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Abstract. Let H be a Krull monoid with class group G such that every
class contains a prime divisor. Then every nonunit a ∈ H can be written
as a finite product of irreducible elements. If a = u1 · . . . · uk with
irreducibles u1, . . . , uk ∈ H, then k is called the length of the factorization
and the set L(a) of all possible k is the set of lengths of a. It is well-known
that the system L(H) = {L(a) | a ∈ H} depends only on the class group
G. We study the inverse question asking whether the system L(H) is
characteristic for the class group. Let H′ be a further Krull monoid with

class group G′ such that every class contains a prime divisor and suppose
that L(H) = L(H′). We show that, if one of the groups G and G′ is finite
and has rank at most two, then G and G′ are isomorphic (apart from two
well-known exceptions).

1. Introduction

Let H be a cancellative semigroup with unit element. If an element a ∈ H
can be written as a product of k irreducible elements, say a = u1 · . . . ·uk, then k
is called the length of the factorization. The set L(a) of all possible factorization
lengths is the set of lengths of a, and L(H) = {L(a) | a ∈ H} is called the system
of sets of lengths of H . Clearly, if H is factorial, then |L(a)| = 1 for each a ∈ H .
Suppose there is some a ∈ H with |L(a)| > 1, say k, l ∈ L(a) with k < l. Then,
for every m ∈ N, we observe that L(am) ⊃ {km+ ν(l − k) | ν ∈ [0,m]} which
shows that sets of lengths can become arbitrarily large. Under mild conditions
on the ideal theory ofH every nonunit ofH , has a factorization into irreducibles
and all sets of lengths are finite.

Sets of lengths (together with parameters controlling their structure) are
the most investigated invariants in factorization theory. They occur in settings
ranging from numerical monoids, noetherian domains, monoids of ideals and
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of modules to maximal orders in central simple algebras (for recent progress
see [4, 6, 12]). The focus of the present paper is on Krull monoids with finite
class group such that every class contains a prime divisor. Rings of integers
in algebraic number fields are such Krull monoids, and classical notions from
algebraic number theory (dating back to the 19th century) state that the class
group determines the arithmetic of the ring of integers. This idea has been
formalized and justified. In the 1970s Narkiewicz posed the inverse question
whether or not arithmetical phenomena (in other words, phenomena describing
the non-uniqueness of factorizations) characterize the class group ([27, Problem
32; page 469]). Very quickly first affirmative answers were given by Halter-
Koch, Kaczorowski, and Rush ([23, 26, 29]). Indeed, it is not too difficult to
show that the system of sets of factorizations determines the class group ([15,
Sections 7.1 and 7.2]).

These answers are not really satisfactory because the given characterizations
are based on rather abstract arithmetical properties which play only little role
in other parts of factorization theory. Since, on the other hand, sets of lengths
are of central interest in factorization theory, it is natural to ask whether their
structure is rich enough to do characterizations.

Let H be a commutative Krull monoid with finite class group G and suppose
that every class contains a prime divisor (recall that an integral domain is a
Krull domain if and only if its monoid of nonzero elements is a Krull monoid).
It is classical that H is factorial if and only if |G| = 1, and by a result due
to Carlitz in 1960 we know that all sets of lengths are singletons (i.e., |L| = 1
for all L ∈ L(H)) if and only if |G| ≤ 2. Let us suppose now that |G| ≥ 3.
Then the monoid B(G) of zero-sum sequences over G is again a Krull monoid
with class group isomorphic to G, every class contains a prime divisor, and
L(H) = L

(

B(G)
)

(as usual, we set L(G) = L
(

B(G)
))

. The Characterization
Problem can be formulated as follows ([15, Section 7.3], [17, page 42], [33]).

Given two finite abelian groups G and G′ such that L(G) = L(G′). Does it

follow that G ∼= G′?

The system of sets of lengths L(G) for finite abelian groups is studied with
methods from Additive Combinatorics. Zero-sum theoretical invariants, such
as the Davenport constant, play a central role. Recall that, although the precise
value of the Davenport constant is well-known for p-groups and for groups of
rank at most two (see Proposition 2.2), its precise value is unknown in general
(even for groups of the form G = C3

n). Thus it is not surprising that all
answers to the Characterization Problem so far have been restricted to very
special groups including cyclic groups, elementary 2-groups, and groups of the
form Cn⊕Cn ([7,32]). Apart from two well-known (trivial) pairings, the answer
is always positive. Starting from Cn ⊕Cn, Zhong studied the Characterization
Problem for groups of the form Cr

n in a series of papers ([21,37,38]). The goal
of the present paper is to settle the Characterization Problem for groups of
rank at most two. Here is our main result.
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Theorem 1.1. Let G be an abelian group such that L(G) = L(Cn1 ⊕ Cn2)
where n1, n2 ∈ N with n1 |n2 and n1 + n2 > 4. Then G ∼= Cn1 ⊕ Cn2 .

The difficulty of the Characterization Problem stems from the fact that most
sets of lengths over any finite abelian group are arithmetical progressions with
difference 1 (see Proposition 3.1.3, or [15, Theorem 9.4.11]). If G and G′ are
finite abelian groups with G ⊂ G′, then clearly L(G) ⊂ L(G′). Thus, in order
to characterize a group G, we first have to find distinctive sets of lengths for G
(i.e., sets of lengths which do occur in L(G), but in no other or only in a small
number of further groups), and second we will have to show that certain sets are
not sets of lengths in L(G). These distinctive sets of lengths for rank two groups
are identified in Proposition 5.5 which is the core of our whole approach, and
Proposition 4.1 provides sets which do not occur as sets of lengths for rank two
groups. After gathering some background material in Section 2, we summarize
key results on the structure of sets of lengths in Propositions 3.1, 3.2, and 3.3.
Furthermore, we provide some explicit constructions which will turn out to be
crucial (Propositions 3.4–3.7). After that, we are well-prepared for the main
parts given in Sections 4 and 5.

2. The arithmetic of Krull monoids: Background

We gather the required tools from the algebraic and arithmetic theory of
Krull monoids. Our notation and terminology are consistent with the mono-
graphs [15, 17, 22]. Let N denote the set of positive integers, P ⊂ N the set
of prime numbers and put N0 = N ∪ {0}. For real numbers a, b ∈ R, we set
[a, b] = {x ∈ Z | a ≤ x ≤ b}. Let A,B ⊂ Z be subsets of the integers. We
denote by A + B = {a + b | a ∈ A, b ∈ B} their sumset, and by ∆(A) the
set of (successive) distances of A (that is, d ∈ ∆(A) if and only if d = b − a
with a, b ∈ A distinct and [a, b] ∩ A = {a, b}). For k ∈ N, we denote by
k · A = {ka | a ∈ A} the dilation of A by k. If A ⊂ N, then the elasticity of A
is defined as

ρ(A) = sup
{m

n
| m,n ∈ A

}

=
supA

minA
∈ Q≥1 ∪ {∞} and we set ρ({0}) = 1.

Monoids and factorizations. By a monoid, we mean a commutative semi-
group with identity which satisfies the cancellation law (that is, if a, b, c are
elements of the monoid with ab = ac, then b = c follows). The multiplicative
semigroup of non-zero elements of an integral domain is a monoid. Let H be a
monoid. We denote by H× the set of invertible elements of H , by A(H) the set
of atoms (irreducible elements) of H , and by Hred = H/H× = {aH× | a ∈ H}
the associated reduced monoid of H . A monoid F is free abelian, with basis
P ⊂ F , and we write F = F(P ) if every a ∈ F has a unique representation of
the form

a =
∏

p∈P

pvp(a), where vp(a) ∈ N0 with vp(a) = 0 for almost all p ∈ P,
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and we call

|a|F = |a| =
∑

p∈P

vp(a) the length of a.

The monoid Z(H) = F
(

A(Hred)
)

is called the factorization monoid of H , and
the homomorphism π : Z(H) → Hred, defined by π(u) = u for each u ∈ A(Hred)
is the factorization homomorphism of H . For a ∈ H ,

ZH(a) = Z(a) = π−1(aH×) ⊂ Z(H) is the set of factorizations of a, and

LH(a) = L(a) =
{

|z| | z ∈ Z(a)
}

⊂ N0 is the set of lengths of a.

Thus H is factorial if and only if Hred is free abelian (equivalently, |Z(a)| = 1
for all a ∈ H). The monoid H is called atomic if Z(a) 6= ∅ for all a ∈ H
(equivalently, every nonunit can be written as a finite product of irreducible
elements). For the remainder of this work, we suppose that H is atomic. Note
that, L(a) = {0} if and only if a ∈ H×, and L(a) = {1} if and only if a ∈ A(H).
We denote by

L(H) = {L(a) | a ∈ H} the system of sets of lengths of H, and by

∆(H) =
⋃

L∈L(H)

∆(L) ⊂ N the set of distances of H.

For k ∈ N, we set ρk(H) = k if H = H×, and

ρk(H) = sup{supL | L ∈ L(H), k ∈ L} ∈ N ∪ {∞}, if H 6= H×.

Then

ρ(H) = sup{ρ(L) | L ∈ L(H)} = lim
k→∞

ρk(H)

k
∈ R≥1 ∪ {∞}

is the elasticity of H . The monoid H is said to be

• half-factorial if ∆(H) = ∅. If H is not half-factorial, then min∆(H) =
gcd∆(H).

• decomposable if there exist submonoids H1, H2 with Hi 6⊂ H× for i ∈
[1, 2] such that H = H1 ×H2 (otherwise H is called indecomposable).

For a free abelian monoid F(P ), we introduce a distance function d : F(P )×
F(P ) → N0, by setting

d(a, b) = max
{
∣

∣

∣

a

gcd(a, b)

∣

∣

∣
,
∣

∣

∣

b

gcd(a, b)

∣

∣

∣

}

∈ N0 for a, b ∈ F(P ),

and we note that d(a, b) = 0 if and only if a = b. For a subset Ω ⊂ F(P ),
we define the catenary degree c(Ω) as the smallest N ∈ N0 ∪ {∞} with the
following property: for each a, b ∈ Ω, there are elements a0, . . . , ak ∈ Ω such
that a = a0, ak = b, and d(ai−1, ai) ≤ N for all i ∈ [1, k]. Note that c(Ω) = 0
if and only if |Ω| ≤ 1. For an element a ∈ H , we call cH(a) = c(a) = c(ZH(a))
the catenary degree of a, and c(H) = sup{c(a) | a ∈ H} ∈ N0 ∪ {∞} is the
catenary degree of H . The monoid H is factorial if and only if c(H) = 0, and
if H is not factorial, then 2 + sup∆(H) ≤ c(H) ([15, Theorem 1.6.3]).
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Krull monoids. A monoid H is Krull if it is completely integrally closed and
satisfies the ascending chain condition on divisorial ideals. An integral domain
R is a Krull domain if and only if its multiplicative monoid R \ {0} is a Krull
monoid, and this generalizes to Marot rings ([16]). The theory of Krull monoids
is presented in detail in [15, 25], and for a survey we refer to [12].

Much of the arithmetic of a Krull monoid can be seen in an associated
monoid of zero-sum sequences. This is a Krull monoid again which can be
studied with methods from Additive Combinatorics. To introduce the necessary
concepts, let G be an additively written abelian group, G0 ⊂ G a subset, and let
F(G0) be the free abelian monoid with basis G0. In Additive Combinatorics,
the elements of F(G0) are called sequences over G0. If S = g1 · . . . · gl ∈ F(G0),
where l ∈ N0 and g1, . . . , gl ∈ G0, then σ(S) = g1 + · · ·+ gl is called the sum
of S, and the monoid

B(G0) = {S ∈ F(G0) | σ(S) = 0} ⊂ F(G0)

is called the monoid of zero-sum sequences over G0 (these objects are also
referred to in the literature as block monoids). The embedding B(G0) →֒ F(G0)
is a divisor homomorphism and B(G0) is a Krull monoid. The monoid B(G) is
factorial if and only if |G| ≤ 2. If |G| 6= 2, then B(G) is a Krull monoid with
class group isomorphic toG and every class contains precisely one prime divisor.
For every arithmetical invariant ∗(H) defined for a monoid H , it is usual to
write ∗(G0) instead of ∗(B(G0)). In particular, we set A(G0) = A(B(G0)) and
L(G0) = L(B(G0)). Similarly, arithmetical properties of B(G0) are attributed
to G0. Thus, G0 is said to be

• (in)decomposable if B(G0) is (in)decomposable,
• (non-) half-factorial if B(G0) is (non-)half-factorial.

Proposition 2.1. Let H be a Krull monoid with class group G, and suppose

that each class contains a prime divisor. Then there is a transfer homomor-

phism β : H → B(G) such that the following hold.

1. LH(a) = LB(G)

(

β(a)
)

for each a ∈ H and L(H) = L(G).

2. If |G| ≥ 3, then c(H) = c
(

B(G)
)

.

Proof. See [15, Section 3.4]. �

The above result generalizes to transfer Krull monoids H over abelian groups
G, which also satisfy the relationship L(H) = L(G). Hence all characterization
results, such as Theorem 1.1, also apply to them ([12]).

Zero-sum theory. Let G be an additive abelian group, G0 ⊂ G a subset, and
G•

0 = G0 \ {0}. Then [G0] ⊂ G denotes the subsemigroup and 〈G0〉 ⊂ G the
subgroup generated by G0. For a sequence

S = g1 · . . . · gl =
∏

g∈G0

gvg(S) ∈ F(G0),
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we set ϕ(S) = ϕ(g1) · . . . · ϕ(gl) for any homomorphism ϕ : G → G′, and in
particular, we have −S = (−g1) · . . . · (−gl). We call

supp(S) = {g ∈ G | vg(S) > 0} ⊂ G the support of S,

vg(S) the multiplicity of g in S,

|S| = l =
∑

g∈G

vg(S) ∈ N0 the length of S, and

k(S) =
∑

g∈G

1

ord(g)
∈ Q the cross number of S.

Moreover, Σ(S) =
{

∑

i∈I gi | ∅ 6= I ⊂ [1, l]
}

is the set of subsequence sums of

S. The sequence S is said to be

• zero-sum free if 0 /∈ Σ(S),
• a zero-sum sequence if σ(S) = 0,
• a minimal zero-sum sequence if it is a nontrivial zero-sum sequence and
every proper subsequence is zero-sum free.

Both Davenport constants, namely

• the (small) Davenport constant d(G0) = sup
{

|S| |S ∈ F(G0)

is zero-sum free
}

∈ N0 ∪ {∞} and

• the (large) Davenport constant D(G0) = sup
{

|U | |U ∈ A(G0)
}

∈ N0 ∪
{∞}

are classical invariants in zero-sum theory. For n ∈ N, let Cn denote a cyclic
group with n elements. Suppose that G is finite. A tuple (ei)i∈I is called
a basis of G if all elements are nonzero and G = ⊕i∈I〈ei〉. For p ∈ P, let
rp(G) denote the p-rank of G, r(G) = max{rp(G) | p ∈ P} denote the rank

of G, and let r
∗(G) =

∑

p∈P
rp(G) be the total rank of G. If |G| > 1, then

G ∼= Cn1 ⊕· · ·⊕Cnr
, and we set d∗(G) =

∑r
i=1(ni−1), where r, n1, . . . , nr ∈ N

with 1 < n1 | · · · | nr, r = r(G), and nr = exp(G) is the exponent of G. If
|G| = 1, then r(G) = r

∗(G) = 0, exp(G) = 1, and d
∗(G) = 0. We will use the

following well-known results (see [15, Chapter 5]).

Proposition 2.2. Let G be a finite abelian group. Then 1+d
∗(G) ≤ 1+d(G) =

D(G) ≤ |G|. If G is a p-group or r(G) ≤ 2, then d(G) = d
∗(G).

We will make substantial use of the following result (see [15, Theorem 6.4.7]
and [19, Theorem 1.1]).

Proposition 2.3. Let H be a Krull monoid with finite class group G where

|G| ≥ 3 and every class contains a prime divisor. Then c(H) ∈ [3,D(G)], and
we have

1. c(H) = D(G) if and only if G is either cyclic or an elementary 2-group.
2. c(H) = D(G)− 1 if and only if G is isomorphic either to Cr−1

2 ⊕C4 for

some r ≥ 2 or to C2 ⊕ C2n for some n ≥ 2.
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Let A ∈ B(G0) and d = min{|U | | U ∈ A(G0)}. If A = BC with B,C ∈
B(G0), then

L(B) + L(C) ⊂ L(A).

If A = U1 · . . . · Uk = V1 · . . . · Vl with U1, . . . , Uk, V1, . . . , Vl ∈ A(G0) and k < l,
then

ld ≤
l

∑

ν=1

|Vν | = |A| =
k

∑

ν=1

|Uν | ≤ kD(G0)

whence |A|
D(G0)

≤ min L(A) ≤ max L(A) ≤ |A|
d .

We need the concept of relative block monoids (as introduced by Halter-
Koch in [24], and recently studied by Baeth et al. in [3]). Let G be an abelian
group. For a subgroup K ⊂ G let

BK(G) = {S ∈ F(G) | σ(S) ∈ K} ⊂ F(G),

and let DK(G) denote the smallest l ∈ N ∪ {∞} with the following property:

• Every sequence S ∈ F(G) of length |S| ≥ l has a subsequence T with
σ(T ) ∈ K.

Clearly, BK(G) ⊂ F(G) is a submonoid with

B(G) = B{0}(G) ⊂ BK(G) ⊂ BG(G) = F(G)

and D{0}(G) = D(G). The following result is well-known ([3, Theorem 2.2]).

Proposition 2.4. Let G be an abelian group and K ⊂ G a subgroup.

1. BK(G) is a Krull monoid. If |G| = 2 and K = {0}, then BK(G) = B(G)
is factorial. In all other cases the embedding BK(G) →֒ F(G) is a divisor

theory with class group isomorphic to G/K and every class contains

precisely |K| prime divisors.

2. The monoid homomorphism θ : BK(G)→B(G/K), defined by θ(g1 · . . . ·
gl) = (g1+K) · . . . · (gl+K) is a transfer homomorphism. If |G/K| ≥ 3,
then c

(

BK(G)
)

= c
(

B(G/K)
)

.

3. DK(G) = sup{|U | | U is an atom of BK(G)} = D(G/K).

3. Structural results on L(G) and first basic constructions

Let G be an abelian group. If G is infinite, then every finite subset L ⊂ N≥2

is contained in L(G) ([15, Theorem 7.4.1]). If G is finite, then sets of lengths
have a well-studied structure. In order to describe it, we recall the concept of an
AAMP. Let d ∈ N, l, M ∈ N0 and {0, d} ⊂ D ⊂ [0, d]. A subset L ⊂ Z is called
an almost arithmetical multiprogression (AAMP for short) with difference d,
period D, length l and bound M , if

(3.1) L = y + (L′ ∪ L∗ ∪ L′′) ⊂ y +D + dZ,

where minL∗ = 0, L∗ is an interval of D + dZ (this means that L∗ is finite
nonempty and L∗ = (D + dZ) ∩ [0,maxL∗]), l is maximal such that ld ∈ L∗,
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L′ ⊂ [−M,−1], L′′ ⊂ maxL∗+ [1,M ] and y ∈ Z. The set of minimal distances

∆∗(G) ⊂ ∆(G) is defined as

∆∗(G) = {min∆(G0) | G0 ⊂ G with ∆(G0) 6= ∅} ⊂ ∆(G).

Proposition 3.1 (Structural results on L(G)). Let G be a finite abelian group

with |G| ≥ 3.

1. There exists some M ∈ N0 such that every set of lengths L ∈ L(G) is

an AAMP with some difference d ∈ ∆∗(G) and bound M .

2. For every M ∈ N0 and every finite nonempty set ∆∗ ⊂ N, there is

a finite abelian group G∗ such that for every AAMP L with difference

d ∈ ∆∗ and bound M there is a yL ∈ N with

y + L ∈ L(G∗) for all y ≥ yL.

3. If A ∈ B(G) such that supp(A) ∪ {0} is a subgroup of G, then L(A) is

an arithmetical progression with difference 1.

Proof. We refer to [15, Theorems 4.4.11 and 7.6.8]) and to [34]. �

Proposition 3.2 (Structural results on ∆(G) and on ∆∗(G)).
Let G = Cn1 ⊕ · · · ⊕ Cnr

where r, n1, . . . , nr ∈ N with r = r(G), 1 <
n1 | · · · |nr, and |G| ≥ 3.

1. ∆(G) is an interval with

[

1, max{exp(G)− 2, k − 1}
]

⊂ ∆(G) ⊂
[

1,D(G)− 2
]

where k =

r(G)
∑

i=1

⌊ni

2

⌋

.

2. 1 ∈ ∆∗(G) ⊂ ∆(G), [1, r(G) − 1] ⊂ ∆∗(G), and
max∆∗(G) = max{exp(G) − 2, r(G)− 1}.

3. If G is cyclic of order |G| = n ≥ 4, then max
(

∆∗(G)\{n−2}
)

= ⌊n
2 ⌋−1.

Proof. We refer to [15, Section 6.8], to [18], and to [20]. �

Proposition 3.3 (Results on ρk(G) and on ρ(G)).
Let G be a finite abelian group with |G| ≥ 3, and let k ∈ N.

1. ρ(G) = D(G)/2 and ρ2k(G) = kD(G).
2. 1 + kD(G) ≤ ρ2k+1(G) ≤ kD(G) +D(G)/2. If G is cyclic, then equality

holds on the left side.

Proof. We refer to [15, Chapter 6.3], [11, Theorem 5.3.1], and to [14] for recent
progress. �

In the next propositions we provide examples of sets of lengths over cyclic
groups, over groups of rank two, and over groups of the form Cr−1

2 ⊕ Cn with
r, n ∈ N≥2. All examples will have difference d = max∆∗(G) and period D
with {0, d} ⊂ D ⊂ [0, d] and |D| = 3, and we write them down in a form
used in Equation (3.1) in order to highlight their periods. It will be crucial
for our approach (see Proposition 5.5) that the sets given in Proposition 3.4.2
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do not occur over cyclic groups (Proposition 3.5). It is well-known that sets
of lengths over cyclic groups and over elementary 2-groups have many features
in common, and this carries over to rank two groups and groups of the form
Cr−1

2 ⊕ Cn (see Propositions 3.4.2, 3.6.2, and 5.5). For a set L ∈ L(G) there
is a B ∈ B(G) such that L = L(B) and hence m+ L = L(0mB) ∈ L(G) for all
m ∈ N0. Therefore the interesting sets of lengths L ∈ L(G) are those which do
not stem from such a shift. These are those sets L ∈ L(G) with −m+L /∈ L(G)
for every m ∈ N.

Proposition 3.4. Let G = Cn1 ⊕ Cn2 where n1, n2 ∈ N with 2 < n1 |n2, and

let d ∈ [3, n1].

1. For each k ∈ N, we have

(2k + 2) + {0, d− 2, n2 − 2}+ {ν(n2 − 2) | ν ∈ [0, k − 1]}

∪ {(kn+ 2) + (d− 2)}

= (2k + 2) + {0, d− 2}+ {ν(n2 − 2) | ν ∈ [0, k]} ∈ L(G).

2. For each k ∈ N, we have
(

(2k + 3) + {0, n1 − 2, n2 − 2}+ {ν(n2 − 2) | ν ∈ [0, k]}
)

∪
{

(kn2 + 3) + (n1 − 2) + (n2 − 2)
}

∈ L(G).

Proof. Let (e1, e2) be a basis of G with ord(ei) = ni for i ∈ [1, 2], and let k ∈ N.
For i ∈ [1, 2], we set Ui = eni

i and Vi = (−ei)ei. Then

(−Ui)
kUk

i = (−Ui)
k−νUk−ν

i V νni

i for all ν ∈ [0, k],

and hence
L
(

(−Ui)
kUk

i

)

= 2k + {ν(ni − 2) | ν ∈ [0, k]}.

1. We set h = (d − 1)e1, W1 = (−e1)
d−1h, and W2 = e

n1−(d−1)
1 h. Then

Z(U1W1) = {U1W1, V
d−1
1 W2} and L(U1W1) = {2, d}. Therefore

L
(

(−U2)
kUk

2U1W1

)

= L
(

(−U2)
kUk

2

)

+ L
(

U1W1

)

= {2k + ν(n2 − 2) | ν ∈ [0, k]}+ {2, d}

= (2k + 2) + {ν(n2 − 2) | ν ∈ [0, k]}+ {0, d− 2}.

2. We define

W1 = en1−1
1 en2−1

2 (e1 + e2), W2 = (−e1)e
n2−1
2 (e1 + e2),

W3 = en1−1
1 (−e2)(e1 + e2), W4 = (−e1)(−e2)(e1 + e2), and

Bk = W1(−U1)(−U2)U
k
2 (−U2)

k.

Then any factorization of Bk is divisible by precisely one of W1, . . . ,W4, and
we obtain that

Bk = W1(−U1)(−U2)U
k
2 (−U2)

k = W2V
n1−1
1 (−U2)U

k
2 (−U2)

k

= W3(−U1)V
n2−1
2 Uk

2 (−U2)
k = W4V

n1−1
1 V n2−1

2 Uk
2 (−U2)

k.
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Thus it follows that

L(Bk) = {3, n1 + 1, n2 + 1, n1 + n2 − 1}+ L
(

Uk
2 (−U2)

k
)

= (2k + 3) + {ν(n2 − 2) | ν ∈ [0, k]}

∪ (2k + 3) + (n1 − 2) + {ν(n2 − 2) | ν ∈ [0, k]}

∪ (2k + 3) + (n2 − 2) + {ν(n2 − 2) | ν ∈ [0, k]}

∪ (2k + 3) + (n1 − 2) + (n2 − 2) + {ν(n2 − 2) | ν ∈ [0, k]}.

Thus max L(Bk) = (kn2 + 3) + (n1 − 2) + (n2 − 2) and

L(Bk) =
(

(2k+3)+{0, n1−2, n2−2}+{ν(n2−2) | ν ∈ [0, k]}
)

∪{maxL(Bk)}.

�

Proposition 3.5. Let G be a cyclic group of order |G| = n ≥ 4, and let

d ∈ [3, n− 1].

1. For each k ∈ N0, we have

(2k + 2) + {0, d− 2}+ {ν(n− 2) | ν ∈ [0, k]} ∈ L(G).

2. For each k ∈ N0, we set

Lk =
(

(2k + 3) + {0, d− 2, n− 2}+ {ν(n− 2) | ν ∈ [0, k]}
)

∪
{

(kn+ 3) + (d− 2) + (n− 2)
}

.

Then for each k ∈ N0 and each m ∈ N0, we have −m+ Lk /∈ L(G).

Proof. Let k ∈ N0.
1. Let g ∈ G with ord(g) = n, U = gn, V = (−g)g, W1 =

(

(d −

1)g
)

(−g)d−1, W2 =
(

(d − 1)g
)

gn−(d−1), and Bk =
(

(−U)U
)k
UW1. Then

Z(UW1) = {UW1,W2V
d−1} and L(UW1) = {2, d}. Since every factorization

of Bk is divisible either by W1 or by W2, it follows that

L(Bk) = L
(

(−U)kUk
)

+ L
(

UW1

)

= {2k + ν(n− 2) | ν ∈ [0, k]}+ {2, d}

= (2k + 2) + {ν(n− 2) | ν ∈ [0, k]}+ {0, d− 2}.

2. Note that maxLk = (kn + 3) + (d − 2) + (n − 2) = (k + 1)n + (d − 1).
Assume to the contrary that there is a Bk ∈ B(G) such that L(Bk) = Lk. Then
min L(Bk) = 2k + 3 and, by Proposition 3.3,

(k + 1)n+ (d− 1) = maxL(Bk) ≤ ρ2k+3(G) = (k + 1)n+ 1,

a contradiction. If m ∈ N0 and Bm,k ∈ B(G) such that L(Bm,k) = −m+ Lk,
then L(0mBm,k) = Lk ∈ L(G). Thus −m+ Lk /∈ L(G) for any m ∈ N0. �

Proposition 3.6. Let G = Cr−1
2 ⊕ Cn where r, n ∈ N≥2 and n is even.

1. For each k ∈ N0, we have

Lk=(2k+2)+{0, n−2, n+r−3}+{ν(n−2) | ν ∈ [0, k]} ∈ L(G) yet Lk /∈ L(Cn).
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2. For each k ∈ N0, we have
(

(2k + 3) + {0, r − 1, n− 2}+ {ν(n− 2) | ν ∈ [0, k]}
)

∪
{

(kn+ 3) + (r − 1) + (n− 2)
}

∈ L(G).

Proof. Let k ∈ N0, (e1, . . . , er−1, er) be a basis of G with ord(e1) = · · · =

ord(er−1) = 2 and ord(er) = n. We set e0 = e1 + · · ·+ er−1, Ui = e
ord(ei)
i for

each i ∈ [1, r], U0 = (e0 + er)(e0 − er), Vr = (−er)er,

V = e1 · . . . · er−1(e0 + er)(−er), and W = e1 · . . . · er−1(e0 + er)e
n−1
r .

1. Obviously, L
(

(−W )W
)

= {2, n, n+ r − 1} and

L
(

(−W )W (−Ur)
kUk

r

)

= L
(

(−W )W
)

+ L
(

(−Ur)
kUk

r

)

= {2, n, n+ r − 1}+ {2k + ν(n− 2) | ν ∈ [0, k]}

= (2k + 2) + {0, n− 2, n+ r − 3}+ {ν(n− 2) | ν ∈ [0, k]}.

Since minLk = 2k + 2, maxLk = (k + 1)n+ r − 1, and ρ2k+2(Cn) = (k + 1)n
by Proposition 3.3, r ≥ 2 implies that Lk /∈ L(Cn).

2. Let Lk denote the set in the statement. We define

Bk = U0U1 · . . . · Ur−1(−Ur)
k+1Uk+1

r

and assert that L(Bk) = Lk. Let z be a factorization of Bk. We distinguish
two cases.
CASE 1: U1 | z.

Then U0U1 · . . . · Ur−1 | z which implies that

z = U0U1 · . . . · Ur−1

(

(−Ur)Ur

)k+1−ν
V νn
r

for some ν ∈ [0, k+1] and hence |z| ∈ r+ (2k+2)+ {ν(n− 2) | ν ∈ [0, k+1]}.
CASE 2: U1 ∤ z.

Then either V | z or W | z. If V | z, then z = (−V )V V n−1
r

(

(−Ur)Ur

)k−ν
V νn
r

for some ν ∈ [0, k] and hence |z| ∈ (n + 1) + 2k + {ν(n − 2) | ν ∈ [0, k]}. If

W | z, then z = (−W )WVr

(

(−Ur)Ur

)k−ν
V νn
r for some ν ∈ [0, k] and hence

|z| ∈ 3 + 2k + {ν(n − 2) | ν ∈ [0, k]}. Putting all together the assertion
follows. �

Proposition 3.7. Let G be a finite abelian group, g ∈ G with ord(g) = n ≥ 5,

and B ∈ B(G) such that
(

(−g)g
)2n

|B. Suppose L(B) is an AAMP with period

{0, d, n− 2} for some d ∈ [1, n− 3] \ {(n− 2)/2}.

1. If S ∈ A
(

B〈g〉(G)
)

with S |B, then σ(S) ∈ {0, g,−g, (d+1)g,−(d+1)g}.

2. If S1, S2 ∈ A
(

B〈g〉(G)
)

with S1S2 |B, then σ(Si) ∈ {0, g,−g} for at least

one i ∈ [1, 2].
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Proof. By definition, there is a y ∈ Z such that L(B) ⊂ y+{0, d, n−2}+(n−2)Z.
We set U = gn and V = (−g)g.

1. Let S ∈ A
(

B〈g〉(G)
)

with S |B and set σ(S) = kg with k ∈ [0, n− 1]. If
k ∈ {0, 1, n − 1}, then we are done. Suppose that k ∈ [2, n − 2]. Since S is
an atom in B〈g〉(G), it follows that W1 = S(−g)k ∈ A(G) and W ′

1 = Sgn−k ∈
A(G). We consider a factorization z ∈ Z(B) with UW1 | z, say z = UW1y.
Then z′ = W ′

1V
ky is a factorization of B of length |z′| = |z| + k − 1. Since

L(B) is an AAMP with period {0, d, n− 2} for some d ∈ [1, n− 3] \ {(n− 2)/2}
it follows that k − 1 ∈ {d, n− 2− d}.

2. Let S1, S2 ∈ A
(

B〈e〉(G)
)

with S1S2 |B, and assume to the contrary
σ(Si) = kie with ki ∈ [2, n− 2] for each i ∈ [1, 2]. As in 1., it follows that

W1 = S1(−g)k1 , W ′
1 = S1g

n−k1 , W2 = S2(−g)k2 , and W ′
2 = S2g

n−k2

are in A(G). We consider a factorization z ∈ Z(B) with UW1UW2 | z, say
z = UW1UW2y. Then z1 = W ′

1V
k1−1UW2y ∈ Z(B) with |z1| = |z| + k1 − 1

and hence k1 − 1 ∈ {d, n − 2 − d}. Similarly, z2 = UW1W
′
2V

k2−1y ∈ Z(B),
hence k2−1 ∈ {d, n−2−d}, and furthermore it follows that k1 = k2. Now z3 =
W ′

1V
k1−1W ′

2V
k2−1y ∈ Z(B) is a factorization of length |z3| = |z|+ k1 + k2 − 2.

Thus, if k1 − 1 = d, then 2d ∈ {n − 2, n − 2 + d}, a contradiction, and if
k1 − 1 = n − 2 − d, then 2(n − 2 − d) ∈ {n − 2, n − 2 + (n − 2 − d)}, a
contradiction. �

4. A set of lengths not contained in L(Cn1
⊕ Cn2

)

The aim of this section is to prove the following proposition.

Proposition 4.1. Let G = Cn1 ⊕ Cn2 where n1, n2 ∈ N with n1 |n2 and

6 ≤ n1 < n2. Then {2, n2, n1 + n2 − 2} /∈ L(G).

Let G = Cn1 ⊕ Cn2 where n1, n2 ∈ N with n1 |n2. If 6 ≤ n1 < n2 does
not hold, then {2, n2, n1 + n2 − 2} may or may not be a set of lengths (e.g.,
if 2 = n1 ≤ n2, then {2, n2} ∈ L(G)). By Proposition 3.6, {2, n2, n1 + n2 −
2} ∈ L(Cn1−2

2 ⊕ Cn2), whence Proposition 4.1 implies that L(Cn1 ⊕ Cn2) 6=
L(Cn1−2

2 ⊕Cn2). Its proof is based on the characterization of all minimal zero-
sum sequences of maximal length over groups of rank two. This characteriza-
tion is due to Gao, Grynkiewicz, Reiher, and the present authors ([8,9,28,35]).
We repeat the formulation given in [5, Theorem 3.1] and then derive a corollary.

Lemma 4.2. Let G = Cn1⊕Cn2 where n1, n2 ∈ N with 1 < n1 |n2. A sequence

U over G of length D(G) = n1 + n2 − 1 is a minimal zero-sum sequence if and

only if it has one of the following two forms:

•

U = e
ord(ej)−1
j

ord(ei)
∏

ν=1

(xνej + ei), where

(a) {i, j} = {1, 2} and (e1, e2) is a basis of G with ord(e1) = n1 and

ord(e2) = n2,
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(b) x1, . . . , xord(ei)∈ [0, ord(ej)− 1] and x1+· · ·+xord(ei)≡1mod ord(ej).
In this case, we say that U is of type I with respect to the basis (ei, ej);

•

U = (e1 + ye2)
sn1−1en2−sn1+ǫ

2

n1−ǫ
∏

ν=1

(−xνe1 + (−xνy + 1)e2), where

(a) (e1, e2) is a basis of G with ord(e1) = n1 and ord(e2) = n2,

(b) y ∈ [0, n2 − 1], ǫ ∈ [1, n1 − 1], and s ∈ [1, n2/n1 − 1],
(c) x1, . . . , xn1−ǫ ∈ [1, n1 − 1] with x1 + · · ·+ xn1−ǫ = n1 − 1,
(d) n1ye2 6= 0, and
(e) either s = 1 or n1ye2 = n1e2.
In this case, we say that U is of type II with respect to the basis (e1, e2).

We record some observations on this result. If n1 = n2, then sequences of
type II do not exist as the condition n1ye2 6= 0 cannot hold. Assume that
n1 6= n2. There are examples of sequences that are both of type I and of type
II. However, such sequences are of a rather special form.

If a sequence U is of type I with j = 2, then it contains an element with
multiplicity n2 − 1. Thus, U is of type II only when s = 1 and ǫ = n1 − 1 and
consequently x1 = n1 − 1, that is, U = en2−1

2 (e1 + ye2)
n1−1(e1 +(−(n1 − 1)y+

1)e2) with y ∈ [0, n2 − 1] and n1ye2 6= 0. Such a sequence is indeed of type I.
If a sequence U is of type I with j = 1, then it contains an element of

order n1 with multiplicity n1 − 1. Since the order of e1 + ye2 cannot be
n1, as n1ye2 6= 0, and the order of e2 is not n1 either, this is only pos-
sible when ǫ = 1 and consequently x1 = · · · = xn1−1 = 1, that is, U =

(e1 + ye2)
sn1−1en2−sn1+1

2 (−e1 + (−y + 1)e2)
n1−1. If n1ye2 = n1e2, then in-

deed e′1 = −e1 + (−y + 1)e2 is an element of order n1, we get that (e′1, e2)
is a basis of G and U is of type I with respect to the basis (e′1, e2), indeed,

U = e′n1−1
1 ((n1 − 1)e′1 + e2)

sn1−1en2−sn1+1
2 for some s ∈ [1, n2/n1 − 1].

Corollary 4.3. Let G = Cn1 ⊕ Cn2 where n1, n2 ∈ N with n1 |n2 and 6 ≤
n1 < n2, and let U ∈ A(G) with |U | = D(G) = n1 + n2 − 1.

1. If h(U) = n2 − 1, then U is of type I with respect to a basis (e1, e2) with
ord(e1) = n1 and ord(e2) = n2, that is

U = e
ord(e2)−1
2

ord(e1)
∏

ν=1

(xνe2 + e1),

where x1, . . . , xn1 ∈ [0, n2 − 1] with x1 + · · ·+ xn1 ≡ 1 mod n2.

2. If h(U) = n2 − 2, then

U = (e1 + ye2)
n1−1en2−2

2

(

− xe1 + (−xy + 1)e2
)

(

− (n1 − 1− x)e1 + (−(n1 − 1− x)y + 1)e2
)

,

where (e1, e2) is a basis with ord(e1) = n1, ord(e2) = n2, y ∈ [0, n2 − 1],
and x ∈ [1, (n1 − 1)/2].
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3. If h(U) = n2 − 3, then

U = (e1 + ye2)
n1−1en2−3

2

3
∏

ν=1

(−xνe1 + (−xνy + 1)e2),

where (e1, e2) is a basis with ord(e1) = n1, ord(e2) = n2, y ∈ [0, n2 − 1],
and x1, x2, x3 ∈ [1, n1− 1] with x1 +x2+x3 ≡ n1− 1 mod n1 (if y 6= 0,
then x1 + x2 + x3 = n1 − 1).

4. There is at most one element g ∈ G with vg(U) ≥ n2 − 3. In particular,

if h(U) ≥ n2−3, then there is precisely one element g ∈ G with vg(U) =
h(U).

Proof. We use all notation as in Lemma 4.2.
1. If U is of type II with respect to the basis (e1, e2), then as observed above

s = 1, ǫ = n1 − 1, and

U = (e1 + ye2)
n1−1en2−1

2

(

e1 + ((−n1 + 1)y + 1)e2
)

,

which shows that U is also of type I with respect to the basis (e1, e2). If U is
of type I with respect to the basis (e2, e1), then h(U) = n2 − 1 implies that U
is also of type I with respect to the basis (e1, e2).

2. Suppose that U is of type I with respect to the basis (f2, f1). Then U
has the form

U = fn1−1
1 (x1f1 + f2)

n2−2(x2f1 + f2)(x3f1 + f2).

Thus U has the asserted form with y = 0, e1 = f1, and with e2 = x1f1 + f2.
In this case we only have two summands the congruence condition modulo n2,
and hence we obtain an equality in the integers. Suppose that U is of type
II with respect to the basis (e1, e2). Then s = 1, ǫ = n1 − 2, and thus the
assertion follows.

3. Suppose that U is of type I with respect to the basis (f1, f2). Then U
has the form

U = fn1−1
1 (x1f1 + f2)

n2−3(x2f1 + f2)(x3f1 + f2)(x4f1 + f2).

Thus U has the asserted form with y = 0, e1 = f1, and with e2 = x1f1 + f2.
Suppose that U is of type II with respect to the basis (e1, e2). Then s = 1,
ǫ = n1 − 3, and thus the assertion follows.

4. Assume to the contrary that there are two distinct elements g1, g2 ∈ G
with vg1(U) ≥ n2 − 3 and vg2 (U) ≥ n2 − 3. Then

(n2 − 3) + (n2 − 3) ≤ vg1(U) + vg2(U) ≤ |U | = n1 + n2 − 1,

which implies that n2 ≤ n1 + 5. Hence 2n1 ≤ n2 ≤ n1 + 5 and n1 ≤ 5, a
contradiction. �

We recall a technique frequently used in [13] and then provide a minor
modification of [13, Lemma 5.3].
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Lemma 4.4. Let G be a finite abelian group and let S ∈ F(G) be a zero-sum

free sequence. If
∏

g∈supp(S)(1 + vg(S)) > |G|, then there is an A ∈ A(G) with

|A| ≥ 3 such that (−A)A | (−S)S.

Proof. We observe that

|{T ∈ F(G) | T is a subsequence of S}| =
∏

g∈supp(S)

(1 + vg(S)).

Thus, if
∏

g∈supp(S)(1 + vg(S)) > |G|, then there exist distinct sequences

T ′
1, T

′
2 ∈ F(G) such that T ′

1 | S, T ′
2 | S, and σ(T ′

1) = σ(T ′
2). We set T ′

1 = TT1

and T ′
2 = TT2 where T = gcd(T ′

1, T
′
2) and T1, T2 ∈ F(G). Then σ(T1) = σ(T2)

and (−T1)T2 is a zero-sum subsequence of (−S)S. Let A ∈ A(G) with A |
(−T1)T2. Assume to the contrary that |A| = 2. Then A = (−g)g for some
g ∈ G. Since S is zero-sum free, we infer (after renumbering if necessary) that
(−g) | (−T1) and g | T2, a contradiction to gcd(T1, T2) = 1. Therefore we
obtain that |A| ≥ 3, which implies that | gcd(A, (−g)g)| ≤ 1 for each g ∈ G,
and thus (−A)A | (−S)S. �

Lemma 4.5. Let t ∈ N and α, α1, . . . , αt, α
′
1, . . . , α

′
t ∈ R with α1 ≥ · · · ≥ αt ≥

0, α′
1 ≥ · · · ≥ α′

t ≥ 0, α′
i ≤ αi for each i ∈ [1, t], and

∑t
i=1 αi ≥ α ≥

∑t
i=1 α

′
i.

Then
t
∏

ν=1

(1 + xν) is minimal

over all (x1, . . . , xt) ∈ Rt with α′
i ≤ xi ≤ αi for each i ∈ [1, t] and

∑t
i=1 xi = α,

if

xi = αi for each i ∈ [1, s] and xi = α′
i for each i ∈ [s+ 2, t],

where s ∈ [0, t] is maximal with
∑s

i=1 αi ≤ α.

Proof. Since continuous functions attain minima on compact sets, the above
function has a minimum at some point (m1, . . . ,mt) ∈ Rt. Suppose there are
i, j ∈ [1, t] such that i < j and mi < mj . Then α′

j ≤ α′
i ≤ mi < mj ≤ αj ≤

αi, and thus we can exchange mi and mj . Therefore, after renumbering if
necessary, we may suppose that m1 ≥ · · · ≥ mt. Since for x ≥ y ≥ 0 and δ > 0
we have

(1 + x+ δ)(1 + y − δ) = (1 + x)(1 + y)− δ(x− y)− δ2 < (1 + x)(1 + y),

it follows that all but at most one of the mi is equal to αi or α′
i. It remains

to show that there is an s ∈ [1, t] such that mi = αi for i ∈ [1, s] and mi = α′
i

for each i ∈ [s + 2, t]. Assume to the contrary that this is not the case. Then
there are i, j ∈ [1, t] with i < j such that mi < αi and α′

j < mj . Using again
the just mentioned inequality and that mi ≥ mj , we obtain a contradiction to
the minimum being attained at (m1, . . . ,mt). �
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Proof of Proposition 4.1. Assume to the contrary that there is an A ∈ B(G)
such that L(A) = {2, n2, n1 + n2 − 2}. Then there are U, V ∈ A(G) with
|U | ≥ |V | such that A = UV . We set

U = SU ′ and V = (−S)V ′, where U ′, V ′ ∈ F(G), and S = gcd(U,−V ).

Since 2(n1 +n2− 2) ≤ |A| = |U |+ |V | ≤ 2D(G) = 2(n1+n2− 1), there are the
following three cases:

(I) |A| = 2(n1 + n2 − 2). Then, a factorization of A of length n1 + n2 − 2
must contain only minimal zero-sum sequences of length 2 and thus
U ′ = V ′ = 1.

(II) |A| = 2(n1 + n2 − 2) + 1. Then, a factorization of A of length n1 +
n2 − 2 must contain one minimal zero-sum of length 3 and otherwise
only minimal zero-sum sequences of length 2, thus U ′ = g1g2 and V ′ =
(−g1 − g2) for some g1, g2 ∈ G.

(III) |A| = 2(n1 + n2 − 1). Then a factorization of A of length n1 + n2 −
2 must contain either one minimal zero-sum subsequence of length 4
and otherwise minimal zero-sum sequences of length 2, or two minimal
zero-sum sequences of length 3 and otherwise only minimal zero-sum
sequences of length 2. Thus, there are the following two subcases.

– U ′ = g1g2, V
′ = h1h2 where g1, g2, h1, h2 ∈ G such that g1g2h1h2 ∈

A(G).
– U ′ = g1g2(−h1−h2) and V ′ = h1h2(−g1−g2) where g1, g2, h1, h2 ∈

G.

We start with the following two assertions.

A1. Let W ∈ A(G) with |W | < |U | and W | (−S)S. Then |W | ∈ {2, n1}.
A2. Let W1,W2 ∈ A(G) such that W1(−W1)W2(−W2) |S(−S). Then

{|W1|, |W2|} 6= {n1}.

Proof of A1. Suppose |W | > 2. Then (−W )W | (−S)S and we set (−S)S =
(−W )WT (−T ) with T ∈ F(G) and obtain that

UV = (−W )WT (−T )(U ′V ′).

Let z be a factorization of U ′V ′. Then |z| ∈ [0, 2]. If T = 1, then UV has a
factorization of length 2 + |z| ∈ {2, n2, n1 + n2 − 2} which implies |z| = 0 and
hence |W | = |U |, a contradiction. Thus T 6= 1. Since T (−T ) has a factorization
of length |T | = |S| − |W |, the above decomposition gives rise to a factorization
of UV of length t where

3 ≤ t = 2 + |T |+ |z| = 2 + |S| − |W |+ |z| ∈ {n2, n1 + n2 − 2}.

We distinguish four cases.
Suppose that U ′ = V ′ = 1. Then z = 1, |z| = 0, and |S| = |U | = n1+n2−2.

Thus t = n1 + n2 − |W | ∈ {n2, n1 + n2 − 2}, and the assertion follows.
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Suppose that U ′ = g1g2 and V ′ = (−g1 − g2) for some g1, g2 ∈ S. Then
|z| = 1 and |S| = n1 +n2 − 3. Thus t = n1 +n2 − |W | ∈ {n2, n1 +n2 − 2}, and
the assertion follows.

Suppose that U ′ = g1g2, V ′ = h1h2 where g1, g2, h1, h2 ∈ G such that
g1g2h1h2 ∈ A(G). Then |z| = 1 and |S| = n1+n2−3. Thus t = n1+n2−|W | ∈
{n2, n1 + n2 − 2}, and the assertion follows.

Suppose that U ′ = g1g2(−h1−h2) and V ′ = h1h2(−g1−g2) where g1, g2, h1,
h2 ∈ G. Then |z| = 2 and |S| = n1 + n2 − 4. Thus t = n1 + n2 − |W | ∈
{n2, n1 + n2 − 2}, and the assertion follows. �

Proof of A2. Assume to the contrary that |W1| = |W2| = n1. Then there are
W5, . . . ,Wk ∈ A(G) such that

UV = W1(−W1)W2(−W2)W5 · . . . ·Wk,

where k ∈ L(UV ) = {2, n2, n1 + n2 − 2} and hence k = n2. Since

|W5 · . . . ·Wk| = |UV | − 4n1 ≤ 2(n1 + n2 − 1)− 4n1 = 2(n2 − n1 − 1),

it follows that

k − 4 ≤ maxL(W5 · . . . ·Wk) ≤ |W5 · . . . ·Wk|/2 ≤ n2 − n1 − 1 < n2 − 4,

a contradiction. �

We distinguish two cases depending on the size of h(S).

CASE 1: h(S) ≥ n2/2.
We set S = gvS′ where g ∈ G, v = h(S), and S′ ∈ F(G). Then

U1 = (−g)n2−vS′U ′ ∈ B(G), V1 = gn2−v(−S′)V ′ ∈ B(G).

Clearly, we have

(U ′)−1U1 = (−g)n2−vS′ = −
(

(V ′)−1V1

)

.

We will often use that if some W ∈ A(G) divides (U ′)−1U1, then (−W ) divides
(V ′)−1V1 and hence (−W )W | (−S)S. Now we choose factorizations x1 ∈ Z(U1)
and y1 ∈ Z(V1). Note that |x1| ≤ n2 − v and |y1| ≤ n2 − v as each minimal
zero-sum sequence in x1 and y1 contains (−g) and g, respectively. Then UV =

U1V1

(

(−g)g
)2v−n2

has a factorization of length t where

2 + (2v − n2) ≤ t = |x1|+ |y1|+ (2v − n2) ≤ 2(n2 − v) + (2v − n2) = n2.

Assume to the contrary that t = 2. Then v = n2/2 and both, U = gn2/2S′U ′

and U ′ = (−g)n2/2S′U ′, are minimal zero-sum sequences, a contradiction, as
SU ′ /∈ A

(

B〈g〉(G)
)

as its length is greater than n1 = D〈g〉(G) = D(G/〈g〉).
Thus t = n2, |x1| = |y1| = n2 − v, and hence L(U1) = L(V1) = {n2 − v}. If
W ∈ A(G) with |W | = 2 and W |U1, then W = (−g)g. Similarly, if W ′ ∈ A(G)
with |W ′| = 2 and W ′ |V1, then W = (−g)g. By definition of v, not both U1

and V1 are divisible by an atom of length 2. Now we distinguish four cases
depending on the form of U ′ and V ′, which we determined above.
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CASE 1.1: U ′ = V ′ = 1.
Then V1 = −U1, say V1 = W1 · . . . ·Wn2−v. Since none of the Wi has length

2, it follows that |W1| = · · · = |Wn2−v| = n1 and hence

2(n2 + n1 − 2) = 2|V | = 2(2v − n2) + 2|V1| = 2(2v − n2) + 2n1(n2 − v),

which implies that v = n2−1. Consequently |S| = n1−1 and S ∈ A
(

B〈g〉(G)
)

.
This implies that (use an elementary direct argument or [11, Theorem 5.1.8]),

S = (2e1 + a1e2)

n1−1
∏

ν=2

(e1 + aνe2),

where (e1, e2) is a basis of G. Let r ∈ [0, n2 − 1] such that r ≡ −a1 + a2 + a3
mod n2. Then

W1 = (2e1 + a1e2)(−e1 − a2e2)(−e1 − a3e2)e
r
2 and

W2 = (2e1 + a1e2)(−e1 − a2e2)(−e1 − a3e2)(−e2)
n2−r

are minimal zero-sum sequences dividing (−V )V . Since |W1| = 3 + r, |W2| =
3 + n2 − r, and |W1W2| = n2 + 6 > 2n1, at least one of them does not have
length n1, a contradiction.

CASE 1.2: U ′ = g1g2 and V ′ = (−g1 − g2) for some g1, g2 ∈ G.
We set

x1 = X1 · . . . ·Xn2−v and y1 = Y1 · . . . · Yn2−v,

where all Xi, Yj ∈ A(G), g1g2 |X1X2 (or even g1g2 |X1), and (−g1 − g2) |Y1.
We distinguish three subcases.

CASE 1.2.1: v = n2 − 1.
By Corollary 4.3, with all notations as introduced there, we get

U = en2−1
2

n1
∏

ν=1

(e1 + xνe2).

Thus g = e2 and U ′ |
∏n1

ν=1(e1 + xνe2), whence after renumbering if necessary
we have gi = xie1 + e2 for each i ∈ [1, 2]. Therefore we have

V =
(

− 2e1 − (x1 + x2)e2
)

(−e2)
n2−1

n1
∏

ν=3

(−e1 − xνe2) = (−g1 − g2)(−S).

Assume to the contrary that there are i, j ∈ [3, n1] distinct with xi 6= xj . If
q ∈ [1, n2 − 1] with q ≡ −(xi − xj) mod n2, then

W ′
1 = (e1+xie2)(−e1−xje2)e

q
2 and W ′

2 = (e1+xie2)(−e1−xje2)(−e2)
n2−q

are atoms dividing (−S)S, both have length greater than two but not both
have length n1, a contradiction to A1. Therefore we have x3 = · · · = xn1 .
Since x1 + · · · + xn1 ≡ 1 mod n2, it follows that x1 6= x3 or x2 6= x3, say
x2 6= x3. Therefore there is an r ∈ [1, n2 − 1] with r ≡ x2 − x3 such that

W1 =
(

− (x1 + x2)e2 − 2e1
)

(x1e2 + e1)(x3e2 + e1)e
r
2 ∈ A(G)
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and

W2 = (x2e2 + e1)(−x3e2 − e1)(−e2)
r ∈ A(G).

Thus it follows that

UV = W1W2

n1
∏

ν=4

(

(xνe2 + e1)(−xνe2 − e1)
)(

(−e2)e2
)n2−1−r

has a factorization of length

2 + (n1 − 3) + (n2 − 1− r) = n1 + n2 − 2− r ∈ {2, n2, n1 + n2 − 2},

and hence r = n1 − 2. Now we define

W ′
1 =

(

− (x1 + x2)e2 − 2e1
)

(x1e2 + e1)(x3e2 + e1)(−e2)
n2−r

and

W ′
2 = (x2e2 + e1)(−x3e2 − e1)e

n2−r
2 ∈ A(G).

Thus it follows that

UV = W ′
1W

′
2

n1
∏

ν=4

(

(xνe2 + e1)(−xνe2 − e1)
)(

(−e2)e2
)r−1

has a factorization of length

2+(n1−3)+(r−1) = n1−2+r = 2n1−4 /∈ {2, n2, n1+n2−2}, a contradiction.

CASE 1.2.2: v = n2 − 2.
Since V ′ | Y1 it follows that Y2 | (−S)S and we thus may assume that X2 =

−Y2. Furthermore, |Y2| cannot have length 2, since −g ∤ S′. Hence A1 gives
that |Y2| has length n1. It follows that |Y1| = 2 and |X1| = 3. This implies
that −g1−g2 = −g whence v−g(V ) = n2−1 and vg(U) = n2−2. By Corollary
4.3, with all notations as introduced there, we obtain that

U = (e1 + ye2)
n1−1en2−2

2

(

− xe1 + (−xy + 1)e2
)

(

− (n1 − 1− x)e1 + (−(n1 − 1− x)y + 1)e2
)

.

Since g1 + g2 = g = e2, it follows that x = 1 and that

V = (−(e1 + ye2))
n1−2(−e2)

n2−1((n1 − 2)e1 + ((n1 − 2)y + 1)e2).

Then W = (e1+ye2)
2((n1−2)e1+((n1−2)y+1)e2)(−e2)

r, where r ∈ [0, n2−1]
such that r ≡ n1y + 1 mod n2, is a minimal zero-sum sequence. Since r ≡ 1
mod n1, it follows that r ∈ [1, n2 − n1 +1]. Thus, W | (−S)S, hence |W | = n1,
and thus r = n1 − 3. We consider W ′ = (e1 + ye2)

2((n1 − 2)e1 + ((n1 − 2)y +

1)e2)e
n2−(n1−3)
2 . Again,W ′ | (−S)S. Yet |W ′| = 3+(n2−(n1−3)) = n2−n1+6,

a contradiction.

CASE 1.2.3: v ≤ n2 − 3.
Then Y2Y3 | (V

′)−1V1, and since |Y2| 6= 2 6= |Y3|, we infer that |Y2| = |Y3| =
n1. Thus (−Y2)(−Y3) | (U ′)−1U1 and Y2(−Y2)Y3(−Y3) |S(−S), a contradiction
to A2.
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CASE 1.3: U ′ = g1g2 and V ′ = h1h2, where g1, g2, h1, h2 ∈ G such that
g1g2h1h2 ∈ A(G).

We set

x1 = X1 · . . . ·Xn2−v and y1 = Y1 · . . . · Yn2−v,

where all Xi, Yj ∈ A(G), g1g2 |X1X2 (or even g1g2 |X1 ), and h1h2 |Y1Y2 (or
even h1h2 |Y1). We distinguish four cases.

CASE 1.3.1: v = n2 − 1.
By Corollary 4.3, we have

U = en2−1
2

n1
∏

ν=1

(e1 + xνe2) and − V = en2−1
2

n1
∏

ν=1

(e′1 + x′
νe2),

where (e1, e2) and (e′1, e2) are both bases with ord(e2) = n2 and xi, x
′
i ∈ [0, n2−

1] for each i ∈ [1, n1]. Since |S| = |U | − 2, it follows that, after renumbering
if necessary,

∏n1

ν=3(e1 + xνe2) | (−V ) and hence, after a further renumbering if
necessary, e1 + xie2 = e′1 + x′

ie2 for each i ∈ [3, n1]. Thus, if we write −V with
respect to the basis (e1, e2), it still has the above structure. Therefore we may
assume that e1 = e′1 and xi = x′

i for each i ∈ [3, n1]. Therefore

gi = e1 + xie2 and hi = −e1 − x′
ie2 for each i ∈ [1, 2].

Since g1 + g2 = −h1 − h2, it follows that x1 + x2 ≡ −x′
1 − x′

2 mod n2 and
hence x1 − x′

1 ≡ x′
2 − x2 mod n2. Let r ∈ [0, n2 − 1] such that r ≡ x1 − x′

1

mod n2. Then

W1=g1h1(−e2)
r, W ′

1=g1h1e
n2−r
2 , W2=g2h2e

r
2, and W ′

2=g2h2(−e2)
n2−r

are minimal zero-sum sequences which give rise to the factorizations

UV = W1W2

(

(−e2)e2
)n2−r−1

n1
∏

ν=3

(

(e1 + xνe2)(−e1 − xνe2)
)

= W ′
1W

′
2

(

(−e2)e2
)r−1

n1
∏

ν=3

(

(e1 + xνe2)(−e1 − xνe2)
)

.

These factorizations have length 2+(n2−r−1)+(n1−2) = n1+n2−2−(r−1)
and 2 + (r − 1) + (n1 − 2) = n1 + r − 1. Since not both of them can be in
{2, n2, n1 + n2 − 2}, a contradiction.

CASE 1.3.2: v = n2 − 2.
Assume to the contrary that h(U) = h(V ) = n2− 1. Since, by Corollary 4.3,

the elements g′, g′′ ∈ G with vg′(U) = n2− 1 and vg′′(V ) = n2− 1 are uniquely
determined, it follows that g = g′ = −g′′ and hence v = h(S) = n2 − 1, a
contradiction. Thus, after exchanging U and V if necessary, we may assume
that h(U) = n2− 2 and it remains to consider the two cases h(V ) = n2 − 1 and
h(V ) = n2 − 2.

CASE 1.3.2.1: h(U) = n2 − 2 and h(V ) = n2 − 1.
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By Corollary 4.3, we infer that

U = (e1 + ye2)
n1−1en2−2

2

(

− xe1 + (−xy + 1)e2
)

(

− (n1 − 1− x)e1 + (−(n1 − 1− x)y + 1)e2
)

,

−V = en2−1
2

n1
∏

ν=1

(e′1 + xνe2),

where (e1, e2) and (e′1, e2) are bases and all parameters are as in Corollary
4.3. Since |S| = |U | − 2, it follows that (e1 + ye2)

n1−3 | (−V ) and hence, after
renumbering if necessary, e′1 + x1e2 = · · · = e′1 + xn1−3e2 = e1 + ye2. Thus, if
we write −V with respect to the basis (e1, e2), it still has the above structure.
Therefore we may assume that e1 = e′1 and y = x1 = · · · = xn1−3. Thus we
obtain that

−V = en2−1
2 (e1 + ye2)

n1−3
n1
∏

ν=n1−2

(e1 + xνe2).

Note that e2 ∈ {−h1,−h2}, e2 /∈ {g1, g2}, say −h1 = e2 and −h2 = e1+ xn1e2,
and g1 + g2 = −(h1 + h2) = e1 +(xn1 +1)e2. This condition on the sum shows
that

{g1, g2} = {−xe1 + (−xy + 1)e2,−(n1 − 1− x)e1 + (−(n1 − 1− x)y + 1)e2}.

This implies that (e1 + ye2)
n1−1 | (−V ) and hence, after renumbering if neces-

sary,

−V = en2−1
2 (e1 + ye2)

n1−1(e1 + xn1e2).

Since g1 + g2 = −(n1 − 1)e1 − (y(n1 − 1)− 2)e2, it follows that the sequence

W1 = g1g2(−e1 − ye2)(−e2)
r,

where r ∈ [0, n2−1] and r ≡ −yn1+2 mod n2, is a minimal zero-sum sequence.
Since r ≡ 2 mod n1, we infer that r ∈ [2, n2 − 2] and that W1 |UV . Since
g1 + g2 = −(h1 + h2), we obtain that

W2 = h1h2(e1 + ye2)e
r
2 ∈ B(G) , L(W2) = {2} and W2 |UV.

Therefore it follows that

UV = W1W2

(

(−e2)e2
)n2−2−r(

(e1 + ye2)(−e1 − ye2)
)n1−2

,

and hence n1+n2−1−r ∈ L(UV ) = {2, n2, n1+n2−2}, a contradiction, since
r ≡ 2 mod n1.

CASE 1.3.2.2: h(U) = h(V ) = n2 − 2.
By Corollary 4.3, we infer that

U = (e1 + ye2)
n1−1en2−2

2 U ′′ and − V = (e′1 + y′e2)
n1−1en2−2

2 (−V ′′),

where (e1, e2) and (e′1, e2) are bases, U ′′, V ′′ ∈ F(G) with |U ′′| = |V ′′| = 2,
and y, y′ ∈ [0, n2 − 1]. Since |S| = |U | − 2, it follows that (e′1 + y′e2)

n1−3 |U
and hence e′1+ y′e2 = e1+ ye2. Thus, if we write −V with respect to the basis
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(e1, e2), it still has the above structure. Therefore we may assume that e1 = e′1
and y = y′. Therefore it follows that

U = (e1 + ye2)
n1−1en2−2

2 g1g2 and V = (−e1 − ye2)
n1−1(−e2)

n2−2h1h2,

and hence g1 + g2 = −(n1 − 1)e1 − (y(n1 − 1)− 2)e2. Thus

W1 = g1g2(−e1 − ye2)(−e2)
r,

where r ∈ [0, n2−1] and r ≡ −yn1+2 mod n2, is a minimal zero-sum sequence.
Since r ≡ 2 mod n1, we infer that r ∈ [2, n2 − 2] and that W1 |UV . Since
g1 + g2 = −(h1 + h2), we obtain that

W2 = h1h2(e1 + ye2)e
r
2 ∈ A(G) and W2 |UV.

Therefore it follows that

UV = W1W2

(

(−e2)e2
)n2−2−r(

(e1 + ye2)(−e1 − ye2)
)n1−2

,

and hence n1+n2−2−r ∈ L(UV ) = {2, n2, n1+n2−2}, a contradiction, since
r ≡ 2 mod n1.

CASE 1.3.3: v = n2 − 3.
Then X3 | (U ′)−1U1 and hence |X3| = n1. Since

|X1X2X3| = |U1| = |U | − v + (n2 − v) = n1 + 5,

it follows that |X1X2| = 5, and hence X1 or X2 has length two. Similarly, we
obtain that Y1 or Y2 has length two, a contradiction to the earlier mentioned
fact that not both, U1 and V1 are divisible by an atom of length two.

CASE 1.3.4: v ≤ n2 − 4.
Then Y3Y4 | (V ′)−1V1, and since |Y3| 6= 2 6= |Y4|, we infer that |Y3| = |Y4| =

n1. Thus (−Y3)(−Y4) | (U ′)−1U1 and Y3(−Y3)Y4(−Y4) |S(−S), a contradiction
to A2.

CASE 1.4: U ′ = g1g2(−h1−h2) and V ′ = h1h2(−g1−g2), where g1, g2, h1, h2 ∈
G.

We set

x1 = X1 · . . . ·Xn2−v and y1 = Y1 · . . . · Yn2−v,

where all Xi, Yj ∈ A(G), g1g2(−h1 − h2) |X1X2X3 (or even g1g2(−h1 − h2) |
X1X2 or g1g2(−h1−h2) |X1), and h1h2(−g1−g2) |Y1Y2Y3 (or even h1h2(−g1−
g2) |Y1Y2 or h1h2(−g1 − g2) |Y1). We distinguish five subcases 1.4.1–1.4.5.

CASE 1.4.1: v = n2 − 1.
By Corollary 4.3 we have

U = en2−1
2

n1
∏

ν=1

(e1 + xνe2) and − V = en2−1
2

n1
∏

ν=1

(e′1 + x′
νe2),

where (e1, e2) and (e′1, e2) are both bases with ord(e2) = n2 and xν , x
′
ν ∈

[0, n2 − 1] for each ν ∈ [1, n1]. Since |S| = |U | − 3, it follows that, after
renumbering if necessary,

∏n1

ν=4(e1 + xνe2) | (−V ) and hence, after a further
renumbering if necessary, e1 + xνe2 = e′1 + x′

νe2 for each ν ∈ [4, n1]. Thus, if
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we write −V with respect to the basis (e1, e2), it still has the above structure.
Therefore we may assume that e1 = e′1 and xν = x′

ν for each ν ∈ [4, n1].
Furthermore, we obtain that

g1 = e1 + x1e2, g2 = e1 + x2e2, −h1 − h2 = e1 + x3e2,

h1 = −e1 − x′
1e2, h2 = −e1 − x′

2e2, and − g1 − g2 = −e1 − x′
3e2,

a contradiction, since ord(e1) = n1 > 3

CASE 1.4.2: v = n2 − 2.
Arguing as at the beginning of CASE 1.3.2 we may assume h(U) = n2 − 2

and it is sufficient to consider the two subcases h(V ) = n2−1 and h(V ) = n2−2.

CASE 1.4.2.1: h(U) = n2 − 2 and h(V ) = n2 − 1.
By Corollary 4.3, we infer that −V = en2−1

2

∏n1

ν=1(e
′
1 + xνe2) and

U = (e1 + ye2)
n1−1en2−2

2

(

− xe1 + (−xy + 1)e2
)

(

− (n1 − 1− x)e1 + (−(n1 − 1− x)y + 1)e2
)

,

where (e1, e2) and (e′1, e2) are bases and all parameters are as in Corollary
4.3. Since |S| = |U | − 3, it follows that (e1 + ye2)

n1−4 | (−V ) and hence, after
renumbering if necessary, e′1 + x1e2 = · · · = e′1 + xn1−4e2 = e1 + ye2. Thus, if
we write −V with respect to the basis (e1, e2), it still has the above structure.
Therefore we may assume that e1 = e′1 and y = x5 = · · · = xn1 . Thus we
obtain that

−V = en2−1
2 (e1 + ye2)

n1−4
4
∏

ν=1

(e1 + xνe2).

Since

gcd
(

(

−xe1+(−xy+1)e2
) (

−(n1−1−x)e1+(−(n1−1−x)y+1)e2
)

, −V
)

= 1,

it follows that

g1g2(−h1 − h2) = (e1 + ye2)
(

− xe1 + (−xy + 1)e2
)

(

− (n1 − 1− x)e1 + (−(n1 − 1− x)y + 1)e2
)

.

Thus ve1+ye2(S) = n1 − 2 and hence, after renumbering if necessary,

−V = en2−1
2 (e1 + ye2)

n1−2(e1 + x1e2)(e1 + x2e2).

We observe that
(

− xe1 + (−xy + 1)e2
)

+
(

− (n1 − 1− x)e1 + (−(n1 − 1− x)y + 1)e2
)

= e1 + (−(n1 − 1)y + 2)e2,

(−e1 − x1e2) + (−e1 − x2e2)

= (n1 − 2)(e1 + ye2) + (n2 − 1)e2 = −2e1 + ((n1 − 2)y − 1)e2.

Consequently, there are r, r′ ∈ [0, n2 − 1] such that

W1 =
(

− xe1 + (−xy + 1)e2
)(

− (n1 − 1− x)e1 + (−(n1 − 1− x)y + 1)e2
)
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(−e1 − ye2)(−e2)
r ∈ A(G) and

W2 = (−e1 − x1e2)(−e1 − x2e2)(e1 + ye2)
2er

′

2 ∈ A(G)

(note that y /∈ {−x1,−x2}). Clearly we have

r ≡ 2− n1y mod n2 and r′ ≡ 1− n1y mod n2.

This implies that r ≡ 2 mod n1 and r′ = r − 1. Therefore, we obtain that

UV = W1W2

(

(e1 + ye2)(−e1 − ye2)
)n1−3(

(−e2)e2
)n2−r−1

,

and thus n1 +n2 − 2− r ∈ L(UV ) = {2, n2, n1 +n2 − 2}, a contradiction, since
r ≡ 2 mod n1.

CASE 1.4.2.2: h(U) = h(V ) = n2 − 2.
By Corollary 4.3, we infer that

U = (e1 + ye2)
n1−1en2−2

2 U ′′ and − V = (e′1 + y′e2)
n1−1en2−2

2 (−V ′′),

where (e1, e2) and (e′1, e2) are bases, U ′′, V ′′ ∈ F(G) with |U ′′| = |V ′′| = 2,
and y, y′ ∈ [0, n2 − 1]. Since |S| = |U | − 3, it follows that (e′1 + y′e2)

n1−4 |U . If
n1 > 6, it follows that e′1 + y′e2 = e1 + ye2. If n1 = 6, so n1 even, then

U ′′ =
(

− xe1 + (−xy + 1)e2
) (

− (n1 − 1− x)e1 + (−(n1 − 1− x)y + 1)e2
)

is not a square whence (e′1 + y′e2)
2 6= U ′′ and it follows again that e′1 + y′e2 =

e1+ ye2. Thus, if we write −V with respect to the basis (e1, e2), it still has the
above structure. Therefore we may assume that e1 = e′1 and y = y′. Therefore
it follows that

U = (e1 + ye2)
n1−1en2−2

2 U ′′ and V = (−e1 − ye2)
n1−1(−e2)

n2−2V ′′,

a contradiction to |S| = |U | − 3.

CASE 1.4.3: v = n2 − 3.
Note that

|X1X2X3| = |U1| = |U | − v+(n2 − v) = n1 +n2 − 1+ n2 − (2n2 − 6) = n1 +5.

Suppose that U ′ divides a product of two of the X1, X2, X3, say U ′ |X1X2.
Then X3 | (U ′)−1U1 and hence |X3| = n1. Thus |X1X2| = 5 and either X1 or
X2 has length two. Since X3 divides (U ′)−1U1, it follows that −X3 divides
V1(V

′)−1. After considering a new factorization of V1 if necessary we may
suppose without restriction that Y3 = −X3. Arguing as above we infer that
Y1 or Y2 has length two, a contradiction to the earlier mentioned fact that not
both, U1 and V1 are divisible by an atom of length two.

Thus from now on we may assume that for every X ∈ A(G) dividing U1

we have | gcd(X,U ′)| = 1, and for every Y ∈ A(G) dividing V1 we have
| gcd(Y, V ′)| = 1. Arguing as at the beginning of CASE 1.3.2 we obtain that
h(U) = n2 − 3 or h(V ) = n2 − 3, say h(U) = n2 − 3. By Corollary 4.3, we infer
that

U = (e1 + ye2)
n1−1en2−3

2

3
∏

ν=1

(−xie1 + (−xνy + 1)e2)
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with all parameters as described there. Since |S| = |U | − 3, it follows that
(e1 + ye2)

n1−4 | (−V ) and thus

V = (−e1 − ye2)
n1−4(−e2)

n2−3V ′′, where V ′′ ∈ F(G) with |V ′′| = 6.

Since

U1 = (−e2)
3(e1 + ye2)

n1−1
3
∏

ν=1

(−xνe1 + (−xνy + 1)e2) = X1X2X3,

it follows that (−e2) |Xν for each ν ∈ [1, 3]. Since (e1 + ye2)
n1−1(−e2)

3 is
zero-sum free, each of the Xν is divisible by at least one of the elements from
∏3

ν=1(−xνe1 + (−xνy + 1)e2). Thus, after renumbering if necessary, it follows
that for each ν ∈ [1, 3]

Xν = (−e2)(−xνe1 + (−xνy + 1)e2)(e1 + ye2)
xν .

This implies that x1 + x2 + x3 = n1 − 1. Since | gcd(Xν , U
′)| = 1 for each

ν ∈ [1, 3], it follows that U ′ =
∏3

ν=1(−xνe1 + (−xνy + 1)e2), and hence

V = (−e1 − ye2)
n1−1(−e2)

n2−3V ′.

Since

V1 = e32(−e1 − ye2)
n1−1V ′ = Y1Y2Y3,

it follows that e2 |Yν for each ν ∈ [1, 3]. Since (−e1 − ye2)
n1−1e32 is zero-sum

free, each of the Yν is divisible by at least one of the elements from V ′. Setting
h3 = −g1 − g2 and renumbering if necessary, it follows that for each ν ∈ [1, 3]

Yν = e2hν(−e1 − ye2)
yν ,

where y1, y2, y3 ∈ N0 with y1 + y2 + y3 = n1 − 1. For each ν ∈ [1, 3] it follows
that hν = yνe1 + (yyν − 1)e2. Therefore we obtain that

0 = g1 + g2 + h3

=
(

− x1e1 + (−x1y + 1)e2

)

+
(

− x2e1 + (−x2y + 1)e2

)

+
(

y3e1 + (yy3 − 1)e2

)

=
(

− x1 − x2 + y3

)

e1 +
(

(−x1 − x2 + y3)y + 1
)

e2,

a contradiction, as not both, −x1 − x2 + y3 and (−x1 − x2 + y3)y + 1, can be
multiples of n1.

CASE 1.4.4: v = n2 − 4.
Then X4 | (U ′)−1U1 and hence |X4| = n1. Since

|X1X2X3X4| = |U1| = |U | − v + (n2 − v) = n1 + 7,

it follows that |X1X2X3| = 7, and hence X1, X2, or X3 has length two. Simi-
larly, we obtain that Y1, Y2, or Y3 has length two, a contradiction to the earlier
mentioned fact that not both, U1 and V1 are divisible by an atom of length
two.
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CASE 1.4.5: v ≤ n2 − 5.
Then Y4Y5 | (V ′)−1V1, and since |Y4| 6= 2 6= |Y5|, we infer that |Y4| = |Y5| =

n1. Thus (−Y4)(−Y5) | (U ′)−1U1 and Y4(−Y4)Y5(−Y5) |S(−S), a contradiction
to A2.

CASE 2: h(S) < n2/2.
We distinguish two subcases, depending on the parity of n2.

CASE 2.1: n2 is odd.
Since n2 is odd, we have 3n1 ≤ n2 and n1 ≥ 7. We write S =

∏k
ν=1 a

αν
ν

with a1, . . . , ak ∈ G pairwise distinct and α1 ≥ · · · ≥ αk ≥ 1. Since |S| =
∑k

ν=1 αν ≥ n2 + n1 − 4 and α1 ≤ (n2 − 1)/2, it follows that k ≥ 3. We

define T1 = S(a1a2a3)
−1 and set T1 =

∏l
i=1 b

βi

i with b1, . . . , bl ∈ G pairwise

distinct and β1 ≥ · · · ≥ βl ≥ 1. Since β1 ≤ α1 ≤ (n2 − 1)/2,
∑k

i=1 βi =
|S| − 3 ≥ n2 + n1 − 7, and n2 − 1 < n1 + n2 − 7, it follows that l ≥ 3.
Applying Lemma 4.5 (with parameters t = l, α = |T1|, α′

1 = · · · = α′
t = 0 and

α1 = · · · = αt = (n2 − 1)/2; note that we have s+ 1 = 3) we infer that

l
∏

ν=1

(1 + βν) ≥

(

1 +
n2 − 1

2

)2
(

1 + (|T1| − (n2 − 1)
)

≥

(

1 +
n2 − 1

2

)2

(1 + 1) =
n2
2 + 2n2 + 1

2
> n1n2.

Thus Lemma 4.4 implies that there is a W1 ∈ A(G) with |W1| ≥ 3 such that
(−W1)W1 | (−T1)T1. Since |W1| < |U |, A1 implies that W1 = n1. We write
W1 = W ′

1(−W ′′
1 ) with W ′

1W
′′
1 | T1.

We define T2 = S(W ′
1W

′′
1 )

−1 and note that (−S)S = W1(−W1)T2(−T2).
Furthermore,

|T2| = |S| − n1 ≥ n2 − 4 and | supp(T2)| ≥ 3.

We set T2 =
∏m

ν=1 c
γν
ν with c1, . . . , cm ∈ G pairwise distinct and γ1 ≥ · · · ≥

γm ≥ 1. Applying Lemma 4.5 (with parameters t = m, α = |T2|, α′
1 = · · · =

α′
3 = 1, α′

4 = · · · = α′
t = 0 and α1 = · · · = αt = (n2 − 1)/2; note that we have

s+ 1 = 3) we infer that

m
∏

ν=1

(1 + γν) ≥

(

1 +
n2 − 1

2

)(

1 + |T2| −

(

n2 − 1

2
+ 1

))

(1 + 1)

=
n2 + 1

2

n2 − 7

2
2 =

1

2
(n2

2 − 6n2 − 7) > n1n2.

Thus Lemma 4.4 implies that there is a W2 ∈ A(G) with |W2| ≥ 3 such that
(−W2)W2 | (−T2)T2. Since |W2| < |U |, A1 implies that W2 = n1. Therefore
we obtain that W1(−W1)W2(−W2) | (−S)S, a contradiction to A2.

CASE 2.2: n2 is even.
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We distinguish three cases; the first one is that |U | = |V | = n1 + n2 − 2
and the two others deal with the case |U | = n1 +n2 − 2, further distinguishing
based on the description recalled in Lemma 4.2.

CASE 2.2.1: |U | = |V | = n1 + n2 − 2.
First we handle the case n2 > 12. The special case n2 = 12 will follow by

the same strategy but the details will be different.

We write S =
∏k

ν=1 a
αν
ν with α1 ≥ · · · ≥ αk. Since

∑k
ν=1 αν = n2 + n1 − 2

and α1 ≤ (n2 − 2)/2, it follows that k ≥ 3.

We define T1 =
∏l

ν=1 b
βν
ν with β1 ≥ · · · ≥ βl to be a subsequence of S

of length n2 − 2 such that β2 ≤ n2/2 − 3 and such that T−1
1 S contains at

least 4 distinct elements or 3 elements with multiplicity at least 2. Applying
Lemma 4.5 (with parameters t = l, α = |T1| = n2 − 2, α′

1 = · · · = α′
t = 0, and

α1 = (n2 − 2)/2, α2 = · · · = αt = (n2 − 6)/2; note that we have s+ 1 = 3) we
infer that

l
∏

ν=1

(1 + βν) ≥

(

1 +
n2 − 2

2

)(

1 +
n2 − 6

2

)

(1 + 2) = 3

(

n2
2

4
− n2

)

> n1n2,

where the last inequality holds because n2 > 12. Thus Lemma 4.4 implies that
there is a W1 ∈ A(G) with |W1| ≥ 3 such that (−W1)W1 | (−T1)T1. Since
|W1| < |U |, A2 implies that |W1| = n1. We write W1 = W ′

1(−W ′′
1 ) with

W ′
1W

′′
1 | T1.

We define T2 = S(W ′
1W

′′
1 )

−1 =
∏m

ν=1 c
γν
ν with γ1 ≥ · · · ≥ γm. We note that

T−1
1 S |T2, (−S)S = W1(−W1)T2(−T2), and |T2| = n2 − 2. By construction

of T−1
1 S, we obtain that either (γ3 ≥ 2) or (γ3 ≥ 1 and γ4 ≥ 1). Applying

Lemma 4.5 (with parameters t = m, α = |T2|, α1 = · · · = αt = (n2 − 2)/2),
and either (α′

1 = · · · = α′
3 = 2, α′

4 = · · · = α′
t = 0) or (α′

1 = · · · = α′
4 = 1,

α′
5 = · · · = α′

t = 0) we infer that either

m
∏

ν=1

(1 + γν) ≥
(

1 +
n2

2
− 1

)

(

1 + (|T2| −
(n2

2
− 1

)

− 2)
)

(1 + 2)

=
n2

2

(n2

2
− 2

)

3 > n1n2,

or
m
∏

ν=1

(1 + γν) ≥
(

1 +
n2

2
− 1

)(

1 + |T2| −
(n2

2
− 1

)

− 2
)

)

(1 + 1)(1 + 1)

=
n2

2

(n2

2
− 2

)

4 > n1n2.

Thus Lemma 4.4 implies that there is a W2 ∈ A(G) with |W2| ≥ 3 such that
(−W2)W2 | (−T2)T2. Since |W2| < |U |, A1 implies that |W2| = n1. Therefore
we obtain that W1(−W1)W2(−W2) | (−S)S, a contradiction to A2.

Now suppose that n2 = 12. Then n1 = 6 and |S| = 16. Again we set

S =
∏k

ν=1 a
αν
ν with α1 ≥ · · · ≥ αk. Since h(S) ≤ 5, we infer that k ≥ 4. We
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define T1 = S(a1a2a3a4)
−1 and set T1 =

∏l
ν=1 b

βν
ν with β1 ≥ · · · ≥ βl. Observe

that β1 ≤ 4. Applying Lemma 4.5 (with parameters t = l, α = |T1| = 12,
α′
1 = · · · = α′

t = 0, and α1 = · · · = αt = 4) we infer that

l
∏

ν=1

(1 + βν) ≥ (1 + 4)3 > n1n2.

Thus Lemma 4.4 implies that there is a W1 ∈ A(G) with |W1| ≥ 3 such that
(−W1)W1 | (−T1)T1. Since |W1| < |U |, A1 implies that |W1| = n1 = 6. We
write W1 = W ′

1(−W ′′
1 ) with W ′

1W
′′
1 | T1.

We define T2 = S(W ′
1W

′′
1 )

−1 =
∏m

ν=1 c
γν
ν with γ1 ≥ · · · ≥ γm. We note that

|T2| = n2 − 2 = 10 and m ≥ 4. Applying Lemma 4.5 (with parameters t = m,
α = |T2| = 10, α′

1 = · · · = α′
4 = 1, α′

5 = · · · = α′
t = 0, and α1 = · · · = αt = 5)

we infer that
m
∏

ν=1

(1 + γν) ≥ (1 + 5)(1 + 3)(1 + 1)(1 + 1) > n1n2,

and we obtain a contradiction as above.

CASE 2.2.2: U is of type I, as given in Lemma 4.2.
Then

n2

2
− 1 ≥ h(S) ≥ h(U)− 3 ≥ ord(ej)− 4,

which implies that ord(ej) = n1 so j = 1. We assert that

ve1(UV ) + v−e1(UV ) ≥ n1 + 1.

If this holds, then Lemma 5.2 in [13] implies that L(UV ) ∩ [3, n1] 6= ∅, a
contradiction. Since v−e1(V ) ≥ v−e1(−S) ≥ ve1 (U)− 3, we obtain that

ve1(UV ) + v−e1(UV ) ≥ (n1 − 1) + (n1 − 1)− 3 = 2n1 − 5 ≥ n1 + 1.

CASE 2.2.3: U is of type II, as given in Lemma 4.2.
We observe that

n2

2
− 1 ≥ h(S) ≥ h(U)− 3 = max{sn1 − 1, n2 − sn1 + ǫ} − 3.

This implies that s = n2

2n1
, hence ve2(U) = n2

2 + ǫ. Thus ǫ ∈ [1, 2] and eǫ+1
2 |U ′.

Assume to the contrary that U ′ = g1g2(−h1 − h2) = e32. Then V ′ =
(−2e2)h1h2, |V | = D(G), and

v−e2(V ) ≥ v−e2(−S) = ve2 (S) = ve2(U)− 3 ≥
n2

2
+ ǫ − 3.

Thus v−e2(V ) ≥ 1, which implies that V ∗ = (−2e2)
−1(−e2)

2V ∈ A(G), but
|V ∗| = |V |+ 1 = D(G) + 1, a contradiction.

Since ǫ = 2 implies that U ′ = e32, we obtain that ǫ = 1, ve2(U
′) = 2,

v−e2(V
′) = 0, and

v−e2(V ) = v−e2(−S) = ve2(S) = ve2 (U)− 2 =
n2

2
− 1.
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We consider

U1 = e
−ve2(U)
2 (−e2)

v−e2 (V )U and V1 = (−e2)
−v−e2 (V )e

ve2 (U)
2 V.

Neither U1 nor V1 is divisible by an atom of length 2, and since |V1| = |V |+2 >
D(G), V1 /∈ A(G). Therefore we obtain that

2 < maxL(U1) + maxL(V1) ≤
|U1|

3
+

|V1|

3
=

|UV |

3
≤

2n1 + 2n2 − 2

3
< n2,

a contradiction. �

5. Characterization of the system L(Cn1
⊕ Cn2

)

In this section we prove Theorem 1.1. We start with two propositions which
gather various special cases which have been settled before. The first groups,
for which the Characterization Problem has been solved, are cyclic groups and
elementary 2-groups ([10]). We use the characterization of groups Cn⊕Cn ([5]
and [32]). The core of this section is Proposition 5.5.

Proposition 5.1. Let G be an abelian group such that L(G) = L(Cn1 ⊕ Cn2)
where n1, n2 ∈ N with n1 |n2 and n1 + n2 > 4. Then G is finite, and we have

1. d(G) = d(Cn1 ⊕ Cn2) = n1 + n2 − 2 and exp(G) = n2;
2. If n1 = n2, then G ∼= Cn1 ⊕ Cn2 .

Proof. 1. The finiteness of G and the equality of the Davenport constants
follows from [15, Proposition 7.3.1]. The statement on the exponents follows
from [36, Proposition 5.2] or from [5, Proposition 5.4].

2. This follows from [32, Theorem 4.1]. �

Proposition 5.2. Let n1, n2 ∈ N with n1 |n2 and n1 + n2 > 4, and let G =
H ⊕ Cn2 where H ⊂ G is a subgroup with exp(H) |n2. Suppose that L(G) =
L(Cn1 ⊕ Cn2).

1. d(H) ≤ n1 − 1, and if d∗(H) = n1 − 1, then d(G) = d
∗(G).

2. If d(G) = d
∗(G), then G ∼= Cn1 ⊕ Cn2 .

3. If n1 ∈ [1, 5], then G ∼= Cn1 ⊕ Cn2 .

Proof. 1. Proposition 5.1 implies that

n1 + n2 − 2 = d(G) ≥ d(H) + (n2 − 1) and hence d(H) ≤ n1 − 1.

If d∗(H) = n1 − 1, then

n1 + n2 − 2 = d(G) ≥ d
∗(G) = d

∗(H) + (n2 − 1) = n1 + n2 − 2.

2. This follows from [5, Theorem 5.6].
3. By 2, it is sufficient to show that d(G) = d

∗(G). Suppose that H is cyclic.
Then r(G) ≤ 2 and Proposition 2.2 implies that d(G) = d

∗(G). Suppose that H
is noncyclic. Then 2 ≤ r(H) ≤ d(H) ≤ n1 − 1, and hence n1 ∈ [3, 5]. Suppose
that n1 = 3. Then d(H) = 2 and H ∼= C2 ⊕C2. Thus d

∗(H) = 2 = n1 − 1, and
the assertion follows from 1. Suppose that n1 = 4. Then d(H) ∈ [2, 3] and H
is isomorphic to C2 ⊕ C2 or to C3

2 . If H ∼= C3
2 , then d

∗(H) = n1 − 1, and the
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assertion follows from 1. Suppose that H ∼= C2 ⊕ C2 and set n2 = 2m. If m is
even, then d(G) = d

∗(G) by [11, Corollary 4.2.13]. If m is odd, then d(G) =
d
∗(G) by [36, Theorem 3.13]. Suppose that n1 = 5. Then d(H) ∈ [2, 4] andH is

isomorphic to one of the following groups: C2
2 , C

3
2 , C

4
2 , C2⊕C4, C3⊕C3. If H is

isomorphic to one of the groups in {C4
2 , C2⊕C4, C3⊕C3}, then d

∗(H) = n1−1.
If H ∼= C2 ⊕ C2, then d(G) = d

∗(G) as outlined above. Suppose that H ∼= C3
2 .

Then G = C3
2⊕Cn2 and we set n2 = 2m. If m is even, then again [11, Corollary

4.2.13] implies that d(G) = d
∗(G). If m is odd, then this follows from [1]. �

We need the following characterization of decomposable subsets.

Lemma 5.3. Let G be a finite abelian group and G0 ⊂ G a subset.

1. The following statements are equivalent.

(a) G0 is decomposable.

(b) There are nonempty subsets G1, G2 ⊂ G0 such that G0 = G1 ⊎ G2

and B(G0) = B(G1)×B(G2).
(c) There are nonempty subsets G1, G2 ⊂ G0 such that G0 = G1 ⊎ G2

and A(G0) = A(G1) ⊎A(G2).
(d) There are nonempty subsets G1, G2 ⊂ G0 such that 〈G0〉 = 〈G1〉 ⊕

〈G2〉.
2. There exist a uniquely determined t ∈ N and (up to order) uniquely

determined nonempty indecomposable sets G1, . . . , Gt ⊂ G0 such that

G0 =

t
⊎

ν=1

Gν and 〈G0〉 =
t

⊕

ν=1

〈Gν〉.

Proof. For 1, see [30, Lemma 3.7] and [2, Lemma 3.2], and for 2, we refer to
[30, Proposition 3.10]. �

We need the invariant

m(G) = max{min∆(G0) | G0 ⊂ G is a non-half-factorial subset with k(A) ≥ 1

for all A ∈ A(G0)}.

Lemma 5.4. Let G be a finite abelian group, G0 ⊂ G a subset with min∆(G0)

= max∆∗(G), and let G0 =
⋃t

ν=1 Gν be the decomposition into indecompos-

able components. If exp(G) > m(G) + 2, then each component Gν is either

half-factorial or equal to {−gν, gν} for some gν ∈ G with ord(gν) = exp(G).
Moreover, at least one of the components Gν is not half-factorial.

Proof. See [31, Corollary 5.2]. �

Proposition 5.5. Let n1, n2 ∈ N with n1 |n2 and 6 ≤ n1 < n2, and let G be

a finite abelian group with exp(G) = n2 and d(G) = n1 + n2 − 2. Suppose that

L(G) contains, for all k ∈ N, the sets

Lk =
{

(kn2 + 3) + (n1 − 2) + (n2 − 2)
}
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∪
(

(2k + 3) + {0, n1 − 2, n2 − 2}+ {ν(n2 − 2) | ν ∈ [0, k]}
)

.

Then G is isomorphic to one of the following groups:

Cn1 ⊕ Cn2 , Cs
2 ⊕ Cn2 with s ∈ {n1 − 2, n1 − 1}, Cn1−4

2 ⊕ C4 ⊕ Cn2 , or

C2 ⊕ Cn1−1 ⊕ Cn2 with 2 | (n1 − 1) |n2.

Proof. We set G = H ⊕ Cn2 where H ⊂ G is a subgroup with exp(H) |n2.
If H is cyclic, then d(G) = |H | + n2 − 2 whence |H | = n1 and G ∼= Cn1 ⊕
Cn2 . For the remainder of the proof we suppose that H is non-cyclic. Since
d(H) + n2 − 1 ≤ d(G) = n1 + n2 − 2, it follows that d(H) ≤ n1 − 1, and hence
exp(H) ≤ D(H) ≤ n1. Since exp(H) = n1 would imply that H is cyclic of
order n1, it follows that exp(H) ≤ n1 − 1. We have r(H) ≤ d(H) ≤ n1 − 1. If

r(H) = n1 − 1, then H ∼= Cn1−1
2 and hence G ∼= Cn1−1

2 ⊕ Cn2 . Thus for the
remainder of the proof we suppose that r(H) ∈ [2, n1 − 2].

We start with the following two assertions.

A1. exp(G) > m(G) + 2.
A2. Let G0 ⊂ G with min∆(G0) = n2 − 2. Then G0 = {g,−g} ∪G1 where

ord(g) = n2, G1 ⊂ G is half-factorial, and 〈G1〉 ∩ 〈g〉 = {0}.

Proof of A1. Assume to the contrary that n2 ≤ m(G)+2. By [32, Proposition
3.6], we have

m(G) ≤ max{r∗(G)− 1,K(G)− 1}, where K(G) is the cross number of G.

So r
∗(G) ≤ log2 |G|, K(G) ≤ 1

2 + log |G| ≤ 1
2 + log2 |G| by [15, Theorem 5.5.5]

whence m(G) ≤ − 1
2 + log2 |G|. If H = Cm1 ⊕ · · · ⊕ Cms

, with s = r(H) ≥ 2,
m1, . . . ,ms ∈ N, and 1 < m1 | · · · |ms |n2, then

log2 |H | =
s

∑

i=1

log2 mi ≤
s

∑

i=1

(mi − 1) = d
∗(H) ≤ d(H).

Therefore we obtain that

n2 − 2 ≤ m(G) ≤ −
1

2
+ log2 |G| = −

1

2
+ log2 n2 + log2 |H |

≤ −
1

2
+ log2 n2 + d(H)

≤ −
3

2
+ log2 n2 + n1 ≤ −

3

2
+ log2 n2 +

n2

2

and hence
n2

2
≤ log2 n2 +

1

2
, a contradiction to n2 ≥ 7. �

Proof of A2. By Lemma 5.3, G0 has a decomposition into indecomposable sub-
sets, say G0 = ∪t

ν=1Gν . Proposition 3.2.2 implies that max∆∗(G) = n2 − 2 =
min∆(G0). By A1 and Lemma 5.4, the sets Gν have the following struc-
ture: there is an s ∈ [1, t] such that Gν = {−gν, gν} with ord(gν) = n2 for
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each ν ∈ [1, s], and Gs+1, . . . , Gt are half-factorial. Now it follows that s = 1
because, by Lemma 5.3.2,

〈G0〉 =
t

⊕

ν=1

〈Gν〉 ⊂ G = H ⊕ Cn2 and exp(H) < n2.
�

By assumption, for every k ∈ N the sets

Lk =
{

(kn2 + 3) + (n1 − 2) + (n2 − 2)
}

∪
(

(2k + 3) + {0, n1 − 2, n2 − 2}+ {ν(n2 − 2) | ν ∈ [0, k]}
)

∈ L(G).

Clearly, these sets are AAMPs with difference n2−2 and period {0, n1−2, n2−2}
and, for all sufficiently large k ∈ N, Lk is not an AAMP with some difference d
which is not a multiple of n2−2 ([15, Theorem 4.2.7]). Let k ∈ N be sufficiently
large. In the course of the proof we will meet certain bounds and will assume
that k exceeds all of them.

We choose Bk ∈ B(G) such that L(Bk) = Lk. By [15, Proposition 9.4.9],
there exists an M1 ∈ N (not depending on k) such that Bk = VkSk, where Vk

and Sk are zero-sum sequences with the following properties:

min∆
(

supp(Vk)
)

= n2 − 2 and |Sk| ≤ M1,

(indeed in the terminology of [15, Proposition 9.4.9], we have Vk ∈ V [[V ]] and
Sk ∈ B(G)[U , V ] for a given full almost generating set U ; but we do not need
these additional properties). By A2, we obtain that

supp(Vk) = {−gk, gk} ∪ Ak,

where ord(gk) = n2 and Ak ⊂ G is half-factorial with 〈gk〉 ∩ 〈Ak〉 = {0}.
Since for each two elements g, g′ ∈ G with ord(g) = ord(g′) = n2, there is a

group automorphism ϕ : G → G with ϕ(g) = g′, and since L(B) = L
(

ϕ(B)
)

for
all B ∈ B(G), we may assume without restriction that there is a g ∈ G such
that gk = g for every k ∈ N. Applying a further automorphism if necessary we
may suppose that G = H ⊕ 〈g〉. We will require an additional assertion:

A3. There exist a constant M2 ∈ N (not depending on k), Ck ∈ B(supp(Vk)),
and Dk ∈ B(G•) with the following properties:

• Bk = CkDk with |Dk| ≤ M2,
• For any factorization z = W1 · . . . ·Wγ ∈ Z(Bk) with W1, . . . ,Wγ ∈
A(G) there are I, J such that [1, γ] = I ⊎ J ,

∏

i∈I Wi = Ck and
∏

j∈J Wj = Dk.

Proof of A3. Let z = X1 · . . . ·XαY1 · . . . · Yβ be a factorization of Bk, where
X1, . . ., Xα, Y1, . . . , Yβ are atoms, and Y1, . . . , Yβ are precisely those atoms
which contain some element from Sk. Then β ≤ |Sk| ≤ M1 and X1 · . . . ·Xα

divides Vk (in B(G)). For any element a ∈ supp(Vk) let ma(z) ∈ N0 be maximal
such that aord(a)ma(z) divides X1 · . . . ·Xα. Since β ≤ M1, there is a constant
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M3(z) ∈ N (not depending on k) such that va(Bk) − ord(a)ma(z) ≤ M3(z).
Now we define, for each a ∈ supp(Vk),

ma = min{ma(z) | z ∈ Z(Bk)}, Ck =
∏

a∈supp(Vk)

aord(a)ma , and Dk = C−1
k Bk.

Since there is a constant M3 ∈ N (not depending on k) such that va(Bk) −
ord(a)ma ≤ M3 for all a ∈ supp(Vk), there is a constantM2 ∈ N (not depending
on k) such that |Dk| = |Bk| − |Ck| ≤ M2. �

Since Ck ∈ B(supp(Vk)), L(Ck) is an arithmetical progression with difference
n2 − 2 and by A3 we have

L(Bk) = L(Ck) + L(Dk) =
⋃

m∈L(Dk)

(

m+ L(Ck)
)

.

Assume to the contrary that L(Dk) = {m}. Then −m+ Lk = −m+ L(Bk) =
L(Ck) ∈ L(Cn2 ), a contradiction to Proposition 3.5.2. This implies that
|L(Dk)| > 1. Since supp(Ck) ⊂ supp(Vk) ⊂ {−g, g} ∪ Ak, where Ak is
half-factorial and 〈g〉 ∩ 〈Ak〉 = {0}, it follows that Ck = C′

kC
′′
k , with C′

k ∈
B({g,−g}), C′′

k ∈ B(Ak), L(Ck) = L(C′
k) + L(C′′

k ), and |L(C′′
k )| = 1. Thus, if

L(C′′
k ) = {mk}, then

L(Ck) = L(C′
k0

mk) and L(Bk) = L(CkDk) = L(C′
k0

mkDk).

Therefore, after changing notation if necessary, we suppose from now on that

Bk = CkDk, L(Bk) = L(Ck) + L(Dk),

where supp(Ck) ⊂ {0, g,−g} and Dk ∈ B(G) with |Dk| ≤ M2.
We continue with the following assertion, whose proof follows from Propo-

sition 3.7.

A4. • Let T ∈ F(G) with T |Dk. If T ∈ A(B〈g〉(G)), then σ(T ) ∈
{0, g,−g, (n1 − 1)g,−(n1 − 1)g}.

• If z = T1 · . . . · Tγ ∈ ZB〈g〉(G)(Dk) with T1, . . . , Tγ ∈ A(B〈g〉(G)),

then at most one of the elements σ(T1), . . . , σ(Tγ) does not lie in
{0, g,−g}.

We shall use the following notation. If z = T1 · . . . · Tγ is as above, then we set

σ(z) = σ(T1) · . . . · σ(Tγ) ∈ F(〈g〉).

We continue with an additional assertion.

A5.

LB(G)(Bk) =
⋃

z∈ZB〈g〉(G)(Dk)

LB(〈g〉)

(

Ckσ(z)
)

, where the union on

the right hand side consists of at least two distinct sets which are not
contained in each other.
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Proof of A5. Assume to the contrary that all sets of lengths on the right
hand side are contained in one fixed set L1 = LB(〈g〉)

(

Ckσ(z
∗)
)

with z∗ ∈
ZB〈g〉(G)(Dk). Then L(Bk) ∈ L(Cn2 ), a contradiction to Proposition 3.5. To
show that the set on the left side is in the union on the right side, we choose a
factorization z∗ = W1 · . . . ·Wγ ∈ ZB(G)(Bk), where W1, . . . ,Wγ ∈ A(G). For
each ν ∈ [1, γ], we set Wν = XνYν where Xν , Yν ∈ F(G) such that

Ck = X1 · . . . ·Xγ and Dk = Y1 · . . . · Yγ .

For each ν ∈ [1, γ], we have σ(Wν) = 0 ∈ G, hence σ(Yν) = −σ(Xν) ∈ 〈g〉,
Yν ∈ B〈g〉(G), and we choose a factorization zν ∈ ZB〈g〉(G)(Yν). Then

z = z1 · . . . · zγ ∈ ZB〈g〉(G)(Dk).

Then, for each ν ∈ [1, γ], W ′
ν = Xνσ(zν) ∈ A(〈g〉) and W ′

1 · . . . ·W
′
γ = Ckσ(z) ∈

F(〈g〉). Therefore z′ = W ′
1 · . . . ·W

′
γ ∈ ZB(〈g〉)

(

Ckσ(z)
)

and

|z∗| = γ = |z′| ∈ LB(〈g〉)

(

Ckσ(z)
)

.

Conversely, let z = S1 · . . . · Sβ ∈ ZB〈g〉(G)(Dk) and z′ = W ′
1 · . . . · W ′

γ ∈

ZB(〈g〉)

(

Ckσ(z)
)

be given, where S1, . . . , Sβ∈A(B〈g〉(G)), W ′
1, . . . ,W

′
γ ∈A(〈g〉),

and we write

σ(z) = s1 · . . . · sβ , where s1 = σ(S1), . . . , sβ = σ(Sβ).

Note that s1, . . . , sβ satisfy the properties given in A4.

Claim: We can find a renumbering such that

W ′
ν = sνTν with Tν ∈ F({−g, g}) for all ν ∈ [1, β].

Proof of the Claim. We proceed in three steps.
First, we may assume without restriction that s1 = · · · = sδ = 0 and

0 /∈ {sδ+1, . . . , sβ}. Then at least δ of the W ′
1, . . . ,W

′
γ are equal to 0. After

renumbering if necessary, we may suppose that W ′
1 = · · · = W ′

δ = 0, and we
set T1 = · · · = Tδ = 1 ∈ F({−g, g}).

Second, suppose there is a ν ∈ [δ + 1, β] such that sν ∈ {(n1 − 1)g, n2 −
(n1 − 1)g}, say ν = δ + 1. Then sδ+1 divides (in F(G)) one element of
{W ′

δ+1, . . . ,W
′
γ}, say W ′

δ+1. Then we set Tδ+1 = s−1
δ+1W

′
δ+1 ∈ F({−g, g}).

To handle the last step, we observe that, by A4, all remaining sν lie in
{−g, g}. Since β ≤ |Dk| ≤ M2 and the multiplicities of g and of −g in Ck are
growing with k, and k is sufficiently large, for each ν ≤ β the product

∏γ
λ=ν W

′
λ

is divisible by g and by −g. Thus we can pick a suitable W ′
ν and the assertion

follows. �

Now we define

W ′′
ν =

{

SνTν for each ν ∈ [1, β],

W ′
ν for each ν ∈ [β + 1, γ].

Then, by construction, we have Bk = W ′′
1 · . . . ·W ′′

γ . Let ν ∈ [1, β]. Since W ′
ν ∈

A(〈g〉), it follows that T ′
ν ∈ F(〈g〉) is zero-sum free. Since Sν ∈ A(B〈g〉(G)), it
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follows that W ′′
ν ∈ A(G). Thus W ′′

1 , . . . ,W
′′
β ∈ A(G), and we have constructed

a factorization of Bk of length γ = |z′|. �

A6. Let

z = T1 · . . . · Tγ ∈ ZB〈g〉(G)(Dk) and z′ = T ′
1 · . . . · T

′
γ′ ∈ ZB〈g〉(G)(Dk),

where γ, γ′ ∈ N, T1, . . . , Tγ , T
′
1, . . . , T

′
γ′ ∈ A(B〈g〉(G)), and z 6= z′. Fur-

thermore, let

F = Ckσ(T1) · . . . · σ(Tγ) ∈ B(〈g〉) and F ′ = Ckσ(T
′
1) · . . . · σ(T

′
γ′) ∈ B(〈g〉),

and define

F = SF1 and F ′ = SF2, where S, F1, F2 ∈ F(〈g〉) and S = gcdF(〈g〉)(F, F
′).

Then one of the following statements holds:
(i) d(z, z′) ≥ n1 − 1.

(ii) {F1, F2} = {
(

(−g)g
)v
, 0v} with v ∈ N.

Proof of A6. Note that gcd(F1, F2) = 1, σ(F1) = σ(F2) = −σ(S), Ck |S, and

(∗) dZ(B〈g〉(G))(z, z
′) ≥ dF(〈g〉)(F, F

′) = dF(〈g〉)(F1, F2) = max{|F1|, |F2|}.

Since |F | = |Ck|+ |z|, |F1|+ |S| = |Ck|+ |z|, |F2|+ |S| = |Ck|+ |z′|, we obtain
|F2| − |F1| = |z′| − |z| and

(∗∗) d(z, z′) ≥
∣

∣|z| − |z′|
∣

∣+ 2 =
∣

∣|F1| − |F2|
∣

∣+ 2.

Using (∗) and (∗∗) we observe that max{|F1|, |F2|} ≥ n1 − 1 as well as
∣

∣|F1| −

|F2|
∣

∣ ≥ n1−3 implies (i). To simplify the discussion, we suppose that max{|F1|,
|F2|} ≤ n1 − 1 (of course we could also assume that max{|F1|, |F2|} ≤ n1 − 2;
the slightly weaker assumption allows us to give a more complete description
of (F1, F2) without additional efforts). Based on the structural description of
σ(z) and σ(z′) given in A4 we distinguish four cases.

CASE 1: σ(z)σ(z′) ∈ F({0, g,−g}).
We set

S =
(

gn2
)k1

(

(−g)n2
)k2

(

(−g)g
)k3

(

δg
)k4

0k5 ,

where δ ∈ {−1, 1}, k1, . . . , k5 ∈ N0 and k3 < n2. We distinguish two cases.

CASE 1.1: F1 = 1 or F2 = 1, say F2 = 1.

Then σ(S) = 0, σ(F1) = 0, and k4 = 0. We have F1 = 0v0(F1)
(

(−g)g
)vg(F1)

and |F1| > 0. Then

min L(SF2) = min L(S) = k1 + k2 + k3 + k5 and

min L(SF1) = k1 + k2 + k3 + k5 + v0(F1) + vg(F1)− ǫ(n2 − 2),

where

ǫ =

{

0 k3 + vg(F1) < n2,

1 otherwise.
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Thus v0(F1) + vg(F1) is congruent to min L(SF1)−min L(SF2) modulo n2 − 2
and hence congruent either to 0 or to n1− 2 or to (n2− 2)− (n1− 2) = n2−n1

modulo n2 − 2. Since 0 < |F1| = v0(F1) + 2vg(F1) ≤ n1 − 1, it follows that
(v0(F1), vg(F1)) ∈ {(n1 − 2, 0), (n1 − 3, 1)}, hence |F1| − |F2| = |F1| ≥ n1 − 2,
and thus (i) holds.

CASE 1.2: F1 6= 1 and F2 6= 1.
By symmetry we may suppose that 0 ∤ F1. Then g |F1 or (−g) |F1, and by

symmetry we may suppose that g |F1. We distinguish two cases.

CASE 1.2.1: (−g) |F1.
Then F2 = 0v0(F2), and hence σ(S) = 0 = σ(F1). This implies k4 = 0 and

F1 =
(

(−g)g
)vg(F1)

. Then

min L(SF2) = k1 + k2 + k3 + v0(F2) + k5 and

min L(SF1) = k1 + k2 + k3 + vg(F1)− ǫ(n2 − 2) + k5,

where ǫ ∈ {0, 1}. Thus v0(F2)−vg(F1) is congruent to min L(SF1)−min L(SF2)
modulo n2−2 and hence congruent either to 0 or to n1−2 or to n2−n1 modulo
n2 − 2. This implies that either

v0(F2) = vg(F1) or v0(F2) = vg(F1)+n1− 2 or vg(F1) = v0(F2)+n1− 2.

If v0(F2) = vg(F1) + n1 − 2, then vg(F1) ≥ 1 implies that |F2| ≥ v0(F2) ≥
n1 − 1, and hence (i) holds.

If vg(F1) = v0(F2) + n1 − 2, then v0(F2) ≥ 1 implies that vg(F1) ≥ n1 − 1
whence |F1| = 2vg(F1) ≥ 2(n1 − 1) > n1, a contradiction. If v0(F2) = vg(F1),
then (ii) holds.

CASE 1.2.2: (−g) ∤ F1.
Then F1 = gvg(F1) and F2 = (−g)v−g(F2)0v0(F2). Note that vg(F1) + v−g(F2)

> 0, vg(F1), v−g(F2) ∈ [0, n1 − 1], and n2 ≥ 2n1. However, σ(F1) = σ(F2)
implies that vg(F1) + v−g(F2) ≡ 0 mod n2, a contradiction.

CASE 2: σ(z)σ(z′) ∈
(

(n1 − 1)g
)

F({0,−g, g}) or σ(z)σ(z′) ∈
(

− (n1 −

1)g
)

F({0,−g, g}).
After applying the group automorphism which sends each h ∈ G onto its neg-

ative, if necessary, we may suppose that σ(z)σ(z′) ∈
(

(n1 − 1)g
)

F({0,−g, g}).
After exchanging z and z′, if necessary, we may suppose that σ(z) ∈ F({0,−g,
g}) and σ(z′) ∈

(

(n1 − 1)g
)

F({0,−g, g}). We set

S =
(

gn2
)k1

(

(−g)n2
)k2

(

(−g)g
)k3

(

δg
)k4

0k5 ,

where δ ∈ {−1, 1}, k1, . . . , k5 ∈ N0 and k3 < n2. If σ(F1) = 0, then σ(F2) = 0
and hence |F2| ≥ n1, a contradiction. Thus it follows that σ(F1) 6= 0, and
hence there are the following three cases.

CASE 2.1: g |F1 and (−g) |F1.
It follows that F2 =

(

(n1 − 1)g
)

0v0(F2) and hence σ(F2) = (n1 − 1)g =

σ(F1) =
(

vg(F1)− v−g(F1)
)

g, a contradiction to |F1| ≤ n1 − 1.
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CASE 2.2: g |F1 and (−g) ∤ F1.
Then F1 = gvg(F1)0v0(F1), F2 =

(

(n1 − 1)g
)

(−g)n1−1−vg(F1)0v0(F2), and we
can write SF1 and SF2 as follows:

SF1 =
(

gn2
)l1(

(−g)n2
)l2(

(−g)g
)l3

0l4+v0(F1),

SF2 =
(

gn2
)l1(

(−g)n2
)l2(

(−g)g
)l3−vg(F1)

0l4+v0(F2)
(

(

(n1 − 1)g
)

(−g)n1−1
)

,

where l1, . . . , l4 ∈ N0, l4 = v0(S), and l3 ≥ vg(F1) (the last inequality holds
because k is large enough). Therefore

m1 = l1 + l2 + l3 + l4 + v0(F1) ∈ Lk and

m2 = l1 + l2 + l3 − vg(F1) + l4 + v0(F2) + 1 ∈ Lk

which implies that m1 − m2 = v0(F1) + vg(F1) − v0(F2) − 1 is congruent to
either 0 or to n1 − 2 or to n2 − n1 modulo n2 − 2. We distinguish three cases.

CASE 2.2.1: v0(F1) + vg(F1) ≡ v0(F2) + 1 mod n2 − 2.
Since |F1| < n1 and |F2| < n1, it follows that v0(F1) + vg(F1) = v0(F2) + 1.

Since

|F2| = v0(F2) + 1 +
(

n1 − 1− vg(F1)
)

= v0(F1) + vg(F1) +
(

n1 − 1− vg(F1)
)

= n1 − 1 + v0(F1),

it follows that |F2| ≥ n1 − 1 and hence (i) holds.

CASE 2.2.2: v0(F1) + vg(F1) ≡ v0(F2) + n1 − 1 mod n2 − 2.
Similarly, we obtain that v0(F1)+vg(F1) = v0(F2)+n1−1. Thus |F1| ≥ n1−1

and hence (i) holds.

CASE 2.2.3: v0(F1) + vg(F1) ≡ n2 − n1 + v0(F2) + 1 mod n2 − 2.
We obtain that v0(F1) + vg(F1) = −(n1 − 3) + v0(F2) which implies that

v0(F2) > n1 − 3. Therefore

|F2| = v0(F2) + 1 + n1 − 1− vg(F1)

= n1 + v0(F1) + (n1 − 3)− v0(F2) + v0(F2)

= 2n1 − 3 + v0(F1) ≥ n1,

a contradiction.

CASE 2.3: g ∤ F1 and (−g) |F1.
Then

F1 = (−g)v−g(F1)0v0(F1) and F2 =
(

(n1 − 1)g
)

gn2−(n1−1)−v−g(F1)0v0(F2).

We can write SF1 and SF2 as

SF1 =
(

gn2
)l1(

(−g)n2
)l2(

(−g)g
)l3

0l4+v0(F1) and

SF2 =
(

gn2
)l1(

(−g)n2
)l2(

(−g)g
)l3−v−g(F1)

0l4+v0(F2)
(

gn2−(n1−1)
(

(n1 − 1)g
)

)

,
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where l1, . . . , l4 ∈ N0, l4 = v0(S), and l3 ≥ v−g(F1) (the last inequality holds
because k is large enough). Therefore

m1 = l1 + l2 + l3 + l4 + v0(F1) ∈ Lk and

m2 = l1 + l2 + l3 − v−g(F1) + l4 + v0(F2) + 1 ∈ Lk

which implies that m1 −m2 = v0(F1) + v−g(F1) − v0(F2) − 1 is congruent to
either 0 or to n1 − 2 or to n2 − n1 modulo n2 − 2. We distinguish three cases.

CASE 2.3.1: v0(F1) + v−g(F1) ≡ v0(F2) + 1 mod n2 − 2.
We obtain that v0(F1) + v−g(F1) = v0(F2) + 1 and hence

|F2| = 1 + v0(F2) + n2 − (n1 − 1)− v−g(F1)

= v0(F1) + n2 − (n1 − 1) ≥ n1, a contradiction.

CASE 2.3.2: v0(F1) + v−g(F1) ≡ v0(F2) + n1 − 1 mod n2 − 2.
We obtain that v0(F1)+ v−g(F1) = v0(F2)+n1− 1. Therefore |F1| ≥ n1 − 1

and hence (i) holds.

CASE 2.3.3: v0(F1) + v−g(F1) ≡ n2 − n1 + v0(F2) + 1 mod n2 − 2.
We obtain that v0(F1) + v−g(F1) = v0(F2)− n1 + 3 and therefore

|F2| = v0(F2) + 1 + n2 − (n1 − 1)− v−g(F1)

= v0(F1) + n1 − 3 + 1 + n2 − (n1 − 1)

= v0(F1)− 1 + n2 ≥ n1,

a contradiction.

CASE 3: σ(z)σ(z′) ∈
(

(n1 − 1)g
)2
F({0,−g, g}) or σ(z)σ(z′) ∈

(

− (n1 −

1)g
)2
F({0,−g, g}).

After applying the group automorphism which sends each h ∈ G onto its neg-

ative, if necessary, we may suppose that σ(z)σ(z′) ∈
(

(n1−1)g
)2
F({0,−g, g}),

whence σ(z) ∈
(

(n1 − 1)g
)

F({0,−g, g}) and σ(z′) ∈
(

(n1 − 1)g
)

F({0,−g, g}).
We set

S =
(

(n1 − 1)g
)(

gn2
)k1

(

(−g)n2
)k2

(

(−g)g
)k3

(

δg
)k4

0k5 ,

where δ ∈ {−1, 1}, k1, . . . , k5 ∈ N0 and k3 < n2. We distinguish two cases.

CASE 3.1: F1 = 1 or F2 = 1, say F2 = 1.
Since F2 = 1, it follows that L(S) ⊂ Lk. Let l1 ∈ L(F1). Then l1+L(S) ⊂ Lk

and hence l1 is congruent either to 0 or to n1 − 2 or to n2 − n1 modulo n2 − 2.
Since l1 > 0, it follows that |F1| − |F2| = |F1| ≥ n1 − 2, and hence (i) holds.

CASE 3.2: F1 6= 1 and F2 6= 1.
We have 0 ∤ F1 or 0 ∤ F2, say 0 ∤ F1. Then g |F1 or (−g) |F1. We distinguish

three cases.

CASE 3.2.1: g |F1 and (−g) ∤ F1.
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Then F1 = gvg(F1) and F2 = (−g)v−g(F2)0v0(F2). Since σ(F1) = σ(F2), it
follows that vg(F1) + v−g(F2) ≡ 0 mod n2, and hence

max{vg(F1), v−g(F2)} ≥
n2

2
≥ n1,

a contradiction.

CASE 3.2.2: g |F1 and (−g) |F1.
Then (−g)g |F1 whence F2 = 0v0(F2). This implies that 0 = σ(F2) = σ(F1)

and thus F1 =
(

(−g)g
)vg(F1)

. As above it follows that vg(F1) − v0(F2) is
congruent either to 0 or to n1 − 2 or to n2 − n1 modulo n2 − 2.

If vg(F1) = v0(F2), then (ii) holds.
If vg(F1) = v0(F2) + n1 − 2, then |F1| = 2vg(F1) ≥ 2n1 − 4 ≥ n1, a contra-

diction.
Suppose that vg(F1) − v0(F2) ≡ n2 − n1 mod n2 − 2. Then |F1| < n1

implies that vg(F1) − v0(F2) = −n1 + 2. Since vg(F1) ≥ 1, it follows that
|F2| ≥ v0(F2) ≥ n1 − 1, and hence (i) holds.

CASE 3.2.3: g ∤ F1 and (−g) |F1.
Then F1 = (−g)v−g(F1) and F2 = gvg(F2)0v0(F2). Since σ(F1) = σ(F2), it

follows that v−g(F1) + vg(F2) ≡ 0 mod n2, and hence

max{v−g(F1), vg(F2)} ≥
n2

2
≥ n1,

a contradiction.

CASE 4: σ(z)σ(z′) ∈
(

(n1 − 1)g
)(

− (n1 − 1)g
)

F({0,−g, g}).

After exchanging z and z′ if necessary we may suppose that σ(z) ∈
(

(n1 −

1)g
)

F({0,−g, g}) and σ(z′) ∈
(

− (n1 − 1)g
)

F({0,−g, g}). We set

SF1 =
(

gn2)l1
(

(−g)n2
)l2(

(g(−g)
)l3(

(n1 − 1)g(−g)n1−1
)

0l4+v0(F1)

and

SF2 =
(

gn2)l
′
1
(

(−g)n2
)l′2

(

(g(−g)
)l′3

(

(

− (n1 − 1)g
)

gn1−1
)

0l4+v0(F2),

where l1, l
′
1, . . . , l3, l

′
3, l4 ∈ N0. Since

F1 =
(

(n1 − 1)g
)

gvg(F1)(−g)v−g(F1)0v0(F1) and

F2 =
(

− (n1 − 1)g
)

gvg(F2)(−g)v−g(F2)0v0(F2),

it follows that
(

n1−1+vg(F1)−v−g(F1)
)

g = σ(F1) = σ(F2) =
(

−n1+1+vg(F2)−v−g(F2)
)

g

and hence

2n1 − 2 ≡
(

vg(F2)− vg(F1)
)

+
(

v−g(F1)− v−g(F2)
)

mod n2.

We distinguish four cases.

CASE 4.1: g |F1 and (−g) |F1.
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Then vg(F2) = 0 = v−g(F2) and hence

2n1 − 2 ≡ −vg(F1) + v−g(F1) mod n2.

If n2 ≥ 3n1, then |F1| ≥ n1, a contradiction. Thus n2 = 2n1, v−g(F1) + 2 ≡
vg(F1) mod n2, and so v−g(F1) + 2 = vg(F1). Therefore we obtain that

SF2 =
(

gn2)l1
(

(−g)n2
)l2

(

(g(−g)
)l3−vg(F1)−(n1−1)

(−g)n2

(

(

− (n1 − 1)g
)

gn1−1
)

0l4+v0(F2).

Therefore

m1 = l1 + l2 + l3 + l4 + 1+ v0(F1) ∈ Lk and

m2 = l1 + l2 + l3 + l4 − (vg(F1) + n1 − 1) + 2 + v0(F2) ∈ Lk

which implies that m1−m2 = v0(F1)− v0(F2)+ vg(F1)+n1−2 is congruent to
either 0 or to n1 − 2 or to n2 − n1 modulo n2 − 2. We distinguish three cases.

CASE 4.1.1: v0(F1) + vg(F1) + n1 ≡ v0(F2) + 2 mod n2 − 2.
The left and the right hand side cannot be equal, since vg(F1) ≥ 2 would

imply that |F2| ≥ v0(F2) ≥ n1. Therefore we have

v0(F1) + vg(F1) + n1 = v0(F2) + n2

and thus |F1| ≥ v0(F1) + vg(F1) ≥ n2 − n1 = n1, a contradiction.

CASE 4.1.2: v0(F1) + vg(F1) + n1 ≡ v0(F2) + n1 mod n2 − 2.
This implies that v0(F1) + vg(F1) = v0(F2) whence v0(F2) ≥ vg(F1) ≥

2, v0(F1) = 0, and vg(F1) = v0(F2). Therefore we obtain F1 =
(

(n1 −

1)g
)

gv0(F2)(−g)v0(F2)−2 and F2 =
(

− (n1 − 1)g
)

0v0(F2). Now consider a factor-

ization z1 of SF1 which is divisible by the atom X =
(

(n1 − 1)g
)

gn1+1 and by
(

g(−g)
)v0(F2)−2

. It gives rise to a factorization

z2 = z1X
−1

(

g(−g)
)−(v0(F2)−2)

(

(

− (n1 − 1)g
)

gn1−1
)

0v0(F2) ∈ Z(SF2)

of length |z2| = |z1| − (1 + v0(F2) − 2) + 1 + v0(F2) = |z1| + 2. Since n1 ≥ 5
and min∆(Lk) = min{n1 − 2, n2 −n1} ≥ 3, Lk cannot contain the lengths |z1|
and |z1|+ 2 = |z2|, a contradiction.

CASE 4.1.3: v0(F1) + vg(F1) ≡ v0(F2) + 2 mod n2 − 2.
This implies that v0(F1) + vg(F1) = v0(F2) + 2. Since vg(F1) ≥ 3, it follows

that v0(F2) > 0 and hence v0(F1) = 0. Therefore we obtain F1 =
(

(n1 −

1)g
)

gv0(F2)+2(−g)v0(F2) and F2 =
(

− (n1 − 1)g
)

0v0(F2). Now consider a factor-

ization z2 of SF2 which is divisible by the atom X =
(

− (n1 − 1)g
)

(−g)n1+1.
It gives rise to a factorization

z1 = z2X
−10−v0(F2)

(

(n1 − 1)g(−g)n1−1
)(

(−g)g
)v0(F2)+2

of length |z1| = |z2|+ 2, a contradiction.

CASE 4.2: g |F1 and (−g) ∤ F1.
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Then vg(F2) = 0 = v−g(F1), hence

n2 − 2n1 + 2 ≡ vg(F1) + v−g(F2) mod n2

and thus n2 − 2n1 + 2 = vg(F1) + v−g(F2). Furthermore, we obtain that

max{vg(F1), v−g(F2)} ≥
n2 − 2n1 + 2

2
,

and hence n2 ∈ {2n1, 3n2}. We obtain that

SF2 =
(

gn2)l1
(

(−g)n2
)l2

(

(g(−g)
)l3−vg(F1)−(n1−1)

(−g)n2

(

(

− (n1 − 1)g
)

gn1−1
)

0l4+v0(F2).

Therefore m1 = l1 + l2 + l3 + l4 + 1 + v0(F1) ∈ Lk and

m2 = l1 + l2 + l3 + l4 − (vg(F1) + n1 − 1) + 2 + v0(F2) ∈ Lk

which implies that m1−m2 = v0(F1)− v0(F2)+ vg(F1)+n1−2 is congruent to
either 0 or to n1 − 2 or to n2 − n1 modulo n2 − 2. We distinguish three cases.

CASE 4.2.1: v0(F1) + vg(F1) + n1 ≡ v0(F2) + 2 mod n2 − 2.
The left and the right hand side cannot be equal, because otherwise we

would have |F2| ≥ v0(F2) + 1 ≥ n1. Therefore we have

v0(F1) + vg(F1) + n1 = v0(F2) + n2

and thus |F1| ≥ v0(F1) + vg(F1) ≥ n2 − n1 ≥ n1, a contradiction.

CASE 4.2.2: v0(F1) + vg(F1) + n1 ≡ v0(F2) + n1 mod n2 − 2.
This implies that v0(F1) + vg(F1) = v0(F2) whence v0(F2) ≥ vg(F1) ≥ 1,

v0(F1) = 0, and vg(F1) = v0(F2). Therefore we obtain F1 =
(

(n1 − 1)g
)

gv0(F2)

and F2 =
(

− (n1 − 1)g
)

(−g)n2−2n1+2−v0(F2)0v0(F2) and hence |F2| = 1 + n2 −
2n1 + 2 which implies that n2 = 2n1 and |F2| = 3. Thus v0(F2) ∈ {1, 2}.

Suppose that v0(F2) = 1. Then vg(F1) = 1, F1 =
(

(n1 − 1)g
)

g, and F2 =
(

− (n1 − 1)g
)

(−g)0. Consider a factorization z1 of SF1 divisible by X =
(

(n1 − 1)g
)

gn1+1. This gives rise to a factorization

z2 = z1X
−10

(

(−g)g
)

(

(

− (n1 − 1)g
)

gn1−1
)

of length |z2| = |z1|+ 2, a contradiction.
Suppose that v0(F2) = 2. Then vg(F1) = 2, F1 =

(

(n1 − 1)g
)

g2, and

F2 =
(

− (n1 − 1)g
)

02. Consider a factorization z1 of SF1 divisible by X =
(

(n1 − 1)g
)

gn1+1. This gives rise to a factorization

z2 = z1X
−102

(

(

− (n1 − 1)g
)

gn1−1
)

of length |z2| = |z1|+ 2, a contradiction.

CASE 4.2.3: v0(F1) + vg(F1) ≡ v0(F2) + n2 − 2n1 + 2 mod n2 − 2.
Suppose that n2 = 3n1. Then v0(F1)+vg(F1) ≡ v0(F2)+n1+2 mod n2−2,

and equality cannot hold because |F1| ≥ v0(F1) + vg(F1). This implies that
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(n2−2)+v0(F1)+vg(F1) = v0(F2)+n1+2 and hence 2n1−4+v0(F1)+vg(F1) =
v0(F2), a contradiction to v0(F2) ≤ |F2| ≤ n1 − 1.

This implies that n2 = 2n1 and v0(F1) + vg(F1) = v0(F2) + 2. Since 2 =
vg(F1) + v−g(F2), we infer that vg(F1) ∈ [1, 2].

Suppose vg(F1) = 2. Then v−g(F2) = 0 and v0(F1) = v0(F2) = 0, and we

have F1 =
(

(n1 − 1)g
)

g2 and F2 =
(

− (n1 − 1)g
)

. Consider a factorization z2

of SF2 containing the atom X =
(

− (n1 − 1)g
)

(−g)n1+1. This gives rise to a
factorization

z1 = z2X
−1

(

(

(n1 − 1)g
)

(−g)n1−1
)

(

(−g)g
)2

of length |z1| = |z2|+ 2, a contradiction.
Suppose vg(F1) = 1. Then v−g(F2) = 1, v0(F1) = 1, v0(F2) = 0, and we

have F1 =
(

(n1−1)g
)

g0 and F2 =
(

− (n1−1)g
)

(−g). Consider a factorization

z2 of SF2 containing the atom X =
(

− (n1 − 1)g
)

(−g)n1+1. This gives rise to
a factorization

z1 = z2X
−1

(

(

(n1 − 1)g
)

(−g)n1−1
)

(

(−g)g
)

0

of length |z1| = |z2|+ 2, a contradiction.

CASE 4.3: g ∤ F1 and (−g) |F1.
Then vg(F1) = 0 and v−g(F2) = 0 and hence

2n1 − 2 ≡ vg(F2) + v−g(F1) mod n2.

This implies that vg(F2) = v−g(F1) = n1−1 and hence |F1| ≥ n1 and |F2| ≥ n1,
a contradiction.

CASE 4.4: g ∤ F1 and (−g) ∤ F1.
Then vg(F1) = 0 = v−g(F1) and hence

2n1 − 2 ≡ vg(F2)− v−g(F2) mod n2.

If n2 ≥ 3n1, then |F2| ≥ n1, a contradiction. Thus n2 = 2n1 and hence
vg(F2) = v−g(F2)− 2. Therefore we obtain that

SF2 =
(

gn2)l1
(

(−g)n2
)l2

(

(g(−g)
)l3+vg(F2)−(n1−1)

(−g)n2
(

((−n1 + 1)g)gn1−1
)

0l4+v0(F2).

Therefore

m1 = l1 + l2 + l3 + l4 + 1 + v0(F1) ∈ Lk

and

m2 = l1 + l2 + l3 + l4 + vg(F2)− (n1 − 1) + 2 + v0(F2) ∈ Lk

which implies that m1−m2 = v0(F1)−v0(F2)−vg(F2)+(n1−1)−1 is congruent
to either 0 or to n1−2 or to n2−n1 modulo n2−2. We distinguish three cases.

CASE 4.4.1: v0(F2) + vg(F2) ≡ v0(F1) + n1 − 2 mod n2 − 2.
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This implies that v0(F2) + vg(F2) = v0(F1) + n1 − 2, and hence |F2| ≥
v−g(F2) ≥ vg(F2) + 2 ≥ n1, a contradiction.

CASE 4.4.2: v0(F2) + vg(F2) + (n1 − 2) ≡ v0(F1) + n1 − 2 mod n2 − 2.
This implies that v0(F2)+ vg(F2) = v0(F1) and hence v0(F2) = 0. Therefore

we obtain that F1=
(

(n1−1)g
)

0v0(F1) and F2=
(

−(n1−1)g
)

gv0(F1)(−g)v0(F1)+2.

Now consider a factorization z1 of SF1 containing the atom X =
(

(n1 −

1)g
)

gn1+1. This gives rise to a factorization

z2 = z1X
−1

(

(

− (n1 − 1)g
)

gn1−1
)

(

(−g)g
)v0(F1)+2

0−v0(F1)

of length |z2| = |z1|+ 2, a contradiction.

CASE 4.4.3: v0(F2) + vg(F2) + (n2 − n1) ≡ v0(F1) + n1 − 2 mod n2 − 2.
Since n2 = 2n1, the congruence simplifies to v0(F2) + vg(F2) + 2 ≡ v0(F1)

mod n2 − 2 which implies that v0(F2) + vg(F2) + 2 = v0(F1). Thus v0(F2) = 0,

F1 =
(

(n1 − 1)g
)

0v0(F1), and F2 =
(

− (n1 − 1)g
)

gv0(F1)−2(−g)v0(F1). Now con-

sider a factorization z1 of SF1 containing the atom X =
(

(n1 − 1)g
)

(−g)n1−1.
This gives rise to a factorization

z2 = z1X
−1

(

(

− (n1 − 1)g
)

(−g)n1+1
)

(

(−g)g
)v0(F1)−2

0−v0(F1)

of length |z2| = |z1| − 2, a contradiction. �

We state the final assertion

A7. n1 − 1 ≤ cB〈g〉(G)(Dk).

Proof of A7. By A5, we have

LB(G)(Bk) =
⋃

z∈ZB〈g〉(G)(Dk)

LB(〈g〉)

(

Ckσ(z)
)

,

and the union on the right hand side consists of at least two distinct sets which
are not contained in each other. Assume to the contrary that cB〈g〉(G)(Dk) ≤

n1 − 2 and choose a factorization z0 ∈ ZB〈g〉(G)(Dk).

We assert that for each z ∈ ZB〈g〉(G)(Dk) there exists an l(z) ∈ Z such

that σ(z) = σ(z0)0
−l(z)

(

(−g)g
)l(z)

. Let z ∈ ZB〈g〉(G)(Dk) be given, and let

z0, . . . , zk = z be an (n1 − 2)-chain of factorizations concatenating z0 and z.
Since d(zi−1, zi) < n1− 1, it follows that the pair (zi−1, zi) is of type (ii) in A6

for each i ∈ [1, k]. Therefore σ(zi) = σ(zi−1)0
−li

(

(−g)g
)li

for some li ∈ Z and
each i ∈ [1, k], and hence the assertion follows with l(z) = l1 + · · ·+ lk.

We choose a factorization z∗ ∈ ZB〈g〉(G)(Dk) such that

l(z∗) = max{l(z) | z ∈ ZB〈g〉(G)(Dk)},

and assert that

LB(〈g〉)(Ckσ(z)) ⊂ LB(〈g〉)(Ckσ(z
∗)) for each z ∈ ZB〈g〉(G)(Dk).
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Let z ∈ ZB〈g〉(G)(Dk) be given. Then

σ(z∗) = σ(z)0−(l(z∗)−l(z))
(

(−g)g
)l(z∗)−l(z)

.

If

y ∈ ZB(〈g〉)(Ckσ(z)), then y0−(l(z∗)−l(z))
(

(−g)g
)l(z∗)−l(z)

∈ ZB(〈g〉)(Ckσ(z
∗))

is a factorization of length |y|, and hence LB(〈g〉)(Ckσ(z)) ⊂ LB(〈g〉)(Ckσ(z
∗)).

Therefore we obtain that

LB(G)(Bk) =
⋃

z∈ZB〈g〉(G)(Dk)

LB(〈g〉)

(

Ckσ(z)
)

= L(Ckσ(z
∗)), a contradiction to the fact

that the union consists of least two distinct sets not contained in each other. �

Using A7 and Proposition 2.4.2, we infer that

n1 − 1 ≤ cB〈g〉(G)(Dk) ≤ c(B〈g〉(G)) = c(B(G/〈g〉)) ≤ D(G/〈g〉) = D(H) ≤ n1.

We distinguish two cases.

CASE 1: c(B(G/〈g〉)) = n1.
Then D(G/〈g〉) = n1, Proposition 2.3.1 implies that G/〈g〉 is either cyclic of

order n1 or an elementary 2-group of rank n1 − 1. Since H ∼= G/〈g〉, it follows
that G ∼= Cn1 ⊕ Cn2 or G ∼= Cn1−1

2 ⊕ Cn2 .

CASE 2: c(B(G/〈g〉)) = n1 − 1.
We distinguish two cases.

CASE 2.1: D(G/〈g〉) = n1.
Then Proposition 2.3.2 implies that G/〈g〉 is isomorphic either to C2⊕Cn1−1,

where n1 − 1 is even, or to Cn1−4
2 ⊕ C4. Since H ∼= G/〈g〉, it follows that

G ∼= C2 ⊕ Cn1−1 ⊕ Cn2 or G ∼= Cn1−4
2 ⊕ C4 ⊕ Cn2 .

CASE 2.2: D(G/〈g〉) = n1 − 1.
Then c(B(G/〈g〉)) = D(G/〈g〉) = n1 − 1, and (again by Proposition 2.3.1)

G/〈g〉 is cyclic of order n1−1 or an elementary 2-group of rank n1−2. If G/〈g〉
is cyclic, then G has rank two and d(G) = d(G/〈g〉)+d(〈g〉) = n1−2+n2−1 <
n1 +n2− 2 = d(G), a contradiction. Thus G/〈g〉 is an elementary 2-group and
G ∼= Cn1−2

2 ⊕ Cn2 . �

Proof of Theorem 1.1. Let G be an abelian group such that L(G) = L(Cn1 ⊕
Cn2) where n1, n2 ∈ N with n1 |n2 and n1 + n2 > 4.

Proposition 5.1 implies thatG is finite with exp(G) = n2 and d(G) = d(Cn1⊕
Cn2) = n1 + n2 − 2. If n1 = n2, then G ∼= Cn1 ⊕ Cn2 by Proposition 5.1.2.
Thus we may suppose that n1 < n2, and we set G = H ⊕ Cn2 where H ⊂ G
is a subgroup with exp(H) |n2. If n1 ∈ [1, 5], then the assertion follows from
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Proposition 5.2.3, and hence we suppose that n1 ≥ 6. Since L(G) = L(Cn1 ⊕
Cn2), Proposition 3.4 implies that, for each k ∈ N, the sets

Lk =
{

(kn2 + 3) + (n1 − 2) + (n2 − 2)
}

∪
(

(2k + 3) + {0, n1 − 2, n2 − 2}+ {ν(n2 − 2) | ν ∈ [0, k]}
)

are in L(G). Therefore Proposition 5.5 implies that G is isomorphic to one of
the following groups

Cn1 ⊕ Cn2 , Cs
2 ⊕ Cn2 with s ∈ {n1 − 2, n1 − 1},

Cn1−4
2 ⊕ C4 ⊕ Cn2 , C2 ⊕ Cn1−1 ⊕ Cn2 with 2 | (n1 − 1) |n2.

Since

d
∗(Cn1−4

2 ⊕ C4 ⊕ Cn2) = n1 + n2 − 2 = d(G) and

d
∗(C2 ⊕ Cn1−1 ⊕ Cn2) = n1 + n2 − 2 = d(G),

Proposition 5.2.2 implies that G cannot be isomorphic to any of these two
groups. Proposition 3.6 (with k = 0, n = n2, and r = n1 − 1) implies that

{2, n2, n1 + n2 − 2} ∈ L(Cn1−2
2 ⊕ Cn2) ⊂ L(Cn1−1

2 ⊕ Cn2).

However, Proposition 4.1 shows that {2, n2, n1+n2−2} /∈ L(Cn1⊕Cn2) = L(G)
whence G ∼= Cn1 ⊕ Cn2 . �
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