) C Z(H) is the set of factorizations of a, and

Li(a) =L(a) = {|z||z € Z(a)} C Ny is the set of lengths of a.
Thus H is factorial if and only if H,eq is free abelian (equivalently, |Z(a)| = 1
for all @ € H). The monoid H is called atomic if Z(a) # 0 for all a € H
(equivalently, every nonunit can be written as a finite product of irreducible
elements). For the remainder of this work, we suppose that H is atomic. Note
that, L(a) = {0} if and only if « € H*, and L(a) = {1} if and only if a € A(H).
We denote by

L(H)={L(a)| a€ H} the system of sets of lengths of H, and by

A(H) = U A(L) C N the set of distances of H.
LeL(H)

For k € N, we set pp(H) =k it H= H*, and
pe(H) =sup{supL | L€ L(H),ke L} e NU{oo}, if H#H*.
Then

pi(H)
k

p(H) =supi{p(L) | L € L(H)} = lim € Ry U{oo}

is the elasticity of H. The monoid H is said to be
o half-factorial if A(H) = (. If H is not half-factorial, then min A(H) =
gcd A(H).
e decomposable if there exist submonoids Hy, Ho with H; ¢ H* for i €
[1,2] such that H = Hy x Hs (otherwise H is called indecomposable).
For a free abelian monoid F(P), we introduce a distance function d: F(P) x
F(P) — Ny, by setting
a ‘ ‘ b
ged(a,b) I lged(a, b)
and we note that d(a,b) = 0 if and only if a = b. For a subset Q C F(P),
we define the catenary degree c(§2) as the smallest N € Ng U {oo} with the
following property: for each a,b € €2, there are elements ay,...,ar € 2 such
that a = ag, ar = b, and d(a;—1,a;) < N for all i € [1,k]. Note that c(2) =0
if and only if |©2] < 1. For an element a € H, we call cy(a) = c(a) = c(Zn(a))
the catenary degree of a, and c(H) = sup{c(a) | a € H} € Ny U {oc} is the
catenary degree of H. The monoid H is factorial if and only if ¢(H) = 0, and
if H is not factorial, then 2 4+ sup A(H) < c(H) ([15, Theorem 1.6.3]).

d(a,b):max{‘ ‘}ENO for a,b € F(P),
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Krull monoids. A monoid H is Krull if it is completely integrally closed and
satisfies the ascending chain condition on divisorial ideals. An integral domain
R is a Krull domain if and only if its multiplicative monoid R\ {0} is a Krull
monoid, and this generalizes to Marot rings ([16]). The theory of Krull monoids
is presented in detail in [15,25], and for a survey we refer to [12].

Much of the arithmetic of a Krull monoid can be seen in an associated
monoid of zero-sum sequences. This is a Krull monoid again which can be
studied with methods from Additive Combinatorics. To introduce the necessary
concepts, let G be an additively written abelian group, Gy C G a subset, and let
F(Go) be the free abelian monoid with basis Gy. In Additive Combinatorics,
the elements of F(Gy) are called sequences over Go. If S =gy -...-g1 € F(Go),
where [ € Ny and ¢1,...,¢9; € Go, then o(S) = g1 + -+ + ¢g; is called the sum
of S, and the monoid

B(Go) ={S € F(Go) | o(S) = 0} C F(Go)

is called the monoid of zero-sum sequences over Gy (these objects are also
referred to in the literature as block monoids). The embedding B(Gy) < F(Gy)
is a divisor homomorphism and B(Gp) is a Krull monoid. The monoid B(G) is
factorial if and only if |G| < 2. If |G| # 2, then B(G) is a Krull monoid with
class group isomorphic to G and every class contains precisely one prime divisor.
For every arithmetical invariant x(H) defined for a monoid H, it is usual to
write *(Gp) instead of *(B(Gp)). In particular, we set A(Go) = A(B(Gy)) and
L(Go) = L(B(Gy)). Similarly, arithmetical properties of B(Gp) are attributed
to Go. Thus, Gy is said to be

o (in)decomposable if B(Gp) is (in)decomposable,
e (non-) half-factorial if B(Gy) is (non-)half-factorial.

Proposition 2.1. Let H be a Krull monoid with class group G, and suppose
that each class contains a prime divisor. Then there is a transfer homomor-
phism B: H — B(G) such that the following hold.

1. Ly(a) = Lpg)(B(a)) for each a € H and L(H) = L(G).

2. If |G| > 3, then c(H) = ¢(B(G)).

Proof. See [15, Section 3.4]. O

The above result generalizes to transfer Krull monoids H over abelian groups
G, which also satisfy the relationship £(H) = L(G). Hence all characterization
results, such as Theorem 1.1, also apply to them ([12]).

Zero-sum theory. Let G be an additive abelian group, Gy C G a subset, and
G§ = Go \ {0}. Then [Gy] C G denotes the subsemigroup and (Go) C G the
subgroup generated by Gy. For a sequence

S:glgl: H ng(S) E]:(Go),
g€Go
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we set p(S) = p(g1) - ... - ©(g;) for any homomorphism ¢: G — G’, and in
particular, we have —S = (—g1) - ... (—g;). We call

supp(S) ={g € G | v4(S) >0} C G the support of S,
vg(S) the multiplicity of g in S,

S| =1= ng(S) € Ny the length of S, and
geG

1
k(S) = geZG m € Q the cross number of S.

Moreover, %(S5) = {Ziel gi|0#£1C [1,1]} is the set of subsequence sums of
S. The sequence S is said to be
e zero-sum free if 0 ¢ %(5),
e a zero-sum sequence if o(S) =0,
e a minimal zero-sum sequence if it is a nontrivial zero-sum sequence and
every proper subsequence is zero-sum free.
Both Davenport constants, namely

e the (small) Davenport constant d(Go) = sup{|S||S € F(Go)
is zero-sum free} € No U {oo} and
e the (large) Davenport constant D(Gp) = Sup{|U| |U € A(Go)} € NogU
{oo}
are classical invariants in zero-sum theory. For n € N, let ), denote a cyclic
group with n elements. Suppose that G is finite. A tuple (e;);cs is called
a basis of G if all elements are nonzero and G = @;er{e;). For p € P, let
rp(G) denote the p-rank of G, r(G) = max{r,(G) | p € P} denote the rank
of G, and let r*(G) = > cprp(G) be the total rank of G. If |G| > 1, then
G2C, @ - ®C,,, and we set d*(G) = >.7_,(n; — 1), where r,nq,...,n, € N
with 1 < ny | --+ | ny, r = r(G), and n, = exp(G) is the exponent of G. If
|G| =1, then r(G) = r*(G) = 0, exp(G) = 1, and d*(G) = 0. We will use the
following well-known results (see [15, Chapter 5]).

Proposition 2.2. Let G be a finite abelian group. Then 1+d*(G) < 1+4d(G) =
D(G) < |G|. If G is a p-group or r(G) < 2, then d(G) = d*(G).

We will make substantial use of the following result (see [15, Theorem 6.4.7]
and [19, Theorem 1.1]).

Proposition 2.3. Let H be a Krull monoid with finite class group G where
|G| > 3 and every class contains a prime diwvisor. Then c(H) € [3,D(G)], and
we have
1. c(H) = D(G) if and only if G is either cyclic or an elementary 2-group.
2. ¢(H) = D(G) — 1 if and only if G is isomorphic either to C5~* @ Cy for
some r > 2 or to Cy & Cayy, for somen > 2.
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Let A € B(Gp) and d = min{|U| | U € A(Go)}. If A = BC with B,C €
B(Gyp), then
L(B) 4+ L(C) C L(A).
HA=U;-...-U,=Vy-...-V; with Ul,...,Uk,Vl,...,VIE.A(Go) and k < [,
then

l k
W<Vl = A1 = 3 10 < kD(Go)
v=1 v=1
whence Dl(glo) < min L(A) < max L(A) < ‘%;‘

We need the concept of relative block monoids (as introduced by Halter-
Koch in [24], and recently studied by Baeth et al. in [3]). Let G be an abelian
group. For a subgroup K C G let

Br(G) ={S € F(GQ)|o(S) e K} C F(G),
and let Dg (G) denote the smallest [ € N U {oo} with the following property:
e Every sequence S € F(G) of length |S| > [ has a subsequence T with
o(T) e K.
Clearly, Bx(G) C F(G) is a submonoid with
B(G) = B(o}(G) C Bk (G) C Ba(G) = F(G)
and Dy} (G) = D(G). The following result is well-known ([3, Theorem 2.2]).

Proposition 2.4. Let G be an abelian group and K C G a subgroup.

1. Bk (QG) is a Krull monoid. If |G| = 2 and K = {0}, then Bx(G) = B(G)
is factorial. In all other cases the embedding Bk (G) — F(G) is a divisor
theory with class group isomorphic to G/K and every class contains
precisely | K| prime divisors.

2. The monoid homomorphism 0: Bx(G)— B(G/K), defined by 6(g1 - .. .-
g) = +K)-...-(¢1+ K) is a transfer homomorphism. If |G/K| > 3,
then ¢(Bk(G)) = ¢(B(G/K)).

3. Dk (G) =sup{|U| | U is an atom of Bx(G)} = D(G/K).

3. Structural results on £(G) and first basic constructions

Let G be an abelian group. If G is infinite, then every finite subset L C N>
is contained in £(G) ([15, Theorem 7.4.1]). If G is finite, then sets of lengths
have a well-studied structure. In order to describe it, we recall the concept of an
AAMP. Let d € N, I, M € Ny and {0,d} C D C [0,d]. A subset L C Z is called
an almost arithmetical multiprogression (AAMP for short) with difference d,
period D, length | and bound M, if

(3.1) L=y+(L'UL*UL") C y+D+dZ,

where min L* = 0, L* is an interval of D + dZ (this means that L* is finite
nonempty and L* = (D + dZ) N [0, max L*]), I is maximal such that Id € L*,
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L' c[-M,—1], L” C max L* +[1, M] and y € Z. The set of minimal distances
A*(G) C A(G) is defined as

A*(G) = {min A(Gy) | Go C G with A(Gy) # 0} C A(G).

Proposition 3.1 (Structural results on £L(G)). Let G be a finite abelian group
with |G| > 3.
1. There exists some M € Ny such that every set of lengths L € L(G) is
an AAMP with some difference d € A*(G) and bound M.
2. For every M € Ny and every finite nonempty set A* C N, there is
a finite abelian group G* such that for every AAMP L with difference
d € A* and bound M there is a y;, € N with

y+LeL(G") foral y>vy.
3. If A € B(G) such that supp(A) U {0} is a subgroup of G, then L(A) is

an arithmetical progression with difference 1.
Proof. We refer to [15, Theorems 4.4.11 and 7.6.8]) and to [34]. O

Proposition 3.2 (Structural results on A(G) and on A*(G)).
Let G = Cp, ® -+ @ Cyp, where r,ny,...,n, € N with r = r(G), 1 <
ny| - |n., and |G| > 3.
1. A(G) is an interval with
(©)
[1, max{exp(G) — 2, k — 1}] C A(G) C [1,D(G) — 2] where k= Z LéJ
i=1
2. 1€ A*(G) C A(G), [1,r(G) — 1] C A*(G), and
max A*(G) = max{exp(G) — 2,r(G) — 1}.
3. If G is cyclic of order |G| = n > 4, then max (A*(G)\{n—2}) = | 2] 1.

Proof. We refer to [15, Section 6.8], to [18], and to [20]. O

Proposition 3.3 (Results on pi(G) and on p(G)).
Let G be a finite abelian group with |G| > 3, and let k € N.
1. p(G) = D(G)/2 and p2x(G) = kD(G).
2. 1+ kD(G) < par+1(G) < kD(G) + D(G)/2. If G is cyclic, then equality
holds on the left side.

Proof. We refer to [15, Chapter 6.3], [11, Theorem 5.3.1], and to [14] for recent
progress. (]

In the next propositions we provide examples of sets of lengths over cyclic
groups, over groups of rank two, and over groups of the form CJ 13 C, with
r,n € Nx>o. All examples will have difference d = max A*(G) and period D
with {0,d} € D C [0,d] and |D| = 3, and we write them down in a form
used in Equation (3.1) in order to highlight their periods. It will be crucial
for our approach (see Proposition 5.5) that the sets given in Proposition 3.4.2
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do not occur over cyclic groups (Proposition 3.5). It is well-known that sets
of lengths over cyclic groups and over elementary 2-groups have many features
in common, and this carries over to rank two groups and groups of the form
Cy~ ' @ C, (see Propositions 3.4.2, 3.6.2, and 5.5). For a set L € £(G) there
is a B € B(G) such that L = L(B) and hence m + L = L(0™B) € L(G) for all
m € Ny. Therefore the interesting sets of lengths L € £L(G) are those which do
not stem from such a shift. These are those sets L € £(G) with —m+L ¢ L(G)
for every m € N.

Proposition 3.4. Let G = Cy,, ® C,, where ny,ns € N with 2 < ny|na, and
let d € [3,mn4].
1. For each k € N, we have
(2k+2)+{0,d—2,ny — 2} +{v(na —2) | v € [0,k — 1]}
U{(kn+2)+(d—2)}
= (2k+2)+{0,d—2}+{v(na—2) | v € [0,k]} € L(G).
2. For each k € N, we have
(2% +3) + {0,m1 = 2,m2 = 2} + {u(n2 — 2) | v € [0,K]})
U {(km +3)+ (n1 —2)+ (n2 — 2)} € L(G).
Proof. Let (e1, e3) be a basis of G with ord(e;) = n, fori € [1,2], and let k € N.
For i € [1,2], we set U; = e;"" and V; = (—e;)e;. Then
(~U)FUF = (—U)FYUF— V™ for all v e [0, k],

and hence
L((—=U:)*U}) = 2k + {v(n; — 2) | v € [0, K]}
1. Weset h = (d—1)e;, Wy = (—e1)% " th, and Wy = e?lf(d*l)h. Then
Z(UyWh) = {U W, V7 'Wa} and L(U; W) = {2,d}. Therefore
L((~Ux)*UF U Wh) = L((-U2)FUE) + L(U: W)
={2k+v(ny—2) |ve0k]}+{2,d}
= (2k+2) + {v(na —2) | v € [0,k]} + {0,d — 2}.
2. We define
Wi = 6?17163271(61 +e2), Wo = (761)63271(61 + e3),
W3 = 6?1_1(762)(61 +e2), Wy =(—e1)(—e2)(e1 + e2), and
By, = Wi(=Uy)(~=Us2)US (=Us)".

Then any factorization of By is divisible by precisely one of Wy, ..., Wy, and
we obtain that

By = Wi(=U1)(=Us)Uz (~Us)* = Wo V" =} (=U2)Us (~Uz)"
= Wy(=U)V3"? " UZ (=Un)" = WaV" V205 (< Us)"
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Thus it follows that
L(Bx) = {3,n1 + L,na + 1,n1 +no — 1} + L(UF (—U2)")
=2k +3)+{v(ne—2)|vel0,k]}
URk+3)4+ (n1 —2)+ {r(na —2) | v e0,k]}
U (2K +3) + (n2 = 2) +{v(n2 — 2) | v € [0, k]}
U2k +3)+ (n1 —2) + (ng — 2) + {v(na — 2) | v € [0, k]}.
Thus max L(By) = (knz + 3) + (n1 — 2) + (n2 — 2) and
L(Br) = ((2k+3)+{0,m1 = 2,2~ 2} + {v(n2—2) | v € [0,k]} ) U{maxL(By)}.
O
Proposition 3.5. Let G be a cyclic group of order |G| = n > 4, and let
de[3,n—1].
1. For each k € Ny, we have
2k +2)+{0,d -2} +{v(n—2) | v € [0,k]} € L(G).
2. For each k € Ny, we set

L= ((2k+3)+{0,d=2,n—2} + {v(n —2) | v € [0, K]})
u{(k:n+3)+(d—2)+(n—2)}.
Then for each k € Ny and each m € Ny, we have —m + Ly ¢ L(G).

Proof. Let k € Ny.

1. Let g € G with ord(g) = n, U = ¢g", V = (—g)g, W1 = ((d —
1)g)(—g)%=", Wy = ((d — 1)g)g"~ @D, and By = ((—=U)U)*UW;. Then
Z(UW,) = {UWy,WoV4=1} and L(UW;) = {2,d}. Since every factorization
of By, is divisible either by Wj or by W, it follows that

L(Bi) = L((-U)*"U*) + L(UW1) = {2k + v(n —2) | v € [0, k]} + {2, d}
=2k+2)+{v(n—2)|vel0,k]} +{0,d— 2}.

2. Note that max Ly = (kn+3)+ (d—2)+ (n—2) = (k+ 1)n+ (d — 1).
Assume to the contrary that there is a By, € B(G) such that L(Bjy) = L. Then
min L(By) = 2k + 3 and, by Proposition 3.3,

(k+1Dn+(d—1) =maxL(By) < par43(G) = (k+ 1)n+1,
a contradiction. If m € Ny and B, € B(G) such that L(B,, k) = —m + L,
then L(0™By, 1) = Ly € L(G). Thus —m + Ly ¢ L(G) for any m € Ny. O
Proposition 3.6. Let G = Cy ' & C,, where r,n € N> and n is even.
1. For each k € Ny, we have

L= (2k4+2)+{0,n—2,n+r—3}+{v(n—2) | v € [0, k]} € L(G) yet Ly, & L(Cp).
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2. For each k € Ny, we have
((2k+3)+{0,r—1,n—2}+{u(n—2)|u€[0,k]})
U{(kn+3)+(rfl)+(n72)} € L(G).

Proof. Let k € Ny, (e1,...,e,—1,€,) be a basis of G with ord(e;) = --- =
ord(e,—1) =2 and ord(e,) =n. Weset eg =e1 + -+ e,_1, U; = e?rd(ei) for
each i € [1,7], Uy = (eg + er)(e0 — er), Vi = (—er)er,

V=er-...ce,_1(eo0 +e.)(—e), and W =e;-...-e,_1(eq +e,)el L.

1. Obviously, L((-W)W) = {2,n,n+r — 1} and
L((=W)W (=U,)"T)
= L(W)W) + L((-U)"0y)
={2,n,n+r—1}+{2k+v(n—2)|ve[0,k]}
=2k+2)+{0,n—2,n+r—-3t+{v(n—2)|ve|0,k]}.
Since min Ly, = 2k + 2, max L = (k+ 1)n +r — 1, and pog42(Cy) = (K + 1)n
by Proposition 3.3, r > 2 implies that Ly ¢ L£(C,,).
2. Let L denote the set in the statement. We define
By =UU; - ... - U._(=U,)FUukt?

and assert that L(By) = Li. Let z be a factorization of B,. We distinguish
two cases.
CASE 1: Uy | 2.

Then UpU; - ... U,_1 |z which implies that

k+17uvyn

T

z = UOU1 teee Urfl((*Ur)Ur)
for some v € [0,k + 1] and hence |z| € r+ (2k+2)+{v(n—2) | v € [0,k + 1]}.
CASE 2: Uy 1 2.

Then either V |z or W |z. If V | 2, then z = (=V)VV " ((=U,)U,)" V™
for some v € [0,k] and hence |z] € (n+ 1) +2k+ {v(n —2) | v € [0,k]}. If
Wz, then z = (fW)WVT((fUT)UT)kﬂ/VT”" for some v € [0, k] and hence
|z| € 342k + {v(n—2)| v € [0,k]}. Putting all together the assertion
follows. 0

k—v

Proposition 3.7. Let G be a finite abelian group, g € G with ord(g) =n > 5,
and B € B(G) such that ((fg)g)Qn | B. Suppose L(B) is an AAMP with period
{0,d,n — 2} for some d € [1,n — 3]\ {(n —2)/2}.
L. If S € A(B4)(G)) with S| B, then o(S) € {0,9,—g, (d+1)g, —(d+1)g}.
2. If S1, 82 € A(B(y)(G)) with 5153 | B, then o(S;) € {0, g, —g} for at least
one i € [1,2].



880 A. GEROLDINGER AND W. A. SCHMID

Proof. By definition, there isa y € Z such that L(B) C y+{0,d,n—2}+(n—2)Z.
We set U = g™ and V = (—g)g.

1. Let S € A(By)(G)) with S| B and set o(S) = kg with k € [0,n — 1]. If
k € {0,1,n — 1}, then we are done. Suppose that k € [2,n — 2]. Since S is
an atom in B, (G), it follows that Wi = S(—g)* € A(G) and W{ = Sg"~* €
A(G). We consider a factorization z € Z(B) with UWy |z, say z = UWyy.
Then 2/ = W{V*y is a factorization of B of length |2/| = |2| + k — 1. Since
L(B) is an AAMP with period {0, d,n — 2} for some d € [1,n—3]\ {(n—2)/2}
it follows that k — 1 € {d,n — 2 — d}.

2. Let 51,59, € A(B@(G)) with 5155 | B, and assume to the contrary
0(S;) = kie with k; € [2,n — 2] for each ¢ € [1,2]. As in 1., it follows that

Wi = Si(—g)f, Wi =S1g" ", Wy =55(—g)*, and Wj=Sg" ™

are in A(G). We consider a factorization z € Z(B) with UW,UW; |z, say
2z = UW1UWsy. Then z; = W{VR=1UWyy € Z(B) with |z1| = |z| + k1 — 1
and hence k; — 1 € {d,n — 2 — d}. Similarly, zo = UW WjVk2~1y € 7(B),
hence ko —1 € {d,n—2—d}, and furthermore it follows that k1 = ka. Now 25 =
W{Vki=1Wivka=1ly € Z(B) is a factorization of length |z3| = |z| + k1 + k2 — 2.
Thus, if k1 — 1 = d, then 2d € {n — 2,n — 2 + d}, a contradiction, and if
ki —1=n-2—-d, then2(n—-2—-d) € {n—-2,n—2+(n—-2-4d)}, a
contradiction. O

4. A set of lengths not contained in £(C,, & Cp,)
The aim of this section is to prove the following proposition.

Proposition 4.1. Let G = C,, ® Cp, where n1,ny € N with ny|n2 and
6 <ni <ng. Then {2,n2,n1 +n2 —2} ¢ L(G).

Let G = Cp, ® C,, where ni,ny € N with ny |ns. If 6 < ny < ns does
not hold, then {2,n2,n; + no — 2} may or may not be a set of lengths (e.g.,
if 2 = ny < ng, then {2,n2} € L£(G)). By Proposition 3.6, {2,n2,n1 + no —
2} € L(C3' "2 @ C,,), whence Proposition 4.1 implies that £(C,, ® Cp,) #
L(CH 2@ C,,). Tts proof is based on the characterization of all minimal zero-
sum sequences of maximal length over groups of rank two. This characteriza-
tion is due to Gao, Grynkiewicz, Reiher, and the present authors ([8,9,28,35]).
We repeat the formulation given in [5, Theorem 3.1] and then derive a corollary.

Lemma 4.2. Let G = C,,, C,,, where n1,ne € N with 1 < ny |na. A sequence
U over G of length D(G) = n1 4+ ng — 1 is a minimal zero-sum sequence if and
only if it has one of the following two forms:

[
ord(e;)
U= e;rd(ej)_l H (zve; +e€;), where
v=1

(a) {i,5} = {1,2} and (e1,e2) is a basis of G with ord(e1) = ny and
ord(ez) = na,
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(b) @1, Torde,) €10,0rd(ej) — 1] and 21+ - ~+Tord(e,) =1 mod ord(e;).
In this case, we say that U is of type I with respect to the basis (e;, €;);

[}
U = (2 +yea)™ 1 =m%¢ T (—aper + (—zpy + Dea),  where
v=1
(a) (e1,e2) is a basis of G with ord(e;) = ny and ord(ez) = na,
(b) y€[0,ne —1], e€[1,n; — 1], and s € [1,n2/n1 — 1],
(¢) z1,...,xp,—c € [L,ng — 1 withxy + -+ zp,—c =01 — 1,
(d) niyes # 0, and
e) either s =1 or njyes = nies.
In this case, we say that U is of type II with respect to the basis (e1,e2).

We record some observations on this result. If n; = ng, then sequences of
type II do not exist as the condition niyes # 0 cannot hold. Assume that
n1 # ny. There are examples of sequences that are both of type I and of type
II. However, such sequences are of a rather special form.

If a sequence U is of type I with 7 = 2, then it contains an element with
multiplicity ny — 1. Thus, U is of type II only when s =1 and e = n; — 1 and
consequently x; = ny — 1, that is, U = e5> "' (e1 +yea)™ " (e1 + (—(n1 — 1)y +
1)es) with y € [0,n2 — 1] and nyyes # 0. Such a sequence is indeed of type 1.

If a sequence U is of type I with 7 = 1, then it contains an element of
order ny; with multiplicity n; — 1. Since the order of e; + yes cannot be
ni, as niyes # 0, and the order of ey is not my either, this is only pos-
sible when ¢ = 1 and consequently z; = --- = z,,—1 = 1, that is, U =
(e1 + yeo)®™ ~tel2 ™5™t ey 4 (—y + 1)eg)™ L. If nyyes = niey, then in-
deed €] = —e1 + (—y + 1)es is an element of order ny, we get that (ef,e2)
is a basis of G and U is of type I with respect to the basis (€], e2), indeed,
U =M ((ng —1)e] 4 ex)™ Lef2™*™*! for some s € [1,n9/n1 — 1].
Corollary 4.3. Let G = C,,, ® C,,, where n1,ny € N with nq |ny and 6 <
ny < ng, and let U € A(G) with |U| = D(G) =ny +ng — 1.

1. If h(U) = na— 1, then U is of type I with respect to a basis (e1,ea) with
ord(e1) = n1 and ord(es) = na, that is

ord(e1)
U — e;)rd(@)—l H (ZCVGQ +€1)’
v=1
where 1, ..., T, € [0,n9 — 1] with 1 + -+ + 2, =1 mod na.

2. If h(U) =ng — 2, then
U= (e; + yeg)"1_1632_2( —xzer + (—zy + 1)62)
( —(m—1-2)er+(—(n1 —1—2)y+ 1)62),

where (e1,e2) is a basis with ord(e1) = ny, ord(ez) = na, y € [0,n2 — 1],
and x € [1,(n1 — 1)/2].
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3. If h(U) = ng — 3, then
3
U=(e1 + yeg)"l_le;”_g H(—zyel + (—x,y + 1)ea),

v=1

where (e1,e2) s a basis with ord(e1) = ny, ord(e2) = na, y € [0,n2 — 1],
and x1,xo, x5 € [1,n1 — 1] with 21 + 22+ 23 =n1—1 mod ny (if y # 0,
then x1 + x2 + x3 = n1 — 1).

4. There is at most one element g € G with vy(U) > ny — 3. In particular,
if h(U) > ng — 3, then there is precisely one element g € G with vy(U) =
h(U).

Proof. We use all notation as in Lemma 4.2.
1. If U is of type IT with respect to the basis (ey, e3), then as observed above
s=1,e=ny—1, and

U= (ex+ye2)" 'es* " (ex + ((—n1 + Dy + Dea),

which shows that U is also of type I with respect to the basis (e, es). If U is
of type I with respect to the basis (e, e1), then h(U) = ny — 1 implies that U
is also of type I with respect to the basis (eq, e2).

2. Suppose that U is of type I with respect to the basis (fa, f1). Then U
has the form

U= f"""arfi + f2)" 2 (22fi + fo)(@3f1 + f2).

Thus U has the asserted form with y = 0, e; = f1, and with es = z1 f1 + fo.
In this case we only have two summands the congruence condition modulo nas,
and hence we obtain an equality in the integers. Suppose that U is of type
IT with respect to the basis (e1,e2). Then s = 1, ¢ = ny — 2, and thus the
assertion follows.

3. Suppose that U is of type I with respect to the basis (f1, f2). Then U
has the form

U= o fi + f2)"2 3 (wafi + f2) (s fi + fo)(@afi + f2).

Thus U has the asserted form with y = 0, e; = f1, and with ex = x1 f1 + fo.
Suppose that U is of type II with respect to the basis (e1,e2). Then s = 1,
€ =ny — 3, and thus the assertion follows.

4. Assume to the contrary that there are two distinct elements ¢1,g92 € G
with vy, (U) > ng — 3 and vy, (U) > ng — 3. Then

(n2 = 3) + (n2 — 3) < vg, (U) +vgu(U) < |U] =y + 1z — 1,

which implies that no < my + 5. Hence 2ny < no < ny +5 and n; < 5, a
contradiction. O

We recall a technique frequently used in [13] and then provide a minor
modification of [13, Lemma 5.3].
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Lemma 4.4. Let G be a finite abelian group and let S € F(G) be a zero-sum
free sequence. If [ cqupp(s) (1 +Vg(S)) > |G|, then there is an A € A(G) with
|A| > 3 such that (—A)A | (=S)S.

Proof. We observe that

H{T € F(G) | T is a subsequence of S}| = H (1+vy(9)).
gé€supp(S)

Thus, if J[ cqupp(s) (L + Vvg(S)) > [G], then there exist distinct sequences
T/, Ty € F(G) such that T} | S, Ty | S, and o(T}) = o(Ty). We set T] =TT,
and Tj = TT, where T = ged(T],T3) and Ty, Ts € F(G). Then o(Th) = o(12)
and (—T41)T% is a zero-sum subsequence of (—5)S. Let A € A(G) with A |
(=T1)T>. Assume to the contrary that |A] = 2. Then A = (—g)g for some
g € G. Since S is zero-sum free, we infer (after renumbering if necessary) that
(=g) | (=T1) and ¢ | T2, a contradiction to ged(Th,T2) = 1. Therefore we
obtain that |A| > 3, which implies that | ged(A4, (—g)g)| < 1 for each g € G,
and thus (—A)A | (=9)S. O

Lemma 4.5. Lett € N and o, a1, ..., 04,04, ..., 0} € R with ag > -+ > oy >
0, >-->a, >0, a <a, for each i € [1,1], and 25:10% > o> Zﬁzlo/i.
Then

t

H (1+x,) is minimal

v=1
over all (z1,...,z) € RY with o < z; < o for each i € [1,t] and 25:1 T, =,
if
x; =« for eachi € [1,8] and wz; =a) for eachi € [s+2,t],

where s € [0,t] is mazimal with Y _;_, a; < cv.

Proof. Since continuous functions attain minima on compact sets, the above
function has a minimum at some point (my,...,m;) € Rt. Suppose there are
i,7 € [1,¢] such that i < j and m; < m;. Then a; <o <m; <mj <a; <
a;, and thus we can exchange m; and m;. Therefore, after renumbering if
necessary, we may suppose that m; > --- > my. Since for z >y > 0and 6 >0
we have

QI+z+0)1+y—08)=010+2)1+y)—dz—y) -6 <(1+z)(1+y),

it follows that all but at most one of the m; is equal to o; or oj. It remains
to show that there is an s € [1,¢] such that m; = «; for i € [1, s] and m; = o,
for each ¢ € [s + 2,1]. Assume to the contrary that this is not the case. Then
there are i,j € [1,t] with i < j such that m; < a; and o < m;. Using again
the just mentioned inequality and that m; > m;, we obtain a contradiction to
the minimum being attained at (mq,...,ms). O
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Proof of Proposition 4.1. Assume to the contrary that there is an A € B(G)
such that L(A) = {2,n2,n1 + na — 2}. Then there are U,V € A(G) with
|U| > |V| such that A = UV. We set

U=SU" and V =(-5)V', where U',V' € F(G), and S = ged(U, —V).

Since 2(n1 +no —2) < |A| = |U|+ |V| < 2D(G) = 2(ny + ng — 1), there are the
following three cases:

(I) |A] = 2(n1 + n2 — 2). Then, a factorization of A of length ny + ny — 2
must contain only minimal zero-sum sequences of length 2 and thus
U=v'=1

(II) |A| = 2(n1 + no — 2) + 1. Then, a factorization of A of length nq +
ng — 2 must contain one minimal zero-sum of length 3 and otherwise
only minimal zero-sum sequences of length 2, thus U’ = g192 and V' =
(—g1 — g2) for some g1, g2 € G.

(III) |A| = 2(n1 + n2 — 1). Then a factorization of A of length ny + ng —
2 must contain either one minimal zero-sum subsequence of length 4
and otherwise minimal zero-sum sequences of length 2, or two minimal
zero-sum sequences of length 3 and otherwise only minimal zero-sum
sequences of length 2. Thus, there are the following two subcases.

- U = g192, V' = h1ho where g1, 92, h1, he € G such that g1g2hihs €
A(G).

- UI = glgg(fhl 7h2) and V/ = hth(fglng) where gi1,92, hl, hQ €
G.

We start with the following two assertions.

Al. Let W e A(G) with |W| < |U| and W |(=S)S. Then [W| € {2,n1}.
A2. Let Wl, Wy € A(G) such that Wl(—Wl)WQ(—WQ) | S(—S) Then

{1, [Wal} # {ni}.

Proof of A1. Suppose |[W| > 2. Then (—W)W |(—=S)S and we set (—S5)S =
(=W)WT(-T) with T € F(G) and obtain that

UV = (-W)WT(-T)(U'V").

Let z be a factorization of U'V’. Then |z| € [0,2]. If T = 1, then UV has a
factorization of length 2 + |z| € {2,n2,n1 + n2 — 2} which implies |z| = 0 and
hence |W| = |U|, a contradiction. Thus T' # 1. Since T'(—T') has a factorization
of length |T'| = |S| — |W/, the above decomposition gives rise to a factorization
of UV of length ¢ where

3<t=24 T+ |z| =24 |S| = |W|+ || € {n2,n1 + na — 2}.

We distinguish four cases.
Suppose that U' = V' = 1. Then z =1, |2| = 0, and |S| = |U| = n1 +n2—2.
Thus t = ny + ng — [W| € {n2,n1 + na — 2}, and the assertion follows.
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Suppose that U = g1g2 and V' = (—g1 — g2) for some g1,g92 € S. Then
|z| =1 and |S| = n1 +ng — 3. Thus t = ny +ng — |W| € {ng,n1 +ns — 2}, and
the assertion follows.

Suppose that U’ = g192, V' = hihy where g1, g2, h1,hs € G such that
g192h1he € A(G). Then |z| =1 and |S| = n1+n2—3. Thust = ny+n2—|W| €
{na,n1 + ny — 2}, and the assertion follows.

Suppose that U’ = g1g2(—h1 —h2) and V' = hiha(—g1 — g2) where g1, g2, h1,
he € G. Then |z| = 2 and |S| = ny +ny — 4. Thus t = ny +ny — |W| €
{n2,n1 + ny — 2}, and the assertion follows. O

Proof of A2. Assume to the contrary that |W;| = |Wa| = ny. Then there are
Ws, ..., Wi € A(G) such that

UV = Wy (—W1)Wa(—Wa)Ws - ....- Wy,
where k € L({UV) = {2,n2,n1 +n2 — 2} and hence k = ny. Since
[Ws ... - Wi| =|UV| —4ny <2(n1 +ng — 1) —4ny = 2(ng —ng — 1),
it follows that
k—4<maxL(Ws-... - Wg) <|W5-...-Wi|/2<ny—n1 —1<ny—4,
a contradiction. O

We distinguish two cases depending on the size of h(.5).

CASE 1: h(S) > ny/2.
We set S = ¢¥S” where g € G, v =h(S5), and S’ € F(G). Then

Up=(=g)"”7"S'U" € B(G), Vi = g™ "(=5")V' € B(G).
Clearly, we have
U")'0 = (=) = —((V")" "W).

We will often use that if some W € A(G) divides (U')~1Uy, then (—W) divides
(V')~1V; and hence (—W)W | (—=S)S. Now we choose factorizations 21 € Z(Uy)
and y; € Z(V4). Note that |z1| < ny — v and |y1] < ne — v as each minimal
zero-sum sequence in 1 and y; contains (—g) and g, respectively. Then UV =
U,y ((—g)g) U772 has a factorization of length t where

24 (20 —n9) <t =lx1]+ ly1] + (20 — n2) < 2(na —v) + (20 — ng) = na.

Assume to the contrary that ¢ = 2. Then v = ny/2 and both, U = ¢"2/28'U’
and U’ = (—g)"/28'U’, are minimal zero-sum sequences, a contradiction, as
SU’" ¢ A(B(y(G)) as its length is greater than ny = D, (G) = D(G/(g)).
Thus ¢t = ng, |z1| = |y1| = n2 — v, and hence L(Uy) = L(V4) = {n2 — v}. If
W e A(G) with |[W| =2 and W | Uy, then W = (—g)g. Similarly, if W’ € A(G)
with |[W'| =2 and W’ | Vi, then W = (—g)g. By definition of v, not both Uy
and V7 are divisible by an atom of length 2. Now we distinguish four cases
depending on the form of U’ and V', which we determined above.
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CASE 1.1: U/ =V'=1.

Then Vi = —Uy, say Vi = Wy -...- W,,_,. Since none of the W; has length
2, it follows that [Wy| = -+ = |Wy,—»| = n1 and hence

2(ng +nq — 2) =2|V| = 2(2v — na) + 2|Vi| = 2(2v — n2) + 2n1(ne — v),
which implies that v = ny — 1. Consequently |S| = ny —1 and S € A(By) (G)).
This implies that (use an elementary direct argument or [11, Theorem 5.1.8]),

ni—1
S = (2e1 + areq) H (e1 + ayez),
v=2
where (e, e2) is a basis of G. Let r € [0,n2 — 1] such that r = —a; + a2 + a3

mod ny. Then

W1 = (2e1 + are2)(—e1 — ages)(—e1 — azea)el, and

Wy = (2e1 + arez2)(—e1 — azes)(—e; — agea)(—eq)™? ™"

are minimal zero-sum sequences dividing (—V)V. Since |W;| =3 +r, [Wa| =
3+ mng —r, and [WiWa| = na + 6 > 2n4, at least one of them does not have
length nq, a contradiction.
CASE 1.2: U’ = g192 and V' = (—g; — g2) for some g1, g2 € G.

We set

1 =X1-...- Xpy,—p and y1=Y1-...- Y,y

where all X;,Y; € A(G), g192]| X1X> (or even gi1g2| X1), and (—g1 — g2) | Y1.
We distinguish three subcases.
CASE 1.2.1: v =ng — 1.

By Corollary 4.3, with all notations as introduced there, we get

1
U= 632_1 ]:[(61 + SCVBQ).
v=1

Thus g = ez and U’ | [[)'L, (e1 + x,e2), whence after renumbering if necessary
we have g; = x;e1 + ey for each i € [1,2]. Therefore we have

V= ( —2e; — (m1 + $2)€2)(—€2)n2_1 H(—61 —xye2) = (—g1 — 92)(=95).
v=3

Assume to the contrary that there are 7,j € [3,n4] distinct with z; # z;. If
q € [1,ng — 1] with ¢ = —(z; — z;) mod ny, then
Wi = (e1+miea)(—e1 —wjez)ed and Wi = (e1+mies)(—er —xjea)(—ez)™? 1

are atoms dividing (—S)S, both have length greater than two but not both
have length n;, a contradiction to A1l. Therefore we have z3 = --- = x,,.
Since x1 + -+ + xp, = 1 mod ng, it follows that z1 # 3 or x2 # x3, say
29 # x3. Therefore there is an r € [1,ny — 1] with » = 29 — x3 such that

Wi = (= (21 + x2)e2 — 2e1) (z1e2 + €1)(w3€2 + €1)eh € A(G)
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and
W2 = (56262 —+ 61)(756362 — 61)(*62)7“ S A(G)
Thus it follows that

UV =W, [] ((zvez + e1)(—zvez — 1)) ((—62)62)n2_1_T

v=4
has a factorization of length
24 (n—=3)+(ne—1—=r)=n1+n2—2—1r€{2,n9,n1 +ng — 2},
and hence r = n; — 2. Now we define
Wi = (= (z1+x2)es — 2e1) (w1e2 + e1)(v3€2 + €1)(—e2)"* "
and
Wy = (z2e2 + e1)(—z3e2 — e1)en? " € A(G).
Thus it follows that

ni

UV =W{W; [] ((vez + e1)(—zvez — €1)) ((—e2)e2)

has a factorization of length
24 (n1—3)+(r—1) = n1—2+4r = 2n1—4 ¢ {2, na,n1 +n2—2}, a contradiction.
CASE 1.2.2: v =ng — 2.

Since V' | Y7 it follows that Y5 | (—S5)S and we thus may assume that Xy =
—Y5. Furthermore, |Y3| cannot have length 2, since —g 1 S’. Hence A1 gives
that |Yz| has length n;. It follows that |Yi| = 2 and |X;| = 3. This implies
that —g1 — g2 = —g whence v_, (V) = na —1 and v4(U) = ng — 2. By Corollary
4.3, with all notations as introduced there, we obtain that

U= (e; + yeg)"l_legTQ( —ze; + (—axy + 1)62)
( —(m—1—-2)e1+(—(n1—1—2)y+ 1)62).
Since g1 + g2 = g = ea, it follows that x = 1 and that
V = (—(e1 +ye2))™ "2 (—e2)"2 7 ((m1 — 2)er + ((n1 — 2)y + Dea).

Then W = (e1+ye2)?((n1 —2)e1+((n1 —2)y+1)e2)(—e2)", where r € [0, ng—1]
such that » = njy + 1 mod no, is a minimal zero-sum sequence. Since r = 1
mod ny, it follows that r € [1,n2 —ny + 1]. Thus, W |(=S5)S, hence |W| = nq,
and thus 7 = n; — 3. We consider W' = (e1 + ye2)?((n1 — 2)er + ((n1 — 2)y +
1ez)en2 ™" =3)  Again, W’ | (=S)S. Yet [W’| = 3+(no—(n1—3)) = na—ni+6,
a contradiction.
CASE 1.2.3: v < ng — 3.

Then Y5Y3 | (V/)~1V4, and since |Ya| # 2 # |Y3], we infer that |Ya| = |Y3| =
n1. Thus (=Y2)(=Y3) | (U')"1U; and Yo(—Y2)Y3(—Y3) | S(—S), a contradiction
to A2.
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CASE 1.3: U’ = ¢g1g2 and V' = hiho, where g1,¢92,h1,he € G such that
glgghlhg S A(G)

We set

$1:X1'...'Xn2,v and y1:Y1'...'Yn2,v,

where all Xu}/] € A(G), gi192 |X1X2 (OI‘ even gigs |X1 ), and hlhg |Y1Y2 (OI‘
even hihs|Yy). We distinguish four cases.
CASE 1.3.1: v =no — 1.

By Corollary 4.3, we have

ni ni
na—1 ng—1 / /
U =ey? I I (e1 +z,e2) and —V = el? | | (e +x,e2),
v=1

v=1

where (e, e3) and (e, e2) are both bases with ord(es) = ns and z;, 2} € [0, ne—
1] for each i € [1,n4]. Since |S| = |U| — 2, it follows that, after renumbering
if necessary, [[/25(e1 + xye2) | (—V) and hence, after a further renumbering if
necessary, ey + x;e2 = €} + a}es for each i € [3,n;1]. Thus, if we write —V with
respect to the basis (e, e2), it still has the above structure. Therefore we may
assume that e; = e} and z; = 2} for each i € [3,n4]. Therefore

gi=e1+xies and h; = —e; —zles for each i € [1,2].

Since g1 + g2 = —hy — ho, it follows that z1 + 92 = —a} — 24, mod ny and
hence ©1 — 2} = ), — x5 mod ny. Let r € [0,n2 — 1] such that r = 21 — 2
mod ny. Then

Wi=gi1hi(—e2)", Wi=gihi1e5* ", Wa=gohse}, and Wj=gsho(—e2)"* ™"

are minimal zero-sum sequences which give rise to the factorizations

ni

Uv = W1W2((feg)eg)n2frfl H ((61 +xz,e)(—er — zl,eg))
v=3
- W{Wé((—eg)eg)T_l H ((61 +ze2)(—er — xl,eg)).
v=3

These factorizations have length 24 (ng—r—1)+(n1—2) = n1+ns—2—(r—1)
and 2+ (r — 1) + (ny — 2) = ny +r — 1. Since not both of them can be in
{2, n2,n1 + n2 — 2}, a contradiction.

CASE 1.3.2: v =ng — 2.

Assume to the contrary that h(U) = h(V) = ny — 1. Since, by Corollary 4.3,
the elements ¢, ¢” € G with vy (U) = ng — 1 and vy (V) = ng — 1 are uniquely
determined, it follows that ¢ = ¢’ = —¢” and hence v = h(S) = ny — 1, a
contradiction. Thus, after exchanging U and V if necessary, we may assume
that h(U) = ng — 2 and it remains to consider the two cases h(V) = ny — 1 and
h(V) = Ng — 2.

CASE 1.3.2.1: h(U) =n2 —2 and h(V) =ngy — 1.



A CHARACTERIZATION OF CLASS GROUPS VIA SETS OF LENGTHS 889

By Corollary 4.3, we infer that
U= (e1+ye2)™ ey> ?(—mer + (—ay + 1)ea)
( —(m—1—-2)er+(—(n1—1—2)y+ 1)62),

1
-1 !
—V =eh? ]:[(e1 +zye2),
v=1

where (e1,e2) and (e}, es) are bases and all parameters are as in Corollary
4.3. Since |S| = |U| — 2, it follows that (e1 + yea)™ =3 | (=V) and hence, after
renumbering if necessary, €} + x1es = -+ = €] + xp, _3e2 = €1 + yea. Thus, if
we write —V with respect to the basis (e1, e2), it still has the above structure.
Therefore we may assume that e; = ¢} and y = 1 = -+ = x,,, 3. Thus we
obtain that

ni

—V =€l ey + yey) 73 H (e1 + ze9).

v=ni—2
Note that es € {—h1, —ha}, ea & {g1, 92}, say —h1 = ez and —hg = €1 + 2, €2,
and g1 + g2 = —(h1 + h2) = e1 + (x5, + 1)ea. This condition on the sum shows
that
{91,92} = {—we1 + (—ay + D)ez, —(n1 — 1 —z)er + (—(n1 — 1 —z)y + )ea}.

This implies that (e; + ye2)™ ~! | (=V) and hence, after renumbering if neces-
sary,
-V = 63271(61 + yeg)"l_l(el + zp, e2).

Since g1 + g2 = —(n1 — 1)e; — (y(n1 — 1) — 2)eq, it follows that the sequence
Wi = g1ga(—e1 — yea)(—e2)",

where r € [0,n2—1] and r = —yn;+2 mod ns, is a minimal zero-sum sequence.
Since = 2 mod n;, we infer that r» € [2,ny — 2] and that W7 |[UV. Since
g1 + go = —(h1 + hz), we obtain that
Wa = hiha(e1 +yez)es € B(G) , L(W2) ={2} and W>|UV.
Therefore it follows that
ng—2—r ny—2

UV = WiWa((—ez)ez) ((e1 4+ yea)(—e1 —yea)) ' 7,
and hence ny +ng —1—r € L({UV) = {2, na, n1 +n2 — 2}, a contradiction, since
r =2 mod n.
CASE 1.3.2.2: h(U) = h(V) =ng — 2.

By Corollary 4.3, we infer that
U=(e1 + yeg)”lfle;”_QU" and —V = (e} + y’eg)"171632_2(—‘/”),

where (e1,e2) and (e, e2) are bases, U", V" € F(GQ) with |U"| = |V"| = 2,
and y,y € [0,ny — 1]. Since |S| = |U| — 2, it follows that (e} + y'ea)™ 3 |U
and hence €] +y'es = e1 +yes. Thus, if we write —V with respect to the basis



890 A. GEROLDINGER AND W. A. SCHMID

(e1,e2), it still has the above structure. Therefore we may assume that e; = €}
and y = y'. Therefore it follows that

U=(e; +yex)" Lel> 2g19o and V = (—e; — yea)™ " H(—e2)"> " 2hyho,
and hence g; + g2 = —(n1 — 1)e; — (y(n1 — 1) — 2)es. Thus
Wi = g192(—e1 — yea)(—e2)",
where r € [0,n2—1] and r = —yn;+2 mod ns, is a minimal zero-sum sequence.

Since = 2 mod n;, we infer that r» € [2,ny — 2] and that W7 |[UV. Since
g1 + g2 = —(h1 + h2), we obtain that

Wo = hiha(er +yea)el € A(G) and Wy |UV.
Therefore it follows that
Uv = W1W2((762)62)n272ir((61 + yes)(—ep — yeg))mf?,

and hence ny +ng—2—1r € L(UV) = {2,n9,n1 +no — 2}, a contradiction, since
r =2 mod n;.
CASE 1.3.3: v =ng — 3.

Then X3 |(U’)"1U; and hence | X3| = n. Since

|X1X2X3| == |U1| == |U| — v+ (TLQ 7’0) =MNnq +5,

it follows that |X;X2| = 5, and hence X; or X5 has length two. Similarly, we
obtain that Y7 or Y5 has length two, a contradiction to the earlier mentioned
fact that not both, U; and Vj are divisible by an atom of length two.

CASE 1.3.4: v < ng —4.

Then Y3Y, | (V/)71V4, and since |Y3| # 2 # |Y4|, we infer that |Y3| = |Ya| =
n1. Thus (=Y3)(=Yy) | (U')71U; and Y3(—Y3)Ys(—Ys) | S(—S), a contradiction
to A2.
CASE 1.4: U’ = glgg(fhlth) and V' = hlhg(fglfgg), where gi1,92, hl, hQ €
G.

We set

1 =X1-...-Xpy—p and y1=Y1-...- Y,y

where all X;,Y; € A(G), g192(—h1 — h2) | X1X2X3 (or even gi1g2(—h1 — ha) |
X1X2 or glgg(—hl —hg) | Xl), and hlhg(—gl —gg) | Y1Y'2Y'3 (OI’ even hlhg(—gl —
92) | Y1Y5 or hiha(—g1 — g2) | Y1). We distinguish five subcases 1.4.1-1.4.5.
CASE 1.4.1: v =no — 1.

By Corollary 4.3 we have

U=ep! H(61 +x,ep) and —V =ef27! l_[(e/1 +2)e3),
v=1 v=1

where (e1,e2) and (e, e2) are both bases with ord(e2) = ny and z,,2!, €
[0,ne — 1] for each v € [1,n1]. Since |S| = |U] — 3, it follows that, after
renumbering if necessary, [[)L,(e1 + z,e2)| (—=V) and hence, after a further
renumbering if necessary, e; + x,es = €} + a}es for each v € [4,n;]. Thus, if
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we write —V with respect to the basis (e1, e2), it still has the above structure.
Therefore we may assume that e; = €} and 2, = 2, for each v € [4,n4].
Furthermore, we obtain that
g1 =e1+x1e2, go =e1+Tae2, —h1 —ha =e1 + w360,
hy = —e; — xjea, ho = —e; —xhea, and — g1 —go = —e1 — Thea,

a contradiction, since ord(e1) =n; > 3
CASE 1.4.2: v =ng — 2.

Arguing as at the beginning of CASE 1.3.2 we may assume h(U) = ng — 2
and it is sufficient to consider the two subcases h(V') = ny—1 and h(V) = ny—2.
CASE 1.4.2.1: h(U) =n2 —2 and h(V) =ngy — 1.

By Corollary 4.3, we infer that —V = e5> "' [['L, (¢} + z,e2) and

U= (e1+ yeg)”lfle’;z—Q( —zey + (—zy + 1)es)
(—(mi—1—a)er + (—(n1 —1—2)y + 1)ea),

where (e1,ez) and (e}, es) are bases and all parameters are as in Corollary
4.3. Since |S| = |U| — 3, it follows that (e; + ye2)™*~*|(—V) and hence, after

renumbering if necessary, €| + x1eq = -+ =€} + xp, —4e9 = €1 + yea. Thus, if
we write —V with respect to the basis (e1, e2), it still has the above structure.
Therefore we may assume that e; = e} and y = 25 = -+ = 2,,,. Thus we

obtain that
4

-V = 632_1(61 + yeg)™ 4 H(61 + xye2).
v=1

Since
gcd ((—xel—i-(—acy—i—l)eg) (—(nl—l—x)el—i-(—(nl—1—$)y—|—1)62), —V) =1,
it follows that
9192(—h1 — ha) = (e1 + ye2)( — e + (—zy + 1)e2)
(— (n1—1—xz)er + (=(n1 — 1 —2)y + 1)62).
Thus Ve, +ye, (S) = n1 — 2 and hence, after renumbering if necessary,
—V = e3> (e1 +yea)™ "2(er + wrea)(e1 + w2€2).
We observe that
(—zer+ (—zy+1)ea) + (— (m —1—z)er + (—(n1 — 1 — )y + 1)ea)
=e1+ (—(n1 — Dy +2)ez,
(—e1 —x1ea) + (—e1 — mae2)
= (n1 —2)(e1 + yea) + (n2 — 1)ea = —2e1 + ((n1 — 2)y — 1)es.
Consequently, there are 7,7’ € [0,n9 — 1] such that
Wi=(—zer+ (—zy+1ez)(— (n1 —1—x)er + (—(n1 — 1 — 2)y + 1)es)
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(—e1 —yes)(—e2)” € A(G) and
Wy = (—e1 — z1ea)(—e1 — xae2)(er + yea)2eh € A(G)
(note that y ¢ {—x1, —x2}). Clearly we have
r=2—nyy modny and 7 =1-—mnyy mod ns.

This implies that r =2 mod n; and ' = r — 1. Therefore, we obtain that

ng—r—1

n1—3
Uv = W1W2((€1 + yeg)(—el — yeg)) ((—62)62) ,
and thus n; +ne —2—r € L({UV) = {2, n2,n1 + n2 — 2}, a contradiction, since
r =2 mod n;.
CASE 1.4.2.2: h(U) = h(V) = ny — 2.
By Corollary 4.3, we infer that
U=(e1 + yeg)”lfle;”_QU” and —V = (e} + y’eg)"171632_2(—‘/”),
where (e, e2) and (e}, ez) are bases, U”, V" € F(G) with |U"| = |[V"| = 2,
and y,y" € [0,n2 — 1]. Since |S| = |U| — 3, it follows that (e} +y'ex)™ =4 |U. If
ny > 6, it follows that €| + y'ea = €1 + yea. If ny = 6, so ny even, then

U" = (—zer+ (—zy + Dez) (= (n1 —1—a)er + (=(m1 — 1 = 2)y + 1)ea)

is not a square whence (e} + y'e2)? # U” and it follows again that €} + y'es =
e1+yea. Thus, if we write —V with respect to the basis (eq, e2), it still has the
above structure. Therefore we may assume that e; = e} and y = y’. Therefore
it follows that

U=(e1 + yeQ)nlfle;m—QU// and V= (—ey — yes)™ " (—ex)2 2V,
a contradiction to |S| = |U| — 3.

CASE 1.4.3: v =n9 — 3.
Note that

|X1X2X3| = |U1| = |U|—U+(n2—v)=n1+n2—1+n2—(2712—6)=n1—|—5.

Suppose that U’ divides a product of two of the X1, X5, X3, say U’ | X1 Xo.
Then X3 | (U’)~'U; and hence | X3| = ny. Thus |X;Xs| = 5 and either X; or
X5 has length two. Since X3 divides (U')~1Uy, it follows that —Xj5 divides
Vi (V')~t. After considering a new factorization of V; if necessary we may
suppose without restriction that Y3 = —X3. Arguing as above we infer that
Y7 or Y5 has length two, a contradiction to the earlier mentioned fact that not
both, U; and V; are divisible by an atom of length two.

Thus from now on we may assume that for every X € A(G) dividing U
we have |ged(X,U’)| = 1, and for every YV € A(G) dividing V; we have
|ged(Y, V') = 1. Arguing as at the beginning of CASE 1.3.2 we obtain that
h(U) =n2 —3 or h(V) =ny — 3, say h(U) = na — 3. By Corollary 4.3, we infer

that
3

U = (e; +yex)™ teh2™3 H(—xiel + (—z,y + 1)ea)

v=1
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with all parameters as described there. Since |S| = |U| — 3, it follows that
(€1 +yea)™ 4| (=V) and thus

V = (—e; —yea)™ H—ex)"2 3V, where V" € F(G) with |[V”| = 6.

Since
3
U1 == (762)3(61 + y€2)n1_1 H(—zyel + (7.CCV’y + 1)62) = X1X2X3,
v=1
it follows that (—es)|X, for each v € [1,3]. Since (e; + yez)™ ~(—es)? is
zero-sum free, each of the X, is divisible by at least one of the elements from
Hizl(—xuel + (—2,y + 1)ez). Thus, after renumbering if necessary, it follows
that for each v € [1, 3]
X, = (—e2)(—zper + (—xpy + 1)ea)(e1 + yea)™.

This implies that x; + 22 + 3 = n; — 1. Since | ged(X,,U’)| = 1 for each
v € [1,3], it follows that U’ = [[>_, (—2,e1 + (—2,y + 1)ea), and hence

V = (—e; —yea)™ " (—ex)"2 3V,
Since

Vi =e3(—e1 —yea)" TV = V1Y)Y5,
it follows that es|Y, for each v € [1,3]. Since (—e; — yea)™ ~Lej is zero-sum
free, each of the Y, is divisible by at least one of the elements from V'. Setting
hs = —g1 — g2 and renumbering if necessary, it follows that for each v € [1, 3]
Yl/ = thV(_el - y€2)y”a

where y1,y2,y3 € Ng with y1 + y2 + y3 = n1 — 1. For each v € [1, 3] it follows
that h, = y,e1 + (yy, — 1)ea. Therefore we obtain that

0=g1+g2+hs
= ( —x1e1 + (—zy + 1)62) + ( — xoeq + (—xoy + 1)62)
+ (y3€1 + (yys — 1)62)

= (*ZE1 — T2 +y3)61 + ((*ZE1 — T3+ y3)y + 1)627

a contradiction, as not both, —x; — x5 + y3 and (—z1 — 22 + y3)y + 1, can be
multiples of n;.
CASE 1.4.4: v =nqy — 4.

Then X4 | (U')~1U; and hence | X4| = ny. Since

|X1X2X3X4| = |U1| = |U| — v+ (7’L2 — ’U) = N1 + 7,
it follows that | X1 X2X35| = 7, and hence X7, Xo, or X3 has length two. Simi-
larly, we obtain that Y7, Ys, or Y3 has length two, a contradiction to the earlier

mentioned fact that not both, U; and Vi are divisible by an atom of length
two.
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CASE 1.4.5: v <ng — 5.

Then Y, Y5 | (V/)~1V4, and since |Ys| # 2 # |Ys5|, we infer that |Ys| = |V5| =
n1. Thus (=Y3)(=Y3) | (U')~1U; and Y4 (—Y4)Ys5(—Y5) | S(—S), a contradiction
to A2.

CASE 2: h(S) < na/2.
We distinguish two subcases, depending on the parity of nso.

CASE 2.1: ny is odd.
Since no is odd, we have 3ny < no and ng 7. We write S = Hllf:l agy

>

with ai,...,a; € G pairwise distinct and a3 > -+ > ay > 1. Since |S| =
25:1 ay > na+n; —4 and a1 < (ne — 1)/2, it follows that £ > 3. We
define 71 = S(ajazaz)™! and set Ty = Hi:l bfi with b1,...,b; € G pairwise
distinct and 8, > --- > B > 1. Since f1 < a1 < (ng —1)/2, 2 B =
S| =3 > na+mny — 7, and no — 1 < ny + ng — 7, it follows that I > 3.
Applying Lemma 4.5 (with parameters t =, « = |T1|, o) =--- =} = 0 and
ap = -+ =ag = (n2 — 1)/2; note that we have s + 1 = 3) we infer that

l

[Ta+8)=> <1+”221> (1+ (71| — (n2 — 1))

v=1
—1\? 249 1
Z<1+TL22 >(1+1)w>n1n2_

2

Thus Lemma 4.4 implies that there is a Wy € A(G) with |[W;| > 3 such that
(=W1)Wy | (=T1)Ty. Since |Wi| < |U], A1 implies that W7 = ny. We write
Wy = W/ (—W?) with W/W! | .

We define To = S(W/W/)~! and note that (—S)S = Wi (=W1)Ta(—T5).

Furthermore,

|To| =S| —n1 >ne—4 and |supp(Tz)| > 3.

We set Tp =[], ¢)» with c1,...,¢, € G pairwise distinct and 7y > -+ >
Ym > 1. Applying Lemma 4.5 (with parameters t = m, a = |Ts|, o) = -+ =
as=1,a)=---=a;,=0and a1 =--- = a; = (n2 — 1)/2; note that we have

s+ 1 = 3) we infer that

ﬁ(1+%) > <1+n221> <1+|T2| <n221+1)> 1+1)

v=1

V

ng+1ng =7 1
= 22 22 2:§(n§—6n2—7)>n1n2.
Thus Lemma 4.4 implies that there is a Wa € A(G) with |[W2| > 3 such that
(=Wo)Wa | (—=T»)T5. Since |Ws| < |U|, A1 implies that W5 = ny. Therefore
we obtain that Wy (—Wp)Wa(—Ws) | (—5)S, a contradiction to A2.

CASE 2.2: no is even.
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We distinguish three cases; the first one is that |U| = |[V| = ny + ng — 2
and the two others deal with the case |U| = ny +ns — 2, further distinguishing
based on the description recalled in Lemma 4.2.

CASE 2.2.1: |U|=|V|=n1 +n2 — 2.

First we handle the case ny > 12. The special case ny = 12 will follow by
the same strategy but the details will be different.

We write S = H’;Zl a%v with g > --+ > a,. Since 25:1 o, =ng +ny — 2
and a1 < (ng —2)/2, it follows that k& > 3.

We define 77 = Hf/:1 bf“ with 8y > .-+ > [, to be a subsequence of §
of length ny — 2 such that 8y < ng/2 — 3 and such that TflS contains at
least 4 distinct elements or 3 elements with multiplicity at least 2. Applying

Lemma 4.5 (with parameters t =1, a = |T1| =n2 — 2, oy =--- = o, = 0, and
a1 = (n2 —2)/2, ag = -+ = ay = (ny — 6)/2; note that we have s + 1 = 3) we
infer that
!
-2 -6 2
[Ta+s) > (1+”22 > <1+"22 )(1+2)3<%n2> > ning,
v=1

where the last inequality holds because ny > 12. Thus Lemma 4.4 implies that
there is a Wi € A(G) with |[Wy| > 3 such that (—=Wyp)Wq | (=T1)Ty. Since
W] < |U|, A2 implies that |Wi| = ni. We write Wi, = W{(—W/’) with
wiw{" | Ty.

We define To = S(W{W{" )=t =[]/, ¢J» with 44 > -+ > 7,,. We note that
TS| Ty, (—5)S = Wi (=W1)To(~Ts), and |Tp| = ny — 2. By construction
of T 'S, we obtain that either (y3 > 2) or (y3 > 1 and 74 > 1). Applying

Lemma 4.5 (with parameters t = m, a = |Ta|, a1 = -+ = ¢ = (n2 — 2)/2),
and either (0/1 = ... = 04{), = 2, ai = .. = 04 = 0) or (0/1 = ... = 0521 =1,
af =--- = a; = 0) we infer that either

ﬁ(uvy)z (1+3-1)+(nl-(5-1)-2)0+2)

:E<E72)3>n1n2,

2 \2
f[(1+%)2(1+%1) (1412l = (2 =1) —2))a+ D +1)
:%(%72)4>n1n2.

Thus Lemma 4.4 implies that there is a W5 € A(G) with [W3| > 3 such that
(=Wo)Wy | (=T2)T>. Since |Ws| < |U|, A1 implies that |Ws| = ny. Therefore
we obtain that Wy (—Wp)Wa(—Ws) | (—S)S, a contradiction to A2.

Now suppose that ng = 12. Then n; = 6 and |S| = 16. Again we set
S = H];:l a% with aq > -+ > «aj. Since h(S) < 5, we infer that & > 4. We
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define Ty = S(a1azasas)~* and set Ty = [\ _, b% with 8, > --- > 3. Observe
that f1 < 4. Applying Lemma 4.5 (with parameters t = [, a = |Ty| = 12,
af=--=a,=0,and a1 = --- = @y = 4) we infer that
!

10 +8) > 1 +4)?° > nin,.

v=1
Thus Lemma 4.4 implies that there is a W7 € A(G) with [W;| > 3 such that
(—Wl)Wl | (—Tl)Tl. Since |W1| < |U|, Al implies that |W1| =n1 = 6. We
write Wy = W{(~W/) with W/W | Ty.

We define 7o = S(W{W{ )=t =T, ¥ with 1 > -+ > ~,,,. We note that
|T5] = ng — 2 =10 and m > 4. Applying Lemma 4.5 (with parameters ¢t = m,
a=1T3=10,a)=---=a), =1, a5 =---=a;,=0,and g =--- =, = 5)
we infer that

[T +7%) =0 +5)1+3)1+ 1)1 +1) > nin,,
v=1
and we obtain a contradiction as above.
CASE 2.2.2: U is of type I, as given in Lemma 4.2.
Then n
72 —1>h(S) >h(U) -3 >ord(e;) — 4,

which implies that ord(e;) = n1 so j = 1. We assert that
Ve, OUV) +v_e, (UV) >y + 1.

If this holds, then Lemma 5.2 in [13] implies that L(UV) N [3,n1] # 0, a
contradiction. Since v_¢, (V) > v_¢, (—=S) > v, (U) — 3, we obtain that

Ve, OV)+v_e, (UV)>(n1—1)4+(n1 —1)—3=2n1 —5>ny + 1.

CASE 2.2.3: U is of type II, as given in Lemma 4.2.
We observe that

%—12h(S)2h(U)—3:max{sn1—1,n2—sn1+6}—3.

This implies that s = 512, hence v, (U) = %5 +¢. Thus € € [1,2] and eSTH U

Assume to the contrary that U’ = g1g2(—h; — ha) = e3. Then V' =
(—262)h1h2, |V| = D(G), and

V—GQ(V) > V—€2(_S) :Vez(s) :Vez(U) -32 % +e—3.

Thus v_, (V) > 1, which implies that V* = (—2e3)"!(—e2)?V € A(G), but
[V*| =|V]+1=D(G) + 1, a contradiction.

Since ¢ = 2 implies that U’ = e3, we obtain that e = 1, v,,(U’) = 2,
V_e, (V') =0, and

V_eQ(V) = V_e2(_S) = Vez(S) :Ve2(U) —-2= ? -1
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We consider
Uy = e;VEZ(U)(—eg)V’EZ(V)U and Vi = (762)7\/,62(‘/)6\;2(U)V
Neither Uy nor V; is divisible by an atom of length 2, and since |Vi| = |[V|+2 >
D(G), Vi ¢ A(G). Therefore we obtain that
U Vi uv 2 2ng9 — 2
2<maXL(U1)+maXL(V1)§M+M:| |§ L 2ne < ng,
3 3 3 3
a contradiction. O

5. Characterization of the system L(C,, & Cy,)

In this section we prove Theorem 1.1. We start with two propositions which
gather various special cases which have been settled before. The first groups,
for which the Characterization Problem has been solved, are cyclic groups and
elementary 2-groups ([10]). We use the characterization of groups C,, ® C,, ([5]
and [32]). The core of this section is Proposition 5.5.

Proposition 5.1. Let G be an abelian group such that L(G) = L(Cp, & Ch,)
where n1,ny € N with nq | ny and ny +na > 4. Then G is finite, and we have
1. d(G) =d(Cy, ® Cy,) =n1 +na — 2 and exp(G) = no;
2. If n1 = ng, then G = Cyp, & Ch,.

Proof. 1. The finiteness of G and the equality of the Davenport constants
follows from [15, Proposition 7.3.1]. The statement on the exponents follows
from [36, Proposition 5.2] or from [5, Proposition 5.4].

2. This follows from [32, Theorem 4.1]. O

Proposition 5.2. Let ny,ne € N with ny |ny and ny + ne > 4, and let G =
H & C,, where H C G is a subgroup with exp(H) |na. Suppose that L(G) =
L(Chy @ Chy).

1. d(H) <ni—1, and if d*(H) = ny — 1, then d(G) = d*(G).

2. If d(G) = d*(Q), then G 22 Cp, @ C, .

3. If ny € [1,5], then G =2 C,, & Cp,.
Proof. 1. Proposition 5.1 implies that

ny+n2—2=d(G) >d(H)+ (n2 —1) and hence d(H) <mn; — 1.
If d*(H) = ny — 1, then
ni +n2—2=d(G) Zd*(G) :d*(H)—f—(?’LQ —1) =ny1 +ng — 2.

2. This follows from [5, Theorem 5.6].

3. By 2, it is sufficient to show that d(G) = d*(G). Suppose that H is cyclic.
Then r(G) < 2 and Proposition 2.2 implies that d(G) = d*(G). Suppose that H
is noncyclic. Then 2 < r(H) < d(H) < n; — 1, and hence ny € [3,5]. Suppose
that ny = 3. Thend(H) =2 and H 2 Cy® Cs. Thusd*(H) =2 =ny — 1, and
the assertion follows from 1. Suppose that ny = 4. Then d(H) € [2,3] and H
is isomorphic to Cy & Cy or to C3. If H =2 C3, then d*(H) = ny — 1, and the
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assertion follows from 1. Suppose that H = Cy ® C5 and set no = 2m. If m is
even, then d(G) = d*(G) by [11, Corollary 4.2.13]. If m is odd, then d(G) =
d*(G) by [36, Theorem 3.13]. Suppose that ny = 5. Thend(H) € [2,4] and H is
isomorphic to one of the following groups: C2,C3,C5,Cy @ Cy, C3® C3. If H is
isomorphic to one of the groups in {C3, Co@®Cy, C3&Cs}, then d*(H) = ny — 1.
If H=Cy @ Cy, then d(G) = d*(G) as outlined above. Suppose that H = C3.
Then G = C3®C,,, and we set ny = 2m. If m is even, then again [11, Corollary
4.2.13] implies that d(G) = d*(G). If m is odd, then this follows from [1]. O

We need the following characterization of decomposable subsets.

Lemma 5.3. Let G be a finite abelian group and Gy C G a subset.

1. The following statements are equivalent.
(a) Go is decomposable.
(b) There are nonempty subsets G1,G2 C Gy such that Gp = G1 W G
and B(Go) = B(Gl) XB(GQ)
(c) There are nonempty subsets G1,Ga C Gg such that Go = G1 W G
and .A(Go) = .A(G1) (] A(GQ)
(d) There are nonempty subsets G1,Ga C Go such that (Gy) = (G1) ®

(Ga).
2. There exist a uniquely determined t € N and (up to order) uniquely
determined nonempty indecomposable sets G1,...,Gy C Gy such that

t

Go=W G, and (Go)=ED(G.).

v=1
Proof. For 1, see [30, Lemma 3.7] and [2, Lemma 3.2], and for 2, we refer to
[30, Proposition 3.10]. O

We need the invariant
m(G) = max{min A(Gy) | Gop C G is a non-half-factorial subset with k(A4) > 1
for all A € A(Go)}.

Lemma 5.4. Let G be a finite abelian group, Go C G a subset with min A(Gy)
= max A*(Q), and let Gy = (' _, G, be the decomposition into indecompos-
able components. If exp(G) > m(G) + 2, then each component G, is either
half-factorial or equal to {—g,,g,} for some g, € G with ord(g,) = exp(G).
Moreover, at least one of the components G, is not half-factorial.

Proof. See [31, Corollary 5.2]. O

Proposition 5.5. Let ni,ny € N with ny|ne and 6 < ny < na, and let G be
a finite abelian group with exp(G) = ne and d(G) = ny1 + na — 2. Suppose that
L(G) contains, for all k € N, the sets

Ly = {(zmg +3)+ (1 — 2) + (no — 2)}
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U ((2k+3) F {0, —2,m0 — 2} + {v(ne —2) | v € [O,k]}).

Then G is isomorphic to one of the following groups:

Chy @ Chyy C5 @ Ch, with s € {ny —2,n1 — 13,08 ® Cy @ Ch,, or

Co®Cpy—1®Ch, with2]|(ny —1)|ne.
Proof. We set G = H & C,,, where H C G is a subgroup with exp(H) |na.
If H is cyclic, then d(G) = |H| 4+ ng — 2 whence |H| = ny and G = C),, @
C,,. For the remainder of the proof we suppose that H is non-cyclic. Since
d(H) 4+ nge —1 <d(G) = ny1 +ng — 2, it follows that d(H) < n; — 1, and hence
exp(H) < D(H) < nj. Since exp(H) = ny would imply that H is cyclic of
order nq, it follows that exp(H) < ny —1. We have r(H) < d(H) <n; —1. If
r(H) = ny — 1, then H = C3* " and hence G = C3y* "' @ C,,. Thus for the
remainder of the proof we suppose that r(H) € [2,n; — 2].

We start with the following two assertions.

Al. exp(G) > m(G) + 2.
A2. Let Go C G with min A(Go) = n2 — 2. Then Gy = {g, —g} U G1 where
ord(g) = ng, G1 C G is half-factorial, and (G1) N (g) = {0}.

Proof of A1. Assume to the contrary that no < m(G)+2. By [32, Proposition
3.6], we have

m(G) < max{r*(G) — 1,K(G) — 1}, where K(G) is the cross number of G.

So r*(G) < log, |G|, K(G) < 3 +1og|G| < 3 +log, |G| by [15, Theorem 5.5.5]
whence m(G) < —3 4+ 1ogy |G|. If H = Cypyy @ -+ ® Cyy,, with s = r(H) > 2,
my,...,ms € N;and 1 <mq |- |ms|ne, then

logy |H| = logym; <Y (m; —1) =d*(H) < d(H).
i=1 i=1
Therefore we obtain that
1 1
ny —2<m(G) < -5+ log, |G| = -5t log, n2 + log, |H|
1
< D) +log, no +d(H)

3 3 N
§—§ + logy na + 14 §—§ +10g2n2+7

and hence

ng 1 o
5 <log, no + > a contradiction to ng > 7. 0

Proof of A2. By Lemma 5.3, Gy has a decomposition into indecomposable sub-
sets, say Go = U!,_,G,,. Proposition 3.2.2 implies that max A*(G) =ng — 2 =
min A(Gp). By Al and Lemma 5.4, the sets G, have the following struc-
ture: there is an s € [1,t] such that G, = {—g¢,,¢9,} with ord(g,) = ns for
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each v € [1,s], and Gg41,...,G; are half-factorial. Now it follows that s = 1
because, by Lemma 5.3.2,

t
(Go) = @<Gu> CG=H®(C,, and exp(H) < ns.
v=1 [l

By assumption, for every k € N the sets
Ly, = {(kng +3)+ (1 — 2) + (no — 2)}
U ((Qk: 4 3) 4 {0, —2,m0 — 2} + {w(ne —2) | v € [O,kz]}) € L(G).

Clearly, these sets are AAMPs with difference no—2 and period {0, n1—2, ny—2}
and, for all sufficiently large k € N, Ly, is not an AAMP with some difference d
which is not a multiple of ns —2 ([15, Theorem 4.2.7]). Let k € N be sufficiently
large. In the course of the proof we will meet certain bounds and will assume
that k£ exceeds all of them.

We choose By, € B(G) such that L(By) = Li. By [15, Proposition 9.4.9],
there exists an M; € N (not depending on k) such that By, = V;, Sk, where Vj
and S}, are zero-sum sequences with the following properties:

minA(supp(Vk)) =ny—2 and |S;| < My,

(indeed in the terminology of [15, Proposition 9.4.9], we have V}, € V [V] and
Sk € B(G)[U, V] for a given full almost generating set U; but we do not need
these additional properties). By A2, we obtain that

supp(Vi) = {—gx, gr} U A,

where ord(gx) = no and Ay C G is half-factorial with (gi) N (Ax) = {0}.

Since for each two elements g, ¢’ € G with ord(g) = ord(g’) = na, there is a
group automorphism ¢: G — G with ¢(g) = ¢/, and since L(B) = L(¢(B)) for
all B € B(G), we may assume without restriction that there is a g € G such
that gr = g for every k € N. Applying a further automorphism if necessary we
may suppose that G = H @ (g). We will require an additional assertion:

A3. There exist a constant Ms € N (not depending on k), Cy, € B(supp(V%)),
and Dy, € B(G*®) with the following properties:
e B = C, D), with |Dk| < My,

e For any factorization z = Wy -...- W, € Z(By) with Wy,..., W, €
A(G) there are I,J such that [1,7] = I W J, [[,c; Wi = Cj and

HjeJ Wj = D.
Proof of A3. Let z = X1 -...- XoY1-...-Yp be a factorization of By, where
Xi,..., Xo,Yq,...,Yg are atoms, and Yi,...,Ys are precisely those atoms
which contain some element from Si. Then 8 < |Si| < M7 and X; - ... X,

divides V, (in B(G)). For any element a € supp(Vy) let m4(2) € Ny be maximal
such that ¢*4(@)ma(2) divides X; - ...- X,. Since [ < My, there is a constant
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M;3(z) € N (not depending on k) such that v,(By) — ord(a)mg(z) < Ms(z).
Now we define, for each a € supp(Vy),

me = min{my(z) | z € Z(B)}, C = H a®d@ma - and Dy = C; ' By.
a€supp(Vi)
Since there is a constant M3 € N (not depending on k) such that v,(By) —

ord(a)m, < M3 for all a € supp(V}), there is a constant My € N (not depending
on k) such that |Dy| = |Bg| — |Ck| < Ma. O

Since Cy, € B(supp(Vx)), L(Ck) is an arithmetical progression with difference
ny — 2 and by A3 we have

L(B) =L(C) +LDy) = | (m+L(C).
méeL(Dy)

Assume to the contrary that L(Dy) = {m}. Then —m + Ly = —m + L(By) =
L(Cx) € L(Ch,), a contradiction to Proposition 3.5.2. This implies that
IL(Dg)| > 1. Since supp(Cx) C supp(Vi) C {—g,9} U Ak, where Ay is
half-factorial and (g) N (Ax) = {0}, it follows that C, = C|.C}/, with C}, €
B({g,—g}), Ci € B(Ag), L(Ck) = L(C}) + L(CY), and [L(CY)[ = 1. Thus, if
L(C}) = {mu}, then

Therefore, after changing notation if necessary, we suppose from now on that

By = Cy Dy, L(By) = L(Ck) + L(Dy),

where supp(Cy) C {0,9,—g} and Dy, € B(G) with |Dy| < M.
We continue with the following assertion, whose proof follows from Propo-
sition 3.7.

A4, e Let T € F(G) with T'|Dy. If T € A(B(g(G)), then o(T) €
{Oaga -9, (nl - 1)9) _(nl - 1)9}'
elfz=1Ty-...- T, € ZB<g>(G)(Dk) with 711, ... T, € A(B@)(G)),
then at most one of the elements o(77),...,0(Ty) does not lie in
{Oa 9, _g}'
We shall use the following notation. If z =T -...- T, is as above, then we set
o(z)=0(T1)-...-0(Ty) € F({g)).
We continue with an additional assertion.
A5,
Le@)(Br) = U Ls((g)) (Cro(z)), where the union on
ZEZB<g>(G)(Dk)

the right hand side consists of at least two distinct sets which are not
contained in each other.
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Proof of A5. Assume to the contrary that all sets of lengths on the right
hand side are contained in one fixed set L1 = Lp((g))(Cro(2*)) with z* €
Zp,,, () (Dk). Then L(By) € L(Cp,), a contradiction to Proposition 3.5. To
show that the set on the left side is in the union on the right side, we choose a

factorization 2* = Wy - ... - W, € Zp(a)(B), where Wi,..., W, € A(G). For
each v € [1,v], we set W, = XY, where X,,Y, € F(G) such that
Ch=X, ... X, and Dp=Yy-...-Y,.
For each v € [1,7], we have o(W,) = 0 € G, hence o(Y,) = —o(X,) € (g),
Y, € By (G), and we choose a factorization 2, € Zp,, (c)(Ys). Then
z=21"... 2y €Lp, (c) (D).

Then, for each v € [1,7], W/, = X O’(ZU) A((g)) and W{-...- W) = Cro(z) €
F({g)). Therefore z/ =W -. € Zp((gy) (Cro(2)) and

|z*| =~ = |z | € Lag)) (Cro(2)).
Conversely, let z = 51 ... Ss € Zp, (c)(Dk) and 2" = Wi -...- W] €

Z3((g)) (Cro(2)) be given, where Sy, ..., Sz€ A(Byy (G)), W1, ..., W, e A((g)),
and we write

o(z) =s1-... s, where s; = o (51),...,s3 = 0(53).
Note that s1, ..., sg satisfy the properties given in A4.
Claim: We can find a renumbering such that

W! =s,T, with T, € F({—g,g}) forallvell,z.
Proof of the Claim. We proceed in three steps.

First, we may assume without restriction that sy = --- = s; = 0 and
0 ¢ {ss+1,---,8p}. Then at least § of the Wy,...,W. are equal to 0. After
renumbering if necessary, we may suppose that W = --- = W{ = 0, and we
setTh=--=Ts=1€ F({-g,9})-

Second, suppose there is a v € [0 + 1, 5] such that s, € {(n; — 1)g,n2 —
(ny — 1)g}, say v = 6 + 1. Then ss41 divides (in F(G)) one element of
{Wiiqs-- ., Wi}, say Wy, . Then we set Tsy1 = 55-&1Wz§+1 e F{-g,9}).

To handle the last step, we observe that, by A4, all remaining s, lie in
{—g,9}. Since B < |Dy| < M3 and the multiplicities of g and of —g in C}, are
growing with &, and k is sufficiently large, for each v < § the product [T]_, W}
is divisible by ¢g and by —¢g. Thus we can pick a suitable W/ and the assertion
follows. O

Now we define

"o__
W, =

W,  foreach ve[8+1,7]

Then, by construction, we have By = W{'-...-W/. Let v € [1, 3]. Since W, €
A((g)), it follows that T}, € F({g)) is zero-sum free. Since S, € A(By(G)), it

{S,,T,, for each v € [1, ],
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follows that W/ € A(G). Thus WY',..., W} € A(G), and we have constructed

a factorization of By of length v = |2/]. O
A6. Let
z=Ty-... 'TV S ZB<Q>(G)(D1€) and 2 = Tll . 'T,;/ S ZB<9)(G)(DI€)’

where 7,7 € N, Ty,..., T, T1, ..., T}, € A(By(G)), and z # 2. Fur-
thermore, let

F=Cro(Ty)-...-0(Ty) € B({g)) and F'=Cyo(Ty)-...-a(T}) € B({g)),
and define
F =SF and F' = SF,, where S, F1,Fy € F({(g)) and S = gedz((g)) (F, F').

Then one of the following statements holds:
(i) d(z,2") > ny — 1.

(i) {F1,F2} ={((—9)9)",0"} with v € N.
Proof of A6. Note that ged(Fy, Fp) =1, o(Fy) = o(Fy) = —o(S), C | S, and
() dzs, @) (2,2") = dre) (F, F') = dx((g)) (F1, F2) = max{|F], | F2[}.
Since |F| = |Ck|+ |z|, |F1| + |S| = |Ck| + |2], |F2| + |S| = |Ck| + |2/|, we obtain
[Fo| = |1 = [2'] = |2[ and
(%) d(z,2) > [lz] = [2']] + 2 = ||F1| = [P | +2.
Using (x) and (xx) we observe that max{|F|,|Fs|} > ni — 1 as well as ||Fy| —
|F2|| > n1—3 implies (i). To simplify the discussion, we suppose that max{|Fi|,
|F5)} < np —1 (of course we could also assume that max{|F|, |Fz|} < n; —2;
the slightly weaker assumption allows us to give a more complete description

of (Fy, F5) without additional efforts). Based on the structural description of
o(z) and o(z’) given in A4 we distinguish four cases.

CASE 1: o(z)o(2') € F({0,9,—g}).

We set i i i i
S=1(9")"((=9)™)" ((—g)g) " (6g) 0",
where § € {—1,1}, k1,..., ks € Ng and k3 < no. We distinguish two cases.
CASE 1.1: Fi=1or Fr, =1, say Fr, = 1.

Then ¢(S) =0, o(F1) =0, and ky = 0. We have F; = OVO(Fl)((—g)g)Vg(Fl)
and |F1| > 0. Then

Inin L(SFQ) = min L(S) = kl + kQ + kg + k5 and
min L(SFl) = kl + kQ + kg + k5 + Vo(Fl) + Vg(Fl) — 6(7’1,2 — 2),

where

. — 0 k3+Vg(F1)<TL2,
1 otherwise.
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Thus vo(F1) + vg(F1) is congruent to min L(SF;) — min L(SF») modulo ny — 2
and hence congruent either to 0 or to ny —2 or to (ng —2) — (n1 —2) = ng —ny
modulo ng — 2. Since 0 < |Fy| = vo(F1) + 2v,(F1) < nq — 1, it follows that
(Vo(F1),vg(F1)) € {(n1 —2,0), (n1 — 3,1)}, hence |F1| — |F2| = |Fi| > n1 — 2,
and thus (i) holds.
CASE 1.2: Fy # 1 and F # 1.
By symmetry we may suppose that 01 Fy. Then g| Fy or (—g) | F1, and by
symmetry we may suppose that g| F;. We distinguish two cases.
CASE 1.2.1: (—g)| Fi.
Then F, = 0%(2) and hence o(S) = 0 = o(F;). This implies k4 = 0 and
vg (F
Fi=((—9)9) () Then
InlIlL(SFQ) :kl +k2+k3+V0(F2)+k5 and
min L(SFl) = kl + kQ + kg + Vg(Fl) — 6(7’1,2 — 2) + k5,

where € € {0,1}. Thus vo(Fz)—vy(F) is congruent to min L(SF; ) —min L(SF5)
modulo ny — 2 and hence congruent either to 0 or to n; —2 or to no —n1 modulo
ng — 2. This implies that either

Vo(FQ) = Vg(Fl) or Vo(FQ) = Vg(F1)+7’L172 or Vg(Fl) = V()(FQ)+TL1 — 2.

If vo(F2) = vg(F1) + n1 — 2, then vy (Fy) > 1 implies that |Fa| > vo(Fy) >
ny — 1, and hence (i) holds.

If Vg(Fl) = V()(FQ) +ny — 2, then Vo(FQ) 2 1 implies that Vg(Fl) Z ny — 1
whence |F1| = 2vg(F1) > 2(n1 — 1) > ng, a contradiction. If vo(Fh) = vg(F1),
then (ii) holds.

CASE 1.2.2: (—g) 1 Fi.

Then F; = ¢¥¢(F) and Fy = (—g)"*g(FZ)O"U(FZ). Note that vy (F1) + v_g(F>)
> 0, vg(F1),v_g(F2) € [0,n1 — 1], and ny > 2n;. However, o(F1) = o(F)
implies that vg(Fi) +v_g4(F>) =0 mod ns, a contradiction.

CASE 2: o(2)0(2') € ((m — 1)9)F({0,—g,9}) or o(2)o(2') € (- (m —
1)g)F({0, =g, 9})-

After applying the group automorphism which sends each h € G onto its neg-
ative, if necessary, we may suppose that o(z)o(z’) € ((n1 — 1)g)F({0,—g, g}).
After exchanging z and 2/, if necessary, we may suppose that o(z) € F({0, —g,
g}) and o(z") € ((n1 — 1)g) F({0,—g,9}). We set

na\ K na\ k k: k
S=(9")" ((=9)™) " ((~9)g9) " (59) 0",

where 6 € {—1,1}, k1, ..., k5 € Ng and k3 < na. If o(Fy) =0, then o(Fs) =0
and hence |F3| > nq, a contradiction. Thus it follows that o(Fy) # 0, and
hence there are the following three cases.
CASE 2.1: g| F; and (—g) | F1.

It follows that F» = ((n; — 1)g)0"(*2) and hence o(Fy) = (n; — 1)g =
o(Fy) = (vg(Fl) — v_g(Fl))g, a contradiction to |Fy| < ng — 1.
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CASE 2.2: g|Fy and (—g) 1 F3.
Then Fy = g's(F)ovd) By, = ((ng — 1)g)(—g)™ 1V and we
can write SF} and SFy as follows:

SFL = (") ((—9)™)" ((—g)g) "0l
S = (57)" ((=0)")" ((=0)9)" ™ V0 (= 1)g) (—g) ),

where l1,...,ls € No, ls = vo(S5), and I3 > v4(F1) (the last inequality holds
because k is large enough). Therefore

mi=101+1l+Il3+1, +VO(F1) € L and

mo =11+ 1o+ 13— Vg(Fl) + 1y +V0(F2) + 1€l
which implies that mi1 — ma = vo(F1) + v4(F1) — vo(F2) — 1 is congruent to
either 0 or to n; — 2 or to ny — ny; modulo ny — 2. We distinguish three cases.

CASE 2.2.1: V()(Fl) +V9(F1) = Vo(FQ) +1 mod ng — 2.
Since |F1| < nq and |F3| < nq, it follows that vo(F1) + vg(F1) = vo(F2) + 1.
Since

|Fo| = vo(F2) + 1+ (n1 — 1 — vy(F))

Vo(F1) 4+ vg(Fy) + (n1 — 1 —vy(F1))
=ny — 1+ vo(F1),

it follows that |F| > ny — 1 and hence (i) holds.

CASE 2.2.2: V()(Fl) +V9(F1) = Vo(FQ) +ny — 1 mod ng — 2.
Similarly, we obtain that vo(F1 )+vg(F1) = vo(F2)+n1—1. Thus |Fi| > ni1—1
and hence (i) holds.

CASE 2.2.3: V()(Fl) +V9(F1) =MN2 — N1 +V0(F2) +1 mod ng — 2.
We obtain that vo(F1) + vg(F1) = —(n1 — 3) + vo(F2) which implies that
vo(Fy) > ny — 3. Therefore
|F2| = V()(FQ) + 1+ ny — 1-— Vg(Fl)
= N1 + Vo(Fl) + (nl — 3) — Vo(FQ) + Vo(FQ)
=2ny — 3 +vo(F1) > ny,

a contradiction.

CASE 2.3: gt Fy and (—g) | Fi.
Then

Fy= (g P08 and By = ((ny — 1g)gs D s gl
We can write SF; and SF, as

A no\ L2 1 vo(Fy
SFL=(9")"((—=9)") " ((—g)g) 0"+ F)  and

SFQ _ (gn2)l1 ((7g>n2)l2 ((79)9)l37V79(F1)0l4+V0(F2) (gn2*(n1*1) ((nl _ 1)9)) ,
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where l1,...,ls € Ng, ls = vo(S5), and I3 > v_4(F1) (the last inequality holds
because k is large enough). Therefore

mi=U01+l+Il3+1, +VO(F1) € L and

mo =11+ 1o+ 13— V,g(Fl) + 1y +V0(F2) +1e Ly
which implies that mi — ma = vo(F1) + v_g(F1) — vo(F2) — 1 is congruent to
either 0 or to n; — 2 or to ny — ny modulo ny — 2. We distinguish three cases.
CASE 2.3.1: V()(Fl) +V,g(F1) = Vo(FQ) +1 mod ng — 2.

We obtain that vo(F1) + v_g4(F1) = vo(F2) + 1 and hence
[Fol =1+ vo(F2) +n2 — (m1 — 1) —v_g(F1)

=vo(F1) +ne —(n1 — 1) > nq, a contradiction.

CASE 2.3.2: V()(Fl) +V,g(F1) = Vo(FQ) +ny — 1 mod ng — 2.
We obtain that vo(F1) 4+ v_g(F1) = vo(F2) + n1 — 1. Therefore |Fi| > n; —1
and hence (i) holds.

CASE 2.3.3: vo(F1) +v_y(F1) =ngo —nq +vo(Fs) +1 mod ng — 2.
We obtain that vo(F1) + v_g(F1) = vo(F2) — n1 + 3 and therefore
|F2| = V()(FQ) =+ 1 + ng — (Tll — 1) — V,g(Fl)
(F1)+n1 —3+1+n2—(n1 —1)
(F1) — 14 ng > nq,

Vo

Vo

a contradiction.

CASE 3: o(2)o(2') € ((n1 — 1)9)2]:({0,79,9}) or o(z)o(2) € (= (n1 —
2

1)g)"F({0,~g,9})

After applying the group automorphism which sends each h € G onto its neg-
ative, if necessary, we may suppose that o(z)o(2’) € ((n; — 1)9)2]:({0, —g,9}),
whence o(2) € ((m1 —1)9) F({0,~g,g}) and o(2') € ((m1 — 1)9) F({0, g, 9}).

We set

S = ((m = 1)g)(9")" ((=9)")" ((~9)9)" (69) " 0",
where § € {—1,1}, k1,...,ks € Ng and ks < ny. We distinguish two cases.

CASE 3.1: Fi =1or Fy, =1, say Fr = 1.

Since Fy = 1, it follows that L(S) C Ly. Let Iy € L(Fy). Then I3 +L(S) C Ly
and hence [y is congruent either to 0 or to n; — 2 or to ny — ny modulo ny — 2.
Since I3 > 0, it follows that |Fy| — |Fa| = |Fi| > n1 — 2, and hence (i) holds.

CASE 3.2: Fy # 1 and F» # 1.
We have 01 Fy or 04 Fy, say 01 Fy. Then g | Fy or (—g)| Fi. We distinguish
three cases.

CASE 3.2.1: g| Fy and (—g) 1t Fi.
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Then Fy = g% and Fy = (—g)"-¢(F2)0v02) Since o(F) = o(Fy), it
follows that vy (F1) + v_g4(F2) =0 mod no, and hence

n
max{vy(F1),v_4(F2)} > ?2 > na,

a contradiction.

CASE 3.2.2: g| Fy and (—g) | F}.
Then (—g)g| Fi whence Fy = 0¥0(F2), This implies that 0 = o(Fy) = o(F})

and thus F; = ((—g)g)vQ(Fl). As above it follows that v,(Fy) — vo(F3) is
congruent either to 0 or to n; — 2 or to ny — ny modulo ny — 2.

If vy (F1) = vo(F3), then (ii) holds.

If Vg(Fl) = Vo(FQ) +ny — 2, then |F1| = 2V9(F1) Z 2711 —4 Z ni, a contra-
diction.

Suppose that vg(Fi) — vo(F2) = ne —ng mod ng — 2. Then |Fi| < m
implies that vy(Fy) — vo(F2) = —nq + 2. Since vy(Fy) > 1, it follows that
|Fo| > vo(F2) > nq — 1, and hence (i) holds.

CASE 3.2.3: gt Fy and (—g) | Fi.

Then Fy = (—g)"-¢(1) and Fy = g¥(F2)0wF2) Since o(F)) = o(Fy), it

follows that v_g(F1) + vg(F2) =0 mod no, and hence

n
max{v_o (Fi), v (F)} 2 22 >y,

a contradiction.

CASE 4: o(z)o(2') € ((n1 - l)g)( —(n1 — 1)g)f({0, —g,9}).
After exchanging z and 2’ if necessary we may suppose that o(z) € ((n1 —

1)g)F({0,—g,9}) and 0(2) € (— (n1 — 1)g) F({0, —g, g}). We set
SFL= (97" ((=9)")"* ((9(=9))" ((m — Dg(—g)™ 7)o"
and
SEx = (9)4 ((=9)")" ((9(=9))"* (( = (1 = 1)g)g™ 1 ot

where I1,1,...,13,15,1s € Ny. Since

Fi = ((m — 1)g)g" ") (—g)*-+U"0*()  and

Fy = (~ (m — 1)g)g" () ()"l
it follows that
(1= 14vg(F1)=v_g(F1))g = o(F1) = 0(F2) = (—n1+1+vy(F2) —v_g(F2))g
and hence

2n1 — 2 = (vg(F2) — vg(F1)) + (Vog(F1) —v_g(F2)) mod no.

We distinguish four cases.

CASE 4.1: g| Fy and (—g) | Fi.
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Then vy (F>) = 0 = v_,4(F») and hence
2n1 — 2= —vy(F1) +v_y¢(F1) mod ns.

If ng > 3nq, then |F1| > ni, a contradiction. Thus no = 2n1, v_y(F1) +2 =
vg(F1) mod ng, and so v_g(F1) + 2 = v, (F1). Therefore we obtain that

58 = (g)" ((-9)")"
((g(—g)) o= =D (g)na (( —(n1 — 1)9)9"1_1)014+Vo<F2>,

Therefore
mi :ll+12+lg+l4+1+V0(F1) S Lk and
mo =11 + 1o+ 13+ 14 — (Vg(F1)+TL1 — 1)+2+V0(F2) e Ly
which implies that m; —ma = vo(F1) —vo(Fa) +vge(F1)+nq —2 is congruent to
either 0 or to n; — 2 or to ny — ny modulo ny — 2. We distinguish three cases.
CASE 4.1.1: V()(Fl) + Vg(Fl) +ny = V()(FQ) + 2 mod ny — 2.
The left and the right hand side cannot be equal, since v4(Fy) > 2 would
imply that |Fz| > vo(F2) > ny. Therefore we have
vo(F1) 4+ vg(F1) + np = vo(Fs) + no
and thus |F1| > vo(F1) + vg(F1) > ne — n1 = nq, a contradiction.
CASE 4.1.2: Vo(Fl) +Vg(F1) +n = Vo(Fg) + n1 mod ng — 2.
This implies that vo(F1) + vg(F1) = vo(F2) whence vo(Fa) > vg(F1) >
2, vo(F1) = 0, and v4(F1) = vo(F2). Therefore we obtain Fy = ((ng —
1)g) g2 (—g)F2)=2 and F, = (— (ny — 1)g)0"2). Now consider a factor-
ization z1 of SFy which is divisible by the atom X = ((ny — 1)g)g™ "' and by

(g(—g))vO(Fz)_Q. It gives rise to a factorization
2 = zlx—l(g(—g))_(v°(F2)_2)(( — (n1 — 1)9)9"1—1)0V°<F2> € Z(SF)

of length |2z2] = [2z1] — (1 + vo(F2) — 2) + 1 + vo(F2) = |z1] + 2. Since ny > 5
and min A(Ly) = min{ny — 2,no —n1} > 3, Li cannot contain the lengths |21]
and |z1| 4+ 2 = |z2|, a contradiction.

CASE 4.1.3: Vo(Fl) +Vg(F1) = VQ(FQ) + 2 mod ng — 2.

This implies that vo(F1) 4+ vy (F1) = vo(F2) + 2. Since vy (Fy) > 3, it follows
that vo(F2) > 0 and hence vo(F;) = 0. Therefore we obtain F; = ((n; —
1)g)g'oF2)+2(—g)w(F2) and Fy = (— (ny —1)g)0"*2). Now consider a factor-
ization zo of SFy which is divisible by the atom X = ( —(ny — 1)9)(—9)"1“.
It gives rise to a factorization

S PRy ny— vo (F2)+2
21 = 22X 7070 (1 — 1)g(=g)" ) (—g)g) "
of length |z1]| = |22| + 2, a contradiction.

CASE 4.2: g| Fy and (—g) 1 Fi.
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Then vy (F>) = 0 =v_,4(F}), hence
ng —2n1 + 2 = vy(F1) +v_g(F2) mod no
and thus no — 2nq + 2 = vy (F1) + v_4(F2). Furthermore, we obtain that
max vy (), vy ()} > 2202,
and hence ny € {2n1,3n2}. We obtain that
SE = (9)" ((~9)™)"
((g(ig))zg—vg(Fl)—(m—1)(79)712 (( — (- l)g)gn1—1)014+v0(F2)_

Therefore my =1y + 1o + 15+ 14 + 1+ vo(F1) € Ly, and
moe=U+l+1ls+l— (vg(F1) +n1 — 1) + 2+ v(Fa) € Ly

which implies that m; —mg = vo(F1) —vo(Fa) + vy (F1)+nq —2 is congruent to

either 0 or to n; — 2 or to ny — ny modulo ny — 2. We distinguish three cases.

CASE 4.2.1: vo(F1) + vg(F1) +n1 = vo(F2) +2 mod ng — 2.

The left and the right hand side cannot be equal, because otherwise we
would have |Fy| > vo(F2) + 1 > ny. Therefore we have

vo(F1) 4+ vg(F1) + np = vo(Fs) + no
and thus |F1| > vo(F1) + vg(F1) > ne — ny > nq, a contradiction.
CASE 4.2.2: vo(F1) + vg(F1) +n1 = vo(F2) +n1 mod ny — 2.

This implies that vo(F1) + vg(F1) = vo(F2) whence vo(Fa) > vg(Fy) > 1,
vo(F1) =0, and vy(Fy) = vo(F3). Therefore we obtain Fy = ((ny — 1)g)g" ()
and F = (— (ng — 1)g)(—g)"2~2m+2-voF2)gv(F2) and hence |Fo| = 1 + np —
2n1 + 2 which implies that ny = 2n; and |Fy| = 3. Thus vo(F3) € {1,2}.

Suppose that vo(F) = 1. Then vy(Fy) = 1, Fi = ((n1 — 1)g)g, and F» =
(= (n1 — 1)g)(—g)0. Consider a factorization z; of SFy divisible by X =
((n1 —1)g)g™*t. This gives rise to a factorization

22 =2X"0((—9)g) (( —(m — 1)9)9"171)
of length |22 = |21]| + 2, a contradiction.
Suppose that vo(F2) = 2. Then vy(F1) = 2, Fi = ((n1 — 1)g)g?, and
Fy = ( — (n1 — 1)g) 02. Consider a factorization z; of SF; divisible by X =
((m — 1)g)g"1+1. This gives rise to a factorization

29 = 21X7102<( —(n1 — 1)9)97“71)
of length |2z2| = |21]| + 2, a contradiction.
CASE 4.2.3: V()(Fl) +V9(F1) = Vo(FQ) “+ no — 2TL1 +2 mod ng — 2.

Suppose that ne = 3ny. Then vo(Fy)+vy(F1) = vo(F2)+n1+2 mod ny—2,
and equality cannot hold because |Fy| > vo(F1) + v4(F1). This implies that
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(7’L272>+V0(F1)+V9(F1) = Vo(F2>+TL1+2 and hence 2n174+V0(F1)+Vg(F1) =
vo(Fy), a contradiction to vo(Fy) < |Fa| < nj — 1.

This implies that ny = 2ny and vo(F1) + ve(F1) = vo(F2) + 2. Since 2 =
Vg (F1) + v_y(F>), we infer that v,(Fy) € [1,2].

Suppose vg(F1) = 2. Then v_,(F5) = 0 and vo(F1) = vo(F) = 0, and we
have F} = ((m — 1)g)92 and Fy = (f (nq — 1)9). Consider a factorization zs
of SF, containing the atom X = ( —(ny — 1)g)(—g)”1+1. This gives rise to a
factorization
2

z = z:zX‘l(((m - 1)9)(—9)"1‘1) ((=9)9)

of length |z1| = |22| + 2, a contradiction.
Suppose vg(F1) = 1. Then v_4(Fy) = 1, vo(F1) = 1, vo(F>) = 0, and we
have Fy = ((n1—1)g)g0 and Fp = (— (n1 — 1)9) (—g). Consider a factorization

23 of SF; containing the atom X = ( — (ny — 1)g)(—g)™™'. This gives rise to
a factorization

21 = 2X 7 (((n = 1g)(=9)™ ) ((=9))0
of length |z1| = |22| + 2, a contradiction.

CASE 4.3: gt Fy and (—g) | F1.
Then vy (F1) = 0 and v_4(F>) = 0 and hence

27L172EV9(F2)+V,9(F1) mod ng.

This implies that v, (Fz) = v_g(F1) = n1—1 and hence |F1| > ny and |F>| > nq,
a contradiction.

CASE 4.4: gt Fy and (—g) 1 F1.
Then vy (F1) =0 =v_,4(F1) and hence
2n1 — 2 = vy(F2) —v_4(F2) mod na.

If ng > 3ny, then |F3| > ny, a contradiction. Thus ny = 2n; and hence
vg(F2) = v_g4(F) — 2. Therefore we obtain that

SFy = (9")" ((—9)™)"
((g(=g)) 7 gy (=my + 1)g)g™ )0l
Therefore
my=li+1lo+ 13+l +1+v(FL) € Ly,
and
me =l +lo+1l3+ L+ vy(Fo) — (ni — 1) + 2+ vo(Fa) € Ly
which implies that mq —mao = vo(F1) —vo(F2) —vg(F2)+(n;—1)—1is congruent
to either 0 or to n1 — 2 or to ny —ng modulo ny —2. We distinguish three cases.
CASE 4.4.1: vo(Fy) + vg(F2) = vo(F1) +n1 —2 mod ng — 2.
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This implies that vo(F») + vg(F2) = vo(F1) + n1 — 2, and hence |Fp| >
V_g(Fy) > vg(Fs) + 2 > nq, a contradiction.

CASE 4.4.2: vo(F») + vg(F2) + (n1 — 2) = vo(F1) +n1 — 2 mod ng — 2.

This implies that vo(F») +vg(F2) = vo(F1) and hence vo(F») = 0. Therefore
we obtain that = ((n;—1)g) 0" and Fy = (—(n1—1)g)g" V) (—g)oF)+2,
Now consider a factorization z; of SF} containing the atom X = ((m —
l)g)gm“. This gives rise to a factorization

29 =2 X1 (( —(n1 — 1)9)971171) ((*Q)Q)VO(F1)+207V°(F1)

of length |z3| = |21] + 2, a contradiction.

CASE 4.4.3: V()(FQ) + Vg(FQ) + (TLQ — nl) = Vo(Fl) +ny — 2 mod ng — 2.

Since ng = 2n4, the congruence simplifies to vo(Fs) + vg(Fa) + 2 = vo(F)
mod ng — 2 which implies that vo(Fs) + v, (F2) +2 = vo(F1). Thus vo(F) =0,
= ((m — 1)g)0V“(F1), and Fh = (— (ny — 1)g)g"“(F1)’2(—g)"“(Fl). Now con-
sider a factorization 21 of SFy containing the atom X = ((n; —1)g)(—g)™ .
This gives rise to a factorization

_ n1 vo(F1)—2,_y Y
2= 21X (= (= 1)g) (—g)" 1) ((—g)g) " F0m o)
of length |2z2| = |21] — 2, a contradiction. O

We state the final assertion
AT. ny — 1 S CB<g>(G)(Dk)-

Proof of A7. By A5, we have

Leey(Br) = U Lewgy (Crol2)),
2€Z5 4 (@) (Dk)

and the union on the right hand side consists of at least two distinct sets which
are not contained in each other. Assume to the contrary that CB<9>(G)(Dk) <
n1 — 2 and choose a factorization zg € ZB<9>(G)(Dk)-

We assert that for each z € Zp  (c)(Dx) there exists an l(z) € Z such
that o(z) = o(zo)O_l(z)((—g)g)l(z). Let z € Zp,, (c)(Dk) be given, and let
20,.-.,2k = 2z be an (n; — 2)-chain of factorizations concatenating zop and z.
Since d(z;—1, 2;) < ny — 1, it follows that the pair (z;_1, 2;) is of type (ii) in A6
for each i € [1,k]. Therefore o(z;) = o(z;_1)07% ((—g)g)li for some [; € Z and
each i € [1, k], and hence the assertion follows with [(z) =13 + - + Ij.

We choose a factorization z* € Zp, , (c)(Dy) such that

I(z") =max{l(z) | z € Zzs(g)(c)(Dk)},
and assert that

LB(<g>)(CkU(Z)) C LB(<9>)(CkJ(Z*)) for each z € ZB<g>(G) (Dk)
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Let z € Zp,,, ()(Dr) be given. Then

o(2*) = o(2)0"WE)=H=) ((79)9)1(2*)*1(2).
If
—(U(z")=l(= I(z")=l(= N
(TS ZB(<g>)(CkO'(Z)), then 20 (1(z")=U( ))((7g)g)( )=1(2) c ZB((g))(CkO'(Z ))

is a factorization of length |y[, and hence Lg((4y)(Cro(2)) C Lg((gy)(Cro(z¥)).
Therefore we obtain that

Leey(Br) = U Lewe (Cro(2)
ZEZB<Q>(G)(Dk)

= L(Cko(z")), a contradiction to the fact

that the union consists of least two distinct sets not contained in each other. [

Using A7 and Proposition 2.4.2, we infer that
n—1<cp, @(Dr) < (B (G)) = c(B(G/(g))) <D(G/(g)) = D(H) < ni.

We distinguish two cases.

CASE 1: ¢(B(G/{(9))) = n1.

Then D(G/(g)) = n1, Proposition 2.3.1 implies that G/(g) is either cyclic of
order ny or an elementary 2-group of rank ny — 1. Since H = G//{g), it follows
that G = C,, ®Cy, or G=CH 1 C,,.

CASE 2: ¢(B(G/{9))) =n1 — 1.

We distinguish two cases.
CASE 2.1: D(G/{g)) = n1.

Then Proposition 2.3.2 implies that G/(g) is isomorphic either to Co®C,,, —1,
where n; — 1 is even, or to C5*~* @ Cy. Since H = G/{g), it follows that
G2Co®Ch1@®Chyor GO @ CL®Chy.

CASE 2.2: D(G/{g)) =n1 — 1.

Then c(B(G/{g))) = D(G/(g)) = n1 — 1, and (again by Proposition 2.3.1)
G/{g) is cyclic of order n; —1 or an elementary 2-group of rank ny —2. If G/(g)
is cyclic, then G has rank two and d(G) = d(G/{g))+d({g)) =n1—2+n2—1<
n1 +n2 — 2 = d(G), a contradiction. Thus G/(g) is an elementary 2-group and
G=CP2aC,,. O

Proof of Theorem 1.1. Let G be an abelian group such that £(G) = L(C),, @
Cp,) where ni,ne € N with n; | ne and nq + ng > 4.

Proposition 5.1 implies that G is finite with exp(G) = ng and d(G) = d(Cy,, ®
Cpn,) = n1 +ng —2. If ng = ng, then G = C,,, ® C,,, by Proposition 5.1.2.
Thus we may suppose that n; < no, and we set G = H @ C,, where H C G
is a subgroup with exp(H)|na. If ny € [1,5], then the assertion follows from



A CHARACTERIZATION OF CLASS GROUPS VIA SETS OF LENGTHS 913

Proposition 5.2.3, and hence we suppose that n; > 6. Since L(G) = L(C,, ®
Ch,), Proposition 3.4 implies that, for each k € N, the sets

Ly = {(m £3) 4 (1 —2) + (na — 2)}
U ((2k+3) {01 — 2,n0 — 2} + {v(ne — 2) | v € [O,k]})

are in L(G). Therefore Proposition 5.5 implies that G is isomorphic to one of
the following groups

Chn, @ C,,, C5®C,, with s € {ny1 —2,n1 — 1},
CH @ Cy@Chy, Co®Chyo1®Ch, with 2| (ng — 1) | na.
Since
d*(CH @ CL®Chy) =n1 + 12 —2=d(G) and
d*(Cy @ Cpy—1 ® Cpy) = n1 +n2 — 2 =d(G),

Proposition 5.2.2 implies that G cannot be isomorphic to any of these two
groups. Proposition 3.6 (with & = 0, n = ng, and r = n; — 1) implies that

{2,n9,m1 +na —2} € LICY 2D C,) C LICT @ Cpy).

However, Proposition 4.1 shows that {2, ns,n1+n2—2} ¢ L(C,,, ®C,,) = L(G)
whence G = C),, & C,,. O
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