
October 14, 2014 11:38 WSPC/S0219-4988 171-JAA 1550016

Journal of Algebra and Its Applications
Vol. 14, No. 2 (2015) 1550016 (60 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0219498815500164

A semigroup-theoretical view of direct-sum decompositions
and associated combinatorial problems

N. R. Baeth

Department of Mathematics and Computer Science
University of Central Missouri
Warrensburg, MO 64093, USA

baeth@ucmo.edu

A. Geroldinger

Institut für Mathematik und Wissenschaftliches Rechnen

Karl-Franzens-Universität Graz
Heinrichstrasse 36
8010 Graz, Austria

alfred.geroldinger@uni-graz.at

D. J. Grynkiewicz

Department of Mathematical Sciences
University of Memphis

Memphis, TN 38152, USA

diambri@hotmail.com

D. Smertnig

Institut für Mathematik und Wissenschaftliches Rechnen
Karl-Franzens-Universität Graz

Heinrichstrasse 36
8010 Graz, Austria

daniel.smertnig@uni-graz.at

Received 29 April 2014
Accepted 5 May 2014

Published 16 October 2014

Communicated by A. Facchini

Let R be a ring and let C be a small class of right R-modules which is closed under finite
direct sums, direct summands, and isomorphisms. Let V(C) denote a set of representa-
tives of isomorphism classes in C and, for any module M in C, let [M ] denote the unique
element in V(C) isomorphic to M . Then V(C) is a reduced commutative semigroup with
operation defined by [M ] + [N ] = [M ⊕ N ], and this semigroup carries all information
about direct-sum decompositions of modules in C. This semigroup-theoretical point of
view has been prevalent in the theory of direct-sum decompositions since it was shown
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that if EndR(M) is semilocal for all M ∈ C, then V(C) is a Krull monoid. Suppose
that the monoid V(C) is Krull with a finitely generated class group (for example, when

C is the class of finitely generated torsion-free modules and R is a one-dimensional
reduced Noetherian local ring). In this case, we study the arithmetic of V(C) using new
methods from zero-sum theory. Furthermore, based on module-theoretic work of Lam,
Levy, Robson, and others we study the algebraic and arithmetic structure of the monoid
V(C) for certain classes of modules over Prüfer rings and hereditary Noetherian prime
rings.

Keywords: Krull monoids; zero-sum sequences; direct-sum decompositions; indecompos-
able modules; Prüfer rings; hereditary Noetherian prime rings.

Mathematics Subject Classification: 11B30, 11P70, 13F05, 16D70, 16E60, 16P40, 20M13

1. Introduction

The overarching goal of this manuscript is to study direct-sum decompositions
of modules into indecomposable modules. Let R be a ring and let M be a right
R-module. If M is Noetherian or Artinian, then a well-known and simple argu-
ment shows that M is a finite direct sum of indecomposable right R-modules. If,
for example, M is either both Noetherian and Artinian or if R is a principal ideal
domain and M is finitely generated, then such a direct-sum decomposition is unique;
that is, the Krull–Remak–Schmidt–Azumaya property (KRSA) holds. For a simple
example of non-unique direct-sum decomposition, consider a commutative domain
R with distinct non-principal maximal ideals m1 and m2. Then the epimorphism
m1 ⊕ m2 → R, defined by (m1, m2) �→ m1 + m2, gives rise to a split short exact
sequence 0 → m1 ∩ m2 → m1 ⊕ m2 → R → 0. Hence m1 ⊕ m2

∼= R ⊕ (m1 ∩ m2).
Since m1 and m2 are not principal and since R is a domain, each mi is indecom-
posable as an R-module and is not isomorphic to R. Since the pioneering work
of Krull, Remak, Schmidt, and Azumaya, direct-sum decompositions have been a
classic topic in module theory. We refer the reader to [10] for an overview of the cele-
brated Krull–Remak–Schmidt–Azumaya Theorem and related topics in direct-sum
theory.

The work of Facchini, Herbera, and Wiegand [14, 15, 17] introduced a new
semigroup-theoretical approach to the study of direct-sum decompositions of mod-
ules when KRSA fails to hold. Let C be a small class of right R-modules which
is closed under finite direct sums, direct summands, and isomorphisms. Let V(C)
denote a set of representatives of isomorphism classes in C and, for any module M

in C, let [M ] denote the unique element in V(C) isomorphic to M . Then V(C) is a
reduced commutative semigroup with operation defined by [M ] + [N ] = [M ⊕ N ],
and this semigroup carries all information about direct-sum decompositions of mod-
ules in C. In particular, [M ] is an irreducible element of the semigroup V(C) if and
only if M is an indecomposable module, and direct-sum decompositions of modules
in C are unique (equivalently, KRSA holds) if and only if V(C) is a free abelian
monoid. Suppose C is a class of R-modules as just defined and that KRSA fails.
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Then arithmetical questions of the following type naturally arise.

Q1: If M1 ⊕ M2 = N1 ⊕ · · · ⊕ Nl, where M1, M2, N1, . . . , Nl are indecomposable
modules, does there exist an upper bound for l depending only on C?

Q2: Suppose an indecomposable module M is isomorphic to a direct summand
of N1 ⊕ · · · ⊕ Nl for indecomposable modules N1, . . . , Nl. Is there an upper
bound (depending only on C) for the number |I| such that M is already iso-
morphic to a direct summand of

⊕
i∈I Ni?

We propose the following overall strategy to tackle these and other arithmetical
questions regarding non-unique direct-sum decompositions of modules.

A. Use module-theoretic results in order to describe the algebraic structure of the
semigroup V(C).

B. Use factorization theory to study the arithmetic structure of the semi-
group V(C).

This strategy is relatively new, but has been used in several recent papers for
certain classes of modules (see, for example [2]). In this paper, we pursue this
strategy for three classes of finitely generated modules: torsion-free modules over
one-dimensional reduced commutative Noetherian local rings (Sec. 4), modules over
Prüfer rings (Sec. 5), and right-modules over hereditary Noetherian prime (HNP)
rings (Sec. 6).

First, suppose that C is a class of R-modules such that the endomorphism ring
EndR(M) is semilocal for each R-module M . In this case, Facchini proved [9, The-
orem 3.4] that V(C) is a reduced Krull monoid. Earlier results in this direction can
be found in [14, 15, 53]. A reduced Krull monoid H is uniquely determined by its
characteristic (G, (mg)g∈G) where G is the class group of H and, for each g ∈ G, mg

is the cardinality of the set of prime divisors lying in the class g ∈ G (see Sec. 2).
Many arithmetical problems depend only on the set Gp = {g ∈ G : mg > 0} of
classes containing prime divisors and, for simplicity, we restrict our discussion to
this case. Therefore, in order to determine the structure of V(C), it is required to
determine the characteristic of V(C), or at least the tuple (G, GP ). In general, this
is an herculean task. Indeed, even for specific classes C of modules where it is known
that EndR(M) is semilocal for each M in C, except for in very special situations,
we have limited information about (G, GP ). For an overview, what is known for
certain classes of finitely generated modules over certain one- and two-dimensional
Noetherian local rings, see [2]. Nevertheless, suppose we are in a situation where we
are able to determine the tuple (G, GP ). Then, by a well-known transfer homomor-
phism (see Proposition 2.3), arithmetical problems in V(C) can be studied in the
(combinatorial) Krull monoid B(GP ), the monoid of zero-sum sequences over GP .
Therefore, in this setting, the study of uniqueness and non-uniqueness of direct-
sum decompositions can be reduced to zero-sum theory, a flourishing subfield of
combinatorial and additive number theory. Except for occasional work (see [1] for
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early contributions), the focus of (arithmetical) zero-sum theory has been restricted
to the case where G is a finite abelian group, whereas class groups G stemming
from monoids of modules V(C) are often infinite. In Sec. 3, we study zero-sum
theory over finitely generated free abelian groups using new methods from matroid
theory (goal B). The focus will be on the study of the Davenport constant which
can often be used to provide bounds on important factorization-theoretic invari-
ants. Specifically, upper and lower bounds on the Davenport constant are given in
Theorem 3.13. In Sec. 4, these results will be applied to Krull monoids. In particu-
lar, module-theoretic results will be used in order to describe V(C) (goal A) in such
a way that we can apply the results from Sec. 3 (see Corollaries 4.6 and 4.7).

Apart from cases where V(C) is Krull and some trivial cases (say, where KRSA
holds whence V(C) is free abelian), the structure of V(C) has not been studied
from a semigroup-theoretical point of view. Our goal in this paper is to take this
approach for certain classes of finitely generated modules. The most simple case
is the classical theorem of Steinitz which determines the structure of direct-sum
decompositions of finitely generated modules over Dedekind domains. This result
has found generalizations into many directions. We consider two generalizations in
the setting of certain classes of modules over Prüfer rings and over HNP rings.

In Sec. 5, we study the class of finitely generated projective modules over a
class of Prüfer rings. Based on work of Feng and Lam [18] we show that V(Cproj)
is a finitely primary monoid (and goal A is achieved). Since the arithmetic of
finitely primary monoids has been well-studied, there are well-known answers to
questions about the arithmetic of V(C) (goal B). These results are summarized in
Theorems 5.1 and 5.3.

In Sec. 6, we study the class of finitely generated projective modules over HNP
rings (which generalize noncommutative Dedekind prime rings). Deep module the-
oretic work by Levy and Robson [41] allows an algebraic characterization of the
associated monoids of stable isomorphism classes of modules (goal A). We first
introduce monoids of this type in an abstract setting and study their arithmetic
(Propositions 6.1 and 6.4). We then apply these results to monoids of modules
(goal B) over HNP rings in Theorem 6.5.

In both the setting of Secs. 5 and 6, the respective monoids of modules are
seen to be half-factorial (all direct-sum decompositions of a given module have
the same length). However, these modules behave very differently with respect to
finer arithmetical invariants including the ω-invariants and the tame degrees (see
Theorems 5.1, 5.3, and 6.5).

Section 2 is preparatory in nature. There we gather together arithmetical
concepts from factorization theory as well as required material on (generalized)
Krull monoids and monoids of modules. An even more detailed description of these
concepts and their relevance to module theory can be found in [2]. We also refer
the reader to the monograph [28] for more information on factorization theory, and
to [3], for a friendly introduction to the interplay of factorization theory and module
theory.
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2. Preliminaries

We denote by N the set of positive integers and set N0 = N∪{0}. For real numbers
a, b ∈ R we set [a, b] = {x ∈ Z : a ≤ x ≤ b}. For a subset L ⊂ Z, we denote by
∆(L) ⊂ N the set of distances of L. This is the set {l− k : k < l ∈ L and L∩ [k, l] =
{k, l}}. Let G be an additive abelian group and let A, B ⊂ G be subsets. Then
A + B = {a + b :a ∈ A, b ∈ B} denotes the sumset of A and B,−A = {−a :a ∈ A}
is the negative of A, g +A = {g}+A for g ∈ G, and 〈A〉 ⊂ G denotes the subgroup
of G generated by A.

A family (ei)i∈I of elements of G is said to be independent if ei �= 0 for all i ∈ I

and, for every family (mi)i∈I ∈ Z(I),∑
i∈I

miei = 0 implies miei = 0 for all i ∈ I.

An independent family (ei)i∈I is called a basis for G if G =
⊕

i∈I〈ei〉. If G is
torsion-free, then r(G) = dimQ(G ⊗Z Q) denotes the rank of G and

G+
|I| =

{∑
i∈I

εiei : εi ∈ {0, 1} for all i ∈ I, but not all equal to zero

}

⊂
⊕
i∈I

〈ei〉 ∼= Z(I)

denotes the set of nonzero vertices of the hypercube in
⊕

i∈I〈ei〉. This definition
clearly depends on the chosen basis, but throughout we refer to G+

|I| only after a
basis has been fixed.

By a monoid we always mean a commutative semigroup with identity which
satisfies the cancellation law. Thus, if R is a commutative ring and R• its set of
regular elements, then R• is a multiplicative monoid. Let H be a (multiplicatively
written) monoid. We denote by q(H) a quotient group of H , by H× the group
of invertible elements of H , and by Ĥ the complete integral closure of H with
H ⊂ Ĥ ⊂ q(H). An element u ∈ H is called an atom if u �∈ H× and u = ab with
a, b ∈ H implies that either a ∈ H× or b ∈ H×. The set of all atoms of H is denoted
by A(H). We say that a monoid H with identity 1 is reduced if H× = {1}, and we
denote by Hred = {aH× : a ∈ H} the associated reduced monoid of H .

Free abelian monoids and groups. A monoid F is free abelian with basis P ⊂ F

if every a ∈ F has a unique representation of the form

a =
∏
p∈P

pvp(a) with vp(a) ∈ N0 and vp(a) = 0 for almost all p ∈ P.

In this case, we set F = F(P ). The isomorphism a �→ (vp(a))p∈P from the multi-
plicative monoid F(P ) to the additive monoid (N(P )

0 , +) induces an isomorphism
from the quotient group q(F ) to Z(P ). We denote by Frat(P ) the multiplicative
monoid isomorphic to (Q(P )

≥0 , +) and we tacitly assume that F(P ) ⊂ Frat(P ). The
quotient group of Frat(P ) is isomorphic to (Q(P ), +) and an element a ∈ q(Frat(P ))
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will be written in the form a =
∏

p∈P pvp(a) with vp(a) ∈ Q and vp(a) = 0 for almost
all p ∈ P . We call

|a| =
∑
p∈P

|vp(a)| ∈ Q≥0 the length of a and

supp(a) = {p ∈ P : vp(a) �= 0} ⊂ P the support of a.

Clearly there are inclusions N(P )
0 ⊂ Z(P ) ⊂ Q(P ) ⊂ QP . Elements of QP will

(usually) be written as x and, if x ∈ QP , then we tacitly assume that x = (xp)p∈P

and vp(x) = xp for all p ∈ P . For p ∈ P , let ep ∈ N(P )
0 denote the standard vector

with ep,q = 1 if p = q and ep,q = 0 for all q ∈ P\{p}. Then (ep)p∈P is the standard
basis of Z(P ).

Factorizations and sets of lengths. Let H be a monoid. The free abelian monoid
Z(H) = F(A(Hred)) is called the factorization monoid of H and the unique homo-
morphism

π :Z(H) → Hred satisfying π(u) = u for each u ∈ A(Hred)

is called the factorization homomorphism of H . For a ∈ H ,

ZH(a) = Z(a) = π−1(aH×) ⊂ Z(H) is the set of factorizations of a,

LH(a) = L(a) = {|z| : z ∈ Z(a)} ⊂ N0 is the set of lengths of a, and

L(H) = {L(a) : a ∈ H} is the system of sets of lengths of H.

We say that H is atomic if Z(a) �= ∅ for each a ∈ H , that H is an FF-monoid
if Z(a) is finite and nonempty for each a ∈ H , and that H is factorial if |Z(a)| = 1
for each a ∈ H . For the remainder of this section we assume that H is atomic.

Among the most well-studied invariants in factorization theory are those that
describe the structure of sets of lengths of elements in H . Let k ∈ N. If H �= H×,
then

Uk(H) =
⋃

k∈L∈L(H)

L

is the union of sets of lengths containing k. If H× = H , we set Uk(H) = {k}.
In either case we define ρk(H) = supUk(H) and λk(H) = minUk(H). Clearly,
U1(H) = {1} and, for each k ∈ N, k ∈ Uk(H). In particular, k + l ∈ Uk(H) +
Ul(H) ⊂ Uk+l(H) for each k, l ∈ N. With ∆(L) the set of distances of a length
set L,

∆(H) =
⋃

L∈L(H)

∆(L)

denotes the set of distances of H . By definition, ρk(H) = k for all k ∈ N if and
only if Uk(H) = {k} for all k ∈ N if and only if ∆(H) = ∅. In this case, H is said
to be half-factorial. If ∆(H) = {d} for some d ∈ N, then for all L ∈ L(H) and for
all k ∈ N, L and Uk(H) are arithmetical progressions with difference d.
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Let M ∈ N0, d ∈ N, and {0, d} ⊂ D ⊂ [0, d]. A subset L ⊂ Z is called an almost
arithmetical multiprogression (AAMP) with difference d, period D, and bound M if

L = y + (L′ ∪ L∗ ∪ L′′) ⊂ y + D + dZ where

• L∗ is finite and nonempty with minL∗ = 0 and L∗ = (D + dZ) ∩ [0, maxL∗],
• L′ ⊂ [−M,−1],
• L′′ ⊂ max L∗ + [1, M ], and
• y ∈ Z.

Note that every AAMP is a finite nonempty subset of Z and that an AAMP with
period {0, d} and bound M = 0 is a (usual) arithmetical progression with differ-
ence d.

Distance between factorizations and catenary degrees. Let z, z′ ∈ Z(H).
Then we can write

z = u1 · . . . · ulv1 · . . . · vm and z′ = u1 · . . . · ulw1 · . . . · wn,

where l, m, n ∈ N0 and u1, . . . , ul, v1, . . . , vm, w1, . . . , wn ∈ A(Hred) are such that

{v1, . . . , vm} ∩ {w1, . . . , wn} = ∅.
Then gcd(z, z′) = u1 · . . . · ul and we call

d(z, z′) = max{m, n} = max{|z gcd(z, z′)−1|, |z′ gcd(z, z′)−1|} ∈ N0

the distance between z and z′. The catenary degree c(a) of an element a ∈ H is
the smallest N ∈ N0 ∪ {∞} such that, for any two factorizations z and z′ of a,
there exists a finite sequence z = z0, z1, . . . , zk = z′ of factorizations of a such that
d(zi−1, zi) ≤ N for all i ∈ [1, k]. We denote by

c(H) = sup{c(a) : a ∈ H} ∈ N0 ∪ {∞}
the catenary degree of H . By definition, |Z(a)| = 1 (i.e. a has unique factorization
in H) if and only if c(a) = 0, and thus H is factorial if and only if c(H) = 0. Suppose
now that H is not factorial. Then it is an easy consequence of the definitions that
2 + sup ∆(H) ≤ c(H). In particular, if c(H) = 2, then ∆(H) = ∅, and if c(H) = 3,
then ∆(H) = {1}.
The ω-invariants and tame degrees. We now recall the ω-invariants as well as
local and global tame degrees. These are well-studied invariants in the factorization
theory of rings and semigroups. They have also been considered in module-theoretic
situations in terms of the so-called semi-exchange property (see [6]).

For an element a in an atomic monoid H , let ω(H, a) denote the smallest N ∈
N0 ∪ {∞} having the following property:

For any multiple b of a and any factorization b = v1 · . . . · vn of b, there exists
a subset Ω ⊂ [1, n] with |Ω| ≤ N such that

a

∣∣∣∣∣∏
ν∈Ω

vν .
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We then define

ω(H) = sup{ω(H, u) :u ∈ A(H)} ∈ N0 ∪ {∞}.

It is then clear that an atom u ∈ H is prime if and only if ω(H, u) = 1 and thus
H is factorial if and only if ω(H) ≤ 1. If H satisfies the ascending chain condition
(ACC) on divisorial ideals (in particular, if H is Krull or H = R• where R is a
Noetherian domain), then ω(H, u) < ∞ for all u ∈ A(H) [29, Theorem 4.2].

Roughly speaking, for an element u in an atomic monoid H , the tame degree
t(H, u) is the maximum of ω(H, u) and the factorization lengths of u−1

∏
ν∈Ω vν

in H . For an atom u ∈ Hred, the local tame degree t(H, u) is the smallest N ∈
N0 ∪ {∞} with the following property:

For any multiple a ∈ Hred of u and any factorization z = v1 · . . . · vn ∈ Z(a) of
a which does not contain u, there is a short subproduct which is a multiple
of u, say v1 · . . . · vm, and a refactorization of this subproduct which contains
u, say v1 · . . . · vm = uu2 · . . . · u�, such that max{�, m} ≤ N .

In particular, the local tame degree t(H, u) measures the distance between any
factorization of a multiple a of u and a factorization of a which contains u. We
denote by

t(H) = sup{t(H, u) :u ∈ A(Hred)} ∈ N0 ∪ {∞}

the (global) tame degree of H , and we say that H is tame if t(H) < ∞. If u is prime,
then t(H, u) = 0 and thus H is factorial if and only if t(H) = 0. In order to describe
the relationship between the ω-invariants and the tame degree, we observe that

ω(H, a) = sup{k ∈ N0 ∪ {∞} : b = u1 · . . . · uk ∈ aH

with k ∈ N0, u1, . . . , uk ∈ A(H), and u � u−1
i b for all i ∈ [1, k]

}
,

and we define the τ -invariant as

τ(H, a) = sup{minL(a−1b) : b = u1 · . . . · uk ∈ aH

with k ∈ N0, u1, . . . , uk ∈ A(H), and a � u−1
i b for all i ∈ [1, k]}. (1)

For each non-prime u ∈ A(H), t(H, uH×) = max{ω(H, u), τ(H, u)+1} (see [29,
Theorem 3.6]). Suppose that H is half-factorial and L(a) = {l} with l ∈ N0. Then
L(a−1b) = {k− l} and hence ω(H, a) = τ(H, a)+ l. In particular, if u ∈ A(H), then
ω(H, u) = τ(H, u) + 1.

We recall that if Hred is finitely generated, then H is tame (see [28,
Theorem 3.1.4]). Tame monoids will be studied in Proposition 2.3, Theorems 5.3,
and 6.5. In Sec. 4, we will characterize when the monoid V(C) is tame for C
a class of finitely generated modules over a commutative Noetherian local ring
(Proposition 4.1). Further examples of tame monoids can be found in [30, 39]. We
now gather together several arithmetical finiteness properties of tame monoids.

1550016-8
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Proposition 2.1 (Arithmetic of tame monoids). Let H be a tame monoid.

(1) If H is not factorial, then 2 + sup ∆(H) ≤ c(H)≤ω(H)≤ t(H)≤ω(H)2 < ∞.
(2) There is a constant M ∈ N0 such that every set of lengths L ∈ L(H) is an

AAMP with difference d ∈ ∆(H) and bound M .
(3) There is a constant M ∈ N0 such that, for every k ≥ 2, the union Uk(H) of

sets of lengths is an AAMP with period {0, min∆(H)} and bound M .

Proof. Statement (1) follows easily from [28, Theorem 1.6.3; 30, Sec. 3].
Statement (2) follows from [30, Theorem 5.1] and statement (3) follows from [24,
Theorems 4.2 and 3.5].

Transfer homomorphisms. A monoid homomorphism θ : H →B is called a
transfer homomorphism if the following properties are satisfied:

(T1) B = θ(H)B× and θ−1(B×) = H×.
(T2) If u ∈ H, b, c ∈ B, and θ(u) = bc, then there exist v, w ∈ H such that

u = vw , θ(v) � b, and θ(w) � c.

Transfer homomorphisms are a central tool in factorization theory and allow one
to lift arithmetical results from a (simpler) monoid B to the monoid H (of original
interest). These homomorphisms will be used throughout this manuscript (see, in
particular, Propositions 2.3, 6.1, and 6.4). Each transfer homomorphism naturally
gives rise to a homomorphism θ of factorization monoids that extends θ. Let θ : H →
B be a transfer homomorphism of atomic monoids. Then θ induces a homomorphism
θ : Z(H) → Z(B) satisfying θ(uH×) = θ(u)B× for all u ∈ A(H).

We now recall how various factorization-theoretic invariants are preserved by
transfer homomorphisms. Let θ : H → B and θ : Z(H) → Z(B) be as above. For
a ∈ H , we denote by c(a, θ) the smallest N ∈ N0 ∪{∞} with the following property:

If z, z′ ∈ ZH(a) and θ(z) = θ(z′), then there exist k ∈ N0 and factorizations
z = z0, . . . , zk = z′ ∈ ZH(a) such that θ(zi) = θ(z) and d(zi−1, zi) ≤ N for
all i ∈ [1, k]; that is, z and z′ can be concatenated by an N -chain in the fiber

ZH(a) ∩ θ
−1

(θ(z)).

Now

c(H, θ) = sup{c(a, θ) : a ∈ H} ∈ N0 ∪ {∞}

denotes the catenary degree in the fibers of θ. The next lemma summarizes what
will be needed in the sequel (a proof can be found in [28, Sec. 3.2]).

Lemma 2.2. Let θ : H → B be a transfer homomorphism.

(1) H is atomic if and only if B is atomic.
(2) For all a ∈ H, a is an atom of H if and only if θ(a) is an atom of B.

1550016-9
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(3) Suppose that H is atomic.

(a) For all a ∈ H, LH(a) = LB(θ(a)). In particular,

(i) L(H) = L(B) and ∆(H) = ∆(B), and
(ii) Uk(H) = Uk(B), ρk(H) = ρk(B), and λk(H) = λk(B) for each k ∈ N.

(b) For all a ∈ H, cB(θ(a)) ≤ cH(a) ≤ max{cB(θ(a)), c(a, θ)}. In particular,

c(B) ≤ c(H) ≤ max{c(B), c(H, θ)}.

Generalized Krull monoids. Let H and D be monoids. A monoid homomor-
phism ϕ : H → D is called

• a divisor homomorphism if ϕ(a) |ϕ(b) implies that a | b for all a, b ∈ H .
• a divisor theory (for H) if D = F(P ) for some set P ⊂ D, ϕ is a divisor homo-

morphism, and, for every a ∈ F(P ), there exists a finite nonempty subset X ⊂ H

such that a = gcd(ϕ(X)).
• cofinal if for every α ∈ D there exists a ∈ H such that α |ϕ(a).

If H ⊂ D is a submonoid, then H ⊂ D is said to be saturated (or cofinal) if the
embedding H ↪→ D is a divisor homomorphism (or is cofinal). The monoid H is
called a

• rational generalized Krull monoid if there is a divisor homomorphism ϕ : H →
Frat(P ) for some set P .

• Krull monoid if there is a divisor homomorphism ϕ : H → F(P ) for some set P .

We note that every Krull monoid is a rational generalized Krull monoid and that a
monoid H is a (rational generalized) Krull monoid if and only if Hred is a (rational
generalized) Krull monoid. Generalized Krull monoids and domains have been stud-
ied in [4; 32, Sec. 5; 37, Chap. 22]. Specifically, [4, Proposition 2] guarantees that
the definition of rational generalized Krull monoids we have given above coincides
with the usual one.

We note that a monoid is Krull if and only if it is completely integrally closed
and v-noetherian and that every Krull monoid is an FF-monoid and has a divisor
theory. Let H be a Krull monoid and let ϕ : H → D = F(P ) be a cofinal divisor
homomorphism. We call C(ϕ) = q(D)/q(ϕ(H)) the class group of ϕ and use additive
notation for this group. For a ∈ q(D), we denote by [a] = [a]ϕ = aq(ϕ(H)) ∈
q(D)/q(ϕ(H)) the class containing a. Since ϕ is a cofinal divisor homomorphism,
C(ϕ) = {[a] :a ∈ D} and ϕ(H) = {a ∈ D : [a] = [1]}. The set

GP = {[p] = pq(ϕ(H)) : p ∈ P} ⊂ C(ϕ)

of classes containing prime divisors plays a crucial role in arithmetic computations
(see Proposition 2.3) and we have [GP ] = C(ϕ). If ϕ is a divisor theory, then
ϕ and the class group C(ϕ) are unique up to isomorphism. Since C(ϕ) depends
only on H , we denote it by C(H) and call it the class group of H . Moreover, a
reduced Krull monoid H with divisor theory H ↪→ F(P ) is uniquely determined
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up to isomorphism by its characteristic (G, (mg)g∈G) where G is an abelian group
together with an isomorphism Φ : G → C(H) and where (mg)g∈G is a family of
cardinal numbers mg = |P ∩ Φ(g)| (see [28, Theorem 2.5.4]). We consider the
characteristic of a monoid of modules V(C) that is Krull in both Secs. 4 and 6.

A domain R is a rational generalized Krull domain if and only if R• is a rational
generalized Krull monoid (for recent work on these kinds of domains, see [42, 47]).
A v-Marot ring (and, in particular, a domain) R is a Krull ring if and only if its mul-
tiplicative monoid of regular elements R• is a Krull monoid (see [33, Theorem 3.5]),
and we set C(R) = C(R•). If R is a Dedekind domain, then C(R) is the Picard group
of R.

We now introduce a Krull monoid of combinatorial flavor, the monoid B(G0)
of zero-sum sequences over a subset G0 of an abelian group G. As previously men-
tioned, this monoid will play a crucial role in arithmetical investigations of general
Krull monoids. Section 3 provides a detailed study of B(G0) in case of subsets G0 of
finitely generated free abelian groups. Let G be an additive abelian group, G0 ⊂ G

a subset, and S = g1 · . . . · gl ∈ F(G0). We call σ(S) = g1 + · · ·+ gl ∈ G the sum of
S, and we define, for k ∈ N,

Σ(S) =

{∑
i∈I

gi : ∅ �= I ⊂ [1, �]

}
⊂ G,

Σk(S) =

{∑
i∈I

gi : I ⊂ [1, �], |I| = k

}
⊂ G and Σ≤k(S) =

⋃
ν∈[1,k]

Σν(S).

If (e1, . . . , er) is a basis of G, then the set G+
r of nonzero vertices of the hypercube

satisfies

G+
r = Σ(e1 · . . . · er).

This set will be thoroughly studied in Secs. 3 and 4.
For a map ϕ : G → G′ between two abelian groups G and G′, we define ϕ(S) =

ϕ(g1) · . . . · ϕ(g�). Also, for S ∈ F(G0), we set −S = (−g1) · . . . · (−g�). Clearly

B(G0) = {S ∈ F(G0) : σ(S) = 0} ⊂ F(G0)

is a submonoid of F(G0). Moreover, since the inclusion B(G0) ↪→ F(G0) is a divisor
homomorphism, B(G0) is a Krull monoid. For arithmetical invariants ∗(·), as defined
previously, we write (as it is usual) ∗(G0) instead of ∗(B(G0)). In particular, A(G0)
denotes the set of atoms of B(G0), ∆(G0) denotes the set of distances of B(G0),
and so forth. Note that the atoms of B(G0) are precisely the minimal zero-sum
sequences over G0 — those zero-sum sequences having no proper subsequence that
is also a zero-sum sequence — and we denote by

D(G0) = sup{|U | :U ∈ A(G0)} ∈ N0 ∪ {∞}

the Davenport constant of G0, a central invariant in zero-sum theory (see [25, 31, 36,
51]). The following lemma highlights the close connection between the arithmetic
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of a general Krull monoid and the arithmetic of the associated monoid of zero-sum
sequences. A proof can be found in [28, Theorems 3.4.2 and 3.4.10].

Proposition 2.3. Let H be a Krull monoid, ϕ : H → D = F(P ) a cofinal divisor
homomorphism, G = C(ϕ) its class group, and GP ⊂ G the set of classes containing
prime divisors. Let β̃ : D → F(GP ) denote the unique homomorphism defined by
β̃(p) = [p] for all p ∈ P .

(1) The homomorphism β = β̃ ◦ ϕ : H → B(GP ) is a transfer homomorphism.
Moreover,

c(H, β) ≤ 2, c(GP ) ≤ c(H) ≤ max{c(GP ), 2}, and c(H) ≤ D(GP ).

(2) If GP is finite, then A(GP ) is finite and hence D(GP ) < ∞.
(3) If D(GP ) < ∞, then both H and B(GP ) are tame.

Monoids of modules. Let R be a ring and let C be a small class of right
R-modules. That is, C has a set V(C) of isomorphism class representatives, and
for any M ∈ Ob(C), we denote by [M ] the unique element of V(C) isomorphic
to M . In more technical terms we suppose that the full subcategory C of Mod-R
is skeletally small. Suppose that C is closed under finite direct sums, direct sum-
mands, and isomorphisms. Then V(C) is a reduced commutative semigroup with
operation [M ]+[N ] = [M⊕N ], and all information about direct-sum decomposition
of modules in C can be studied in terms of factorizations in the semigroup V(C).

Suppose that V(C) is a monoid and let C′ be a subclass of C which is closed
under isomorphisms. Then C′ is closed under finite direct sums, direct summands,
and isomorphisms if and only if V(C′) ⊂ V(C) is a divisor-closed submonoid. For a
module M in C we denote by add(M) the class of R-modules that are isomorphic
to direct summands of direct sums of finitely many copies of M . Then V(add(M))
is the smallest divisor-closed submonoid generated by [M ] ∈ V(C). The class Cproj

of finitely generated projective right R-modules is of special importance (see [7; 13,
Sec. 2.2]) and will be considered in Secs. 5 and 6.

Proposition 2.4. Let R be a ring and C a small class of right R-modules which is
closed under finite direct sums, direct summands, and isomorphisms.

(1) If EndR(M) is semilocal for each M in C, then V(C) is a Krull monoid.
(2) If there exists M in C such that EndR(M) is semilocal, then V(add(M)) is

a finitely generated Krull monoid. Conversely, if V(C) is a finitely generated
monoid, then there is some M in C such that V(C) = V(add(M)).

(3) If R is semilocal, then V(Cproj) is a finitely generated Krull monoid. In addition,

if R is commutative, then V(Cproj) is Krull if and only if V(Cproj) is free
abelian.

Proof. See [9, Theorem 3.4] for the proof of (1).
We now consider statement (2). Let N1 and N2 be right R-modules and recall

that End(N1 ⊕ N2) is semilocal if and only if End(N1) and End(N2) are semilocal
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(see the introduction of [16]). Thus End(N) is semilocal for all N in add(M) and
hence V(add(M)) is a Krull monoid by (1). Moreover, [8, Corollary 4.11] implies
that V(add(M)) is finitely generated. Conversely, suppose that V(C) is a finitely
generated monoid. Let M1, . . . , Mt be indecomposable right R-modules such that
A(V(C)) = {[M1], . . . , [Mt]}. Then M = M1 ⊕ · · · ⊕ Mt has the required property.

Since V(Cproj) = V(add(RR)) and End(RR) ∼= R, the first claim in (3) follows
immediately from (2). The second statement follows from [12, Theorem 4.2].

Remark 2.5. (1) Statement (1) of Proposition 2.4 is a local condition guaranteeing
that V(C) is a Krull monoid and such examples will be considered in Sec. 4.
It is well-known that the condition “EndR(M) is semilocal” is stronger than
the condition that “V(add(M)) is a Krull monoid”. Indeed, if H is any Krull
monoid, then all divisor-closed submonoids are Krull as well. However, even
if all divisor-closed submonoids which are generated by a single element are
Krull monoids, then the monoid H can fail to be Krull (see [48] for counter-
examples).

(2) In Sec. 5, we will see that since a finitely primary monoid H is Krull if and
only if H is factorial, the monoid of modules V(Cproj) in this setting shares the
same property.

(3) In Sec. 6, we will study finitely generated monoids of modules which are not
Krull.

(4) Every reduced Krull monoid is isomorphic to a monoid of finitely generated
projective modules V(Cproj) for which EndR(M) is semilocal for all M ∈ Cproj

(see [17, Theorem 2.1]). For further realization results see, for example, see [13,
Sec. 9; 28, Theorem 2.7.14; 40; 53].

(5) In [11], Facchini presents an extensive list of classes of modules having semilocal
endomorphism rings, and thus a list of monoids of modules V(C) which are
Krull.

3. Zero-Sum Theory in Finitely Generated Free Abelian Groups

In this section, we study the Davenport constant D(G0) when G0 is a subset of a
finitely generated free abelian group G. Although the results we obtain are inter-
esting in their own right, we have in mind an application to the study of invariants
of certain Krull monoids, and in particular certain monoids of modules V(C) that
we study in Sec. 4.

Let G be an additive abelian group and let G0 ⊂ G be a subset. A sequence
over G0 will mean a finite sequence of terms from G0 which is unordered and where
repetition of terms is allowed. Zero-sum theory studies such sequences, their sets of
subsequence sums, and their structure under extremal conditions (see [23, 34, 36]).
Much of the focus has been on sequences over finite abelian groups, but — motivated
by applications in various fields — sequences over infinite abelian groups have
recently found more attention (see [26, 50] for examples of recent work).
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Our goal in this section is to present, and expand upon, known methods from
matroid theory that can be used to find upper bounds for the Davenport constant
D(G0) for subsets G0 of finitely generated free abelian groups. These methods
from matroid theory were used by Sturmfels with regards to toric varieties [52].
Such toric varieties are, in turn, related to primitive partition identities which
were further studied by Diaconis, Graham, and Sturmfels [5] by combining the
matroid-theoretic methods with methods from the geometry of numbers. Although
no mention of either zero-sums or the Davenport constant was made in their work,
Freeze and Schmid [21, Theorem 6.5] along with Geroldinger and Yuan [35, Sec. 3]
made attempts to use these methods in order to study zero-sum problems over
finite abelian groups. We continue this program with a goal of studying zero-sum
problems over infinite abelian groups.

In order to make these methods from matroid theory — written using very differ-
ent notation and terminology than is typical in zero-sum theory — more generally
available for the study of zero-sum problems over finitely generated free abelian
groups, we develop the basic theory here from scratch. In addition, we modify the
arguments so that they extend to the case when G0 is non-symmetric, a situation
not included in the original formulations from [49, 52].

Let G be a finitely generated free abelian group, Q a Q-vector space with G ⊂ Q,
and G0 a subset of G. The elements S ∈ Frat(G0) will be called rational sequences
over G0. If S =

∏
g∈G0

gvg(S) ∈ Frat(G0), then σ(S) =
∑

g∈G0
vg(S)g ∈ Q is called

the sum of S. Then

Brat(G0) = {S ∈ Frat(G0) : σ(S) = 0} ⊂ Frat(G0)

is a saturated submonoid of Frat(G0), and hence Brat(G0) is a rational general-
ized Krull monoid. This monoid is clearly reduced and, since for any nonidentity
B ∈ Brat(G0) we have B = B1/2B1/2,Brat(G0) has no atoms. Moreover, Brat(G0)
is a generalized block monoid as introduced in [27, Example 4.10]. The elements
of Brat(G0) will be called rational zero-sum sequences over G0. Obviously, for any
rational (zero-sum) sequence S there exists an integer n ∈ N such that Sn is an
ordinary (zero-sum) sequence. Thus B(G0) ⊂ Brat(G0) and F(G0) ⊂ Frat(G0) are
root extensions (see [4, Sec. 5]). If G0 ⊂ G′

0 are two subsets of G, we assume
Frat(G0) ⊂ Frat(G′

0) and Brat(G0) ⊂ Brat(G′
0). Specifically, we make this assump-

tion when we consider G′
0 = G0 ∪−G0. Given a sequence S ∈ Frat(G0) and g ∈ G0,

we tacitly use terms such as v−g(S) and −S, where we interpret −g and −S as ele-
ments of Frat(G0 ∪−G0). In particular, v−g(S) = 0 if −g �∈ G0.

We begin with the central construction of a partition of G0 and of an epimor-
phism from Frat(G0) to some Q-vector space. This construction will remain valid
throughout Sec. 3.

Partition the nonzero elements of G0 as G0\{0} = G+
0 ∪G−

0 , where the elements
of G0 have been distributed so that if g,−g ∈ G0\{0}, then g and −g neither both
occur in G+

0 nor both occur in G−
0 . Furthermore, choose such a partition so that
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G+
0 is maximal, that is, such that −G−

0 ⊂ G+
0 . There may, of course, be many ways

to achieve this, but we choose one such partition and fix it for the remainder of
Sec. 3.

Let

ϕ′ :Frat(G0) → Frat(G+
0 \(−G−

0 )) × q(Frat(−G−
0 )) ⊂ q(Frat(G+

0 ))

be the unique epimorphism satisfying ϕ′(g) = g for each g ∈ G+
0 , ϕ′(−g) = g−1

for each −g ∈ G−
0 , and ϕ′(0) = 1 provided 0 ∈ G0. The arguments of this section

are based on the geometry of the sets and thus can be phrased more naturally
using vector notation. To translate, we use the canonical isomorphism between
q(Frat(G+

0 )) and Q(G+
0 ) which maps g to eg for each g ∈ G+

0 and where (eg)g∈G+
0

denotes the standard basis of Q(G+
0 ). Composing ϕ′ with this isomorphism, we

obtain an epimorphism

ϕ :Frat(G0)
ϕ′
−→ Frat(G+

0 \(−G−
0 )) × q(Frat(−G−

0 ))

→ Q(G+
0 \(−G−

0 ))
≥0 ⊕ Q(−G−

0 ) ⊂ Q(G+
0 )

satisfying

ϕ

 ∏
g∈G0

gvg(S)

 =
∑

g∈G+
0

(vg(S) − v−g(S))eg.

The sequences S ∈ ker(ϕ) ∩ F(G0) are precisely those zero-sum sequences over
G0 having a factorization into zero-sum subsequences of length at most 2, and an
arbitrary rational sequence from ker(ϕ) is nothing more than a rational power of
such a sequence. The purpose of this construction is to create a setting where we
can first apply methods from linear algebra and the geometry of Q-vector spaces
to study ϕ(S), and then to apply the results we obtain to the original sequence
S ∈ Frat(G0).

For each rational sequence S ∈ Frat(G0) we define the signed support of S as

supp+(S) = {g ∈ G0 ∪ −G0 : vg(S) − v−g(S) �= 0}.

Observe that for each S ∈ F(G0), we have

supp+(S) = {g ∈ G0 ∪−G0 : ϕ′(g) ∈ supp(ϕ′(S))}

and

supp+(S) = supp+(−S) ⊂ supp(S) ∪ − supp(S) ⊂ G0 ∪ −G0.

For S ∈ Frat(G0) we define

R = 0v0(S)
∏

g∈G+
0

(g(−g))min{vg(S),v−g(S)} ∈ Frat(G0), (2)
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where v−g(S) = 0 whenever −g /∈ G0. Then R |S and we set S′ = R−1S ∈ Frat(G0).
It is then easily noted that supp+(S) = supp+(S′), ϕ(S) = ϕ(S′), ϕ(R) = 0 ∈
Q(G+

0 ), and for each g ∈ G0, g and −g are not both contained in supp(S′) for any
g ∈ G0; that is, either vg(S′) = 0 or v−g(S′) = 0. Note that the latter condition is
equivalent to

supp(S′) ∩ −supp(S′) = ∅.

In particular, 0 /∈ supp(S′). Finally, if S ∈ F(G0) is an ordinary sequence, then
R, S′ ∈ F(G0) are also ordinary sequences. These observations will be used repeat-
edly in the sequel.

We say that a (rational) zero-sum sequence S is elementary if supp+(S) is
nonempty and minimal; that is, there is no (rational) zero-sum sequence T with
∅ �= supp+(T ) � supp+(S). Clearly, a rational zero-sum sequence S is elementary
if and only if Sn is an elementary zero-sum sequence for some positive integer n.
An elementary atom is an atom U ∈ B(G0) which is also an elementary zero-sum
sequence. We let

Delm(G0) = sup{|U | :U ∈ A(G0) is elementary} ∈ N0 ∪ {∞}

denote the supremum of the lengths of elementary atoms over G0 (with the conven-
tion that sup ∅ = 0), and call Delm(G0) the elementary Davenport constant over G0.

In our motivating applications the group G is the class group of a Krull monoid,
and thus we need each of the previously defined concepts in this general abstract
setting. However, it is technically simpler but no restriction to work over the additive
group Zr instead of working over an abstract finitely generated free abelian group.
(Note, if ϕ : G → Zr is a group isomorphism and G0 ⊂ G, then D(G0) = D(ϕ(G0)).)
Therefore, for the rest of this section we suppose that

G0 ⊂ G = Zr where r ≥ 1.

Since the case G0 ⊂ {0} is trivial, we further assume that the set G0 contains a
nonzero element of G. Moreover, whenever it is convenient, we may assume that
r(〈G0〉) = r, as otherwise we could replace Zr with 〈G0〉 ∼= Zr(〈G0〉). We start
with a sequence of basic but important properties regarding elementary zero-sum
sequences.

Lemma 3.1. Let r ≥ 1 and let G0 ⊂ Zr be a nonempty subset. Let S, T ∈
Frat(G0) be rational sequences such that supp(S)∩ supp(−S) = ∅ and supp(T )∩
supp(−T ) = ∅. Suppose supp+(T ) ⊂ supp+(S) and supp(T )∩ supp(S) �= ∅. Let

α = min{vg(S)/vg(T ) : g ∈ supp(S) ∩ supp(T )} ∈ Q>0.

Define S′ = (−T )αS ∈ Frat(G0 ∪ −G0), let

R =
∏

g∈G+
0

(g(−g))min{vg(S′),v−g(S′)} ∈ Frat(G0 ∪ −G0),
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and set S̃′ := S′R−1. Then S̃′ ∈ Frat(G0) is a rational sequence over G0 with

supp(S̃′) � supp(S) and supp+(S̃′) � supp+(S). (3)

Proof. By definition, S̃′ ∈ Brat(G0 ∪−G0) with supp+(S̃′) = supp+(S′). Thus, by
the definition of S′,

supp+(S̃′) = supp+(S′) ⊂ supp+(−T ) ∪ supp+(S)

= supp+(T ) ∪ supp+(S) = supp+(S), (4)

with the final equality obtained by using the hypothesis that supp+(T ) ⊂ supp+(S).
By hypothesis, supp+(T ) ⊂ supp+(S), and thus

−g ∈ supp(S) ⊂ G0 for every g ∈ supp(T )\ supp(S). (5)

Let g1 ∈ supp(S) ∩ supp(T ) with vg(S)/vg(T ) minimal in Q>0 where g ∈
supp(S) ∩ supp(T ). By hypothesis, g1 and −g1 cannot both be in supp(S) nor
can they both be in supp(T ). Thus, since g1 ∈ supp(T ) ∩ supp(S), we see that
−g1 /∈ supp(T ) and −g1 /∈ supp(S). Consequently, by definition of α, we have

v−g1(−T α) = vg1 (T
α) = vg1(S) and vg1 (−T α) = αv−g1(T ) = 0 = v−g1(S).

But g1 ∈ supp+(S) as g1 ∈ supp(S) and −g1 /∈ supp(S). Thus g1 /∈ supp+(S′) and
the inclusion in (4) must be strict; that is,

supp+(S̃′) � supp+(S). (6)

From the definitions of S′ and S̃′, we have

supp(S̃′) ⊂ supp(S′) ⊂ supp(−T ) ∪ supp(S). (7)

For g ∈ supp(T ) ∩ supp(S), the definition of α ensures that v−g(−T α) ≤ vg(S).
Since g and −g cannot both be in supp(T ) nor both be in supp(S), we also have
that vg(−T α) = 0 = v−g(S). Combining this fact with the definition of S̃′ we see
that for every g ∈ supp(T ) ∩ supp(S),−g /∈ supp(S̃′). Considering this fact along
with (5) and (7), it follows that

supp(S̃′) ⊂ supp(S) ⊂ G0. (8)

In particular, we now know that S̃′ ∈ Frat(G0). It remains to show that the inclusion
in (8) is strict. But for this fact we need to only recall that g1 ∈ supp(S) and
that g1 /∈ supp+(S̃′) = supp(S̃′) ∪ − supp(S̃′). Indeed, this last equality follows
immediately since supp(S̃′) contains at most one of g and −g for every g ∈ G0,
a fact that follows from the definition of supp(S̃′) and the observations before
Lemma 3.1.

Lemma 3.2. Let r ≥ 1 and let G0 ⊂ Zr be a nonempty subset. If S, T ∈ Brat(G0)
are both elementary rational zero-sum sequences with supp+(S) = supp+(T ), then
either

SRα
T = T αRS or S(−RT )α = −T αRS for some positive α ∈ Q>0,
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where RS |S and RT |T are the respective maximal length rational zero-sum subse-
quences of S or T with ϕ(RT ) = 0 and ϕ(RS) = 0 (defined in (2)).

In particular, if S, T ∈ B(G0) are elementary zero-sum sequences with common
signed support, then there exist relatively prime m, n ∈ N such that either

SnRm
T = T mRn

S or Sn(−RT )m = (−T )mRn
S ,

where RS |S and RT |T are the respective maximal length zero-sum subsequences of
S or T having a factorization into zero-sum subsequences each of length at most 2.

Proof. Let S, T ∈Brat(G0) be elementary rational zero-sum sequences with
common signed support supp+(S) = supp+(T ). In view of the observations before
Lemma 3.1 we may, without loss of generality, assume that RS and RT are trivial
(the general case follows easily from this special case). In particular,

supp(S) ∩ supp(−S) = ∅ and supp(T ) ∩ supp(−T ) = ∅. (9)

Moreover, since S and T are elementary zero-sum sequences, supp+(S) =
supp+(T ) �= ∅.

First suppose that supp(S) ∩ supp(T ) �= ∅. Then, since supp+(S) = supp+(T ),
we can apply Lemma 3.1. Let α ∈ Q>0, S

′ ∈ Frat(G0 ∪−G0), and S̃′ ∈ Frat(G0) be
as in Lemma 3.1. Since S, T , and R are each rational zero-sum sequences, it follows
from the definition of S̃′ that S̃′ is also a rational zero-sum sequence. Thus S̃′

will, in view of (3), contradict that S is an elementary rational zero-sum sequence
unless supp+(S̃′) = ∅. However, by definition, supp+(S̃′) = ∅ is only possible if S̃′

is trivial, in which case (−T α)S = S′ = R. But this implies, in view of (9) and
supp+(T ) = supp+(S), that

vg(T α) = vg(S) for all g ∈ G0.

Therefore, S = T α as desired.
We now assume that supp(S) ∩ supp(T ) = ∅. In this case, since supp+(S) =

supp+(T ), it follows from (9) that supp(T ) = − supp(S). This in turn implies that
supp(−T ) ⊂ G0 and hence −T ∈ Brat(G0). Repeating the arguments of the previous
paragraph using −T in place of T , we conclude that S = (−T )α as desired. Then, in
particular, statement follows easily from the general statement with α = m

n , where
m, n ∈ N are relatively prime.

Lemma 3.3. Let r ≥ 1 and let G0 ⊂ Zr be a nonempty subset. If U, V ∈ A(G0)
are elementary atoms with supp+(U) = supp+(V ), then either U = V or U = −V .

Proof. Since U and V are both elementary, their signed support must be nontrivial.
Moreover, since U and V are atoms, neither U nor V has a nontrivial zero-sum
subsequence of length one or two. Therefore, applying Lemma 3.2 to both U and V ,
we find that either Un = V m or Un = (−V )m for relatively prime positive integers
m and n. Note that if the latter case holds, then supp(−V ) = supp(U) ⊂ G0.
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Thus, by replacing V with −V if need be (in which case the hypotheses of the
theorem hold for U and −V and, if the conclusion holds for U and −V , then
it will hold for the original pair U and V as well), we may assume that Un =
V m for relatively prime positive integers m and n. Therefore, nvg(U) = mvg(V )
for all g ∈ G0. Consequently, since gcd(m, n) = 1, it follows that m | vg(U) for
each g ∈ G0. But then U = Wm is a product decomposition of U , where W =∏

g∈G0
gvg(U)/m ∈ F(G0). Noting that 0 = σ(U) = mσ(W ), we conclude that W is

a zero-sum sequence. Since it was assumed that U ∈ A(G0) is an atom, m = 1. A
similar argument shows that n = 1. Now the relation Um = V m gives the desired
conclusion U = V .

Lemma 3.4. Let r ≥ 1 and let G0 ⊂ Zr be a nonempty subset. If S ∈ B(G0) is an
elementary zero-sum sequence, then

S = RU �

for some � ≥ 1, some elementary atom U ∈ A(G0) with supp+(U) = supp+(S),
and some zero-sum sequence R ∈ ker(ϕ) that has a factorization involving only
zero-sum subsequences all of length at most 2.

Proof. Assume for the sake of contradiction that S ∈ B(G0) is an elementary
zero-sum sequence that fails to have the desired form and with |S| minimal. By the
minimality of |S| and the observations made before Lemma 3.1, it follows that every
nontrivial zero-sum subsequence of S has length at least 3. Therefore supp(S) ∩
supp(−S) = ∅. Since the conclusion of the lemma holds for each atom, it must be
the case that the chosen S is not an atom. Therefore,

S = T1T2

for nontrivial zero-sum subsequences T1 and T2. Now, since every zero-sum subse-
quence of S has length at least 3, the nontrivial zero-sum subsequences T1 and T2

must each have nonempty signed support. But this contradicts the fact that S is
an elementary zero-sum sequence unless we have

supp+(S) = supp+(T1) = supp+(T2). (10)

Also, |T1| < |S| and |T2| < |S| since T1 and T2 are both nontrivial subsequences
of S. By (10), each Ti is a zero-sum sequence with supp+(Ti) = supp+(S) and is
consequently an elementary zero-sum sequence. Furthermore, since |T1| < |S| and
|T2| < |S|, the minimality of |S| ensures that both T1 and T2 have the form stated in
the conclusion of the lemma. Thus T1 = Um and T2 = V n for atoms U, V ∈ A(G0)
with

supp+(U) = supp+(V ) = supp+(T1) = supp+(T2) = supp+(S)

and positive integers m and n. As U and V are both atoms with supp+(U) =
supp+(V ) = supp+(S), it follows that U and V are both elementary atoms. Invoking
Lemma 3.3 we find that either U = V or U = −V .
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If U = −V , then there must exist g ∈ supp(U) with −g ∈ supp(V ). In this
case, since T1 = Um, T2 = V n, and S = T1T2, it follows that g(−g) |S, contrary
to conclusion above that S does not have any zero-sum subsequence of length 1
or 2. Therefore U �= −V , forcing U = V . Then T1 = Um, T2 = V n = Un, and
S = T1T2 = Um+n as desired.

Combining the above results, we are now able to describe the form of elementary
zero-sum sequences. We do so in the following proposition whose proof follows
immediately from Lemmas 3.3 and 3.4. Essentially, Proposition 3.5 states that if X

is the signed support of an elementary zero-sum sequence, then (up to sign) there
is a unique atom U with supp+(U) = X , and all other zero-sum sequences having
signed support X must have the form U �R or (−U)�R where � ≥ 1 and R ∈ B(G0)
is a zero-sum sequence that has a factorization involving zero-sum subsequences all
of length at most 2.

Proposition 3.5. Let r ≥ 1 and let G0 ⊂ Zr be a nonempty subset. If X is the
signed support of an elementary zero-sum sequence over G0, then there exists a
unique (up to sign) atom U ∈ A(G0) with supp+(U) = supp+(−U) = X such that
every elementary zero-sum sequence S with signed support supp+(S) = X has the
form

S = RU � or S = R(−U)�,

where R ∈ ker(ϕ) is a zero-sum sequence and � ≥ 1.

Lemma 3.6. Let r≥ 1 and let G0 ⊂Zr be a nonempty subset. Suppose S ∈ Brat(G0)
is a rational zero-sum sequence with supp+(S) nonempty. Then there exists some
elementary atom U ∈ A(G0) such that supp(U) ⊂ supp(S).

Proof. Assume for the sake of contradiction that S ∈ Brat(G0) is a counterexample
with supp+(S) �= ∅ minimal. By removing rational zero-sum subsequences of the
form ((−g)g)min{vg(S),v−g(S)} and 0v0(S) from S as defined in (2), we may, without
loss of generality, assume that supp(S) ∩ supp(−S) = ∅. Let U ∈ B(G0) be an
elementary zero-sum sequence with

supp+(U) ⊂ supp+(S).

Note that such an elementary zero-sum sequence exists with supp+(U) = X for any
minimal nonempty subset X ⊂ supp+(S) provided there exists a zero-sum sequence
with signed support X .

In view of the observations made prior to Lemma 3.1, we may assume that U has
no nontrivial zero-sum sequence of length 1 or 2. Now, if U = U1 · . . . ·U� is a factor-
ization as a product of atoms Ui ∈ A(G0), we find that supp+(Ui) = supp+(U) for
each i ∈ [1, l], else U is not an elementary zero-sum sequence. Therefore, replacing
U by some Ui as need be, we may without loss of generality assume that U ∈ A(G0)
is an atom.
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Since supp+(U) ⊂ supp+(S), supp(U) and supp(S) are disjoint only if −g ∈
supp(S) ⊂ G0 for every g ∈ supp(U). In this case, −U ∈ A(G0) is also an atom
over G0. Thus, replacing U by −U (in this one scenario), we may assume that
supp(U) ∩ supp(S) �= ∅. Since an elementary atom cannot have a nontrivial zero-
sum sequence of length 1 or 2, we may apply Lemma 3.1 with T = U . Now let
α, S′, R and S̃′ be as in Lemma 3.1. Since S, U and R are each zero-sum sequences,
it follows from the definition of S̃′ that S̃′ is also a zero-sum sequence. Therefore,

S̃′ ∈ Brat(G0),

an improvement over S̃′ ∈ Frat(G0) given in Lemma 3.1.
If supp+(S̃′) = supp+(S′) is nonempty, then by the strict inclusion supp+(S̃′) �

supp+(S) in (3), we may apply the induction hypothesis to S̃′ ∈ Brat(G0) and find
an elementary atom V ∈ A(G0) such that supp(V ) ⊂ supp(S̃′). The proof is then
complete if one considers the other inclusion in (3). Therefore, we may assume the
alternative, that

supp+(S̃′) = supp+(S′) = ∅. (11)

Recalling that S′ =(−U)αS, that supp+(U) ⊂ supp+(S), and that supp(S) ∩
supp(−S)= supp(U)∩ supp(−U)= ∅, we see that (11) is possible only if supp(U) =
supp(S) with vg(Uα) = vg(S) for every g ∈ supp(U) = supp(S).

Let G0 ⊂ Zr ⊂ Qr be a finite subset. Note that the chosen partition of G0\{0}
gives rise to a unique partition of G0 ∪−G0\{0} with (G0 ∪−G0)+ = G+

0 . To this
partition we may again associate a map Frat(G0 ∪ −G0) → Q(G+

0 ) which we also
denote by ϕ. Then ϕ :Frat(G0) → Q(G+

0 ) is simply the restriction of ϕ :Frat(G0 ∪
−G0) → Q(G+

0 ) to Frat(G0). By construction, we have

ϕ(B(G0)) ⊂ Z(G+
0 ) ⊂ Q(G+

0 ).

It is easily checked that ϕ(Brat(G0)) is an additive monoid closed under mul-
tiplication by nonnegative rational numbers. The Q-vector space spanned by
ϕ(Brat(G0)) is then ϕ(Brat(G0 ∪ −G0)), which is also the Q-vector space spanned
by ϕ(B(G0)) = ϕ(Brat(G0)) ∩ Z(G+

0 ).
Note that vector (αg)g∈G+

0
∈ Q(G+

0 ) is an element of ϕ(Brat(G0 ∪−G0)) precisely
when ∑

g∈G+
0

αgg = 0.

Thus, if we let M denote the r × |G+
0 | matrix whose columns are the vectors g ∈

G+
0 ⊂ Zr ⊂ Qr, we see that ϕ(Brat(G0 ∪ −G0)) is the kernel of the matrix M .

The set ϕ(Brat(G0)) can also be described via M ; It is the subset consisting of all
vectors (αg)g∈G+

0
∈ ker(M) that satisfy the following sign restrictions:

αg ≥ 0 unless −g ∈ G0.
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(Recall that we always assume −G−
0 ⊂ G+

0 , and thus αg > 0 is allowed for every
g ∈ G+

0 .) It is well-known that the kernel of a matrix M is the orthogonal space
for the row space of the same matrix M , and that the row and column space of
M have the same dimension, which in this case is equal to the dimension of the
Q-vector space spanned by the vectors from G0 ⊂ Zr ⊂ Qr. This latter number is
simply r(〈G0〉) and thus we conclude that

|G+
0 | = r(〈G0〉) + dimQ(〈ϕ(B(G0))〉). (12)

The next theorem (essentially due to Rockafellar [49] in a matroid formulation)
shows that elementary zero-sum sequences can be useful for decomposing a zero-
sum sequence via rational product decomposition. Indeed, an arbitrary zero-sum
sequence always has a product decomposition into a bounded number of rational
powers of elementary atoms. It also shows that an upper bound for D(G0) can be
found using an upper bound for Delm(G0). It is important to note that, even if
S ∈ B(G0) is an atom, S may still have a nontrivial product decomposition into
rational powers of elementary atoms if it is not itself elementary.

Theorem 3.7. Let r ≥ 1, let G0 ⊂ Zr be a nonempty subset, and let S ∈ Brat(G0)
be a rational zero-sum sequence. Then there exist a nonnegative integer � ≥ 0,

elementary atoms U1, . . . , U� ∈ A(G0), positive rational numbers α0, α1, . . . , α� ∈
Q>0, and a zero-sum sequence R ∈ ker(ϕ) (possibly trivial) having a factorization
into zero-sum subsequences each of length 1 or 2. Moreover,

S = Rα0Uα1
1 · . . . · Uα�

� , supp+(Uj) � supp+

S

(
j∏

i=1

Uαi

i

)−1


for all i ∈ [1, �], and

� ≤ min
{

1
2
| supp+(S)|, |G+

0 | − r(〈G0〉)
}

.

In particular,

D(G0) ≤ sup{2, �̂Delm(G0)} ≤ sup{2, min{η, |G+
0 | − r(〈G0〉)}Delm(G0)}

≤ sup{2, |G0\{0}|Delm(G0)},

where η = sup{|supp(U)| : U ∈ A(G0)} and �̂ denotes the supremum over all � as
S ranges over A(G0).

Proof. We first construct the rational product decomposition for S ∈ Brat(G0) and
then deduce the upper bound for D(G0). To this end, in view of the observations
made prior to Lemma 3.1, we may without loss of generality assume that S is
nontrivial and that

{g ∈ G+
0 : g,−g ∈ supp(S)} = ∅. (13)

It suffices to prove the theorem for such rational sequences.
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Our goal is to show that there exist elementary atoms U1, . . . , U� ∈ A(G0) and
positive rational numbers α1, . . . , α� ∈ Q>0 such that

S = Uα1
1 · . . . · Uα�

� and supp+(Uj) � supp+

S

(
j∏

i=1

Uαi

i

)−1


for all i ∈ [1, �]. (14)

Before doing so, we explain how (14) forces the desired upper bound for �. The sec-
ond condition from (14) says that each atom Uj contains an element gj ∈ supp(S)
(via the first condition of (14)) not contained in any of the Uj+1, . . . , U�. But then
{g1, . . . , g�} ⊂ supp(S) is a subset of cardinality �, implying � ≤ |supp(S)| =
1
2 |supp+(S)|. In view of (13) and since gj ∈ supp(S), we see that −gj /∈ supp(S)
for each j ∈ [1, �]. As a result, since each atom Uj contains some element gj

not contained in any of the Uj+1, . . . , U�, no gj ∈ supp+(Uj) is contained in
supp+(Uj+1 · . . . · U�). Now it is easily deduced that ϕ(U1), . . . , ϕ(U�) ∈ ϕ(B(G0))
are linearly independent over Q. Therefore, � ≤ dimQ(〈ϕ(B(G0))〉) = |G+

0 |−r(〈G0〉),
with the equality following from (12). Thus the desired bound for � follows from (14),
and we now devote our attention to proving (14). For this, suppose for the sake
of contradiction that S ∈ Brat(G0) is a counterexample to (14) with |supp(S)|
minimal.

Since S is nontrivial, (13) forces supp+(S) �= ∅. Thus, by Lemma 3.6, there
exists an elementary atom U1 ∈ A(G0) with supp(U1) ⊂ supp(S). Let α1 =
min{vg(S)/vg(U1) : g ∈ supp(U1)}. Since supp(U1) ⊂ supp(S), α1 > 0. By defi-
nition, vg(Uα1

1 ) ≤ vg(S) for every g ∈ supp(U1), with equality holding for some
g = g1 ∈ supp(U1) ⊂ supp(S) (attaining the minimum in the definition of α1).
Define S′ = SU−α1

1 . Since vg1 (U
α1
1 ) = vg1(S) with g1 ∈ supp(S), we conclude

that supp(S′) is a proper subset of supp(S). Indeed, g1 /∈ supp(S′). Since S and
U1 are each zero-sum sequences, it follows that S′ is also a zero-sum sequence.
Thus, in view of the minimality of |supp(S)|, we can apply the theorem to (the
possibly trivial) rational sequence S̃′ to find S̃′ = Uα2

2 · . . . · Uα�

� for some pos-
itive rational numbers αi and elementary atoms Ui satisfying (14). But now
S = Uα1

1 S′ = Uα1
1 Uα2

2 · . . . ·Uα�

� with (14) holding for j ∈ [2, �]. Since g1 ∈ supp(U1)
and g1 /∈ supp(S′) = supp(U2· . . . ·U�), we see that (14) holds when j = 1 and thus
(14) is established. This completes the proof of the first part of the theorem. It
remains to prove the upper bound for D(G0).

Let U ∈ A(G0) be an atom. We must show that |U | is at most the bound given
at the end of Theorem 3.7. If |U | ≤ 2, this is clearly the case and so we may assume
that |U | ≥ 3. In this case, we may assume that supp(U) ∩ supp(−U) = ∅. Let

U = Uα1
1 · . . . · Uα�

�

be the rational product decomposition of U given by the first part of the theorem.
In particular, each Ui ∈ A(G0) is an elementary atom and each αi ∈ Q>0 is a
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positive rational number. We note that the corresponding sequence R is trivial
since supp(U) ∩ supp(−U) = ∅. If αi > 1 for some i ∈ [1, �], then Ui |U is a proper
nontrivial zero-sum subsequence, contradicting that U ∈ A(G0) is an atom. Thus
αi ≤ 1 for all i ∈ [1, �]. Now

|U | =
�∑

i=1

αi|Ui| ≤
�∑

i=1

|Ui| ≤ �Delm(G0),

and, noting that supp(U) = 1
2 |supp+(U)| (since supp(U) ∩ supp(−U) = ∅), the

desired bound for |U | follows from the bound for � given in the first part of the
theorem.

We now consider which subsets X ⊂ G0 ⊂ Zr can be attained as the support
of an elementary zero-sum sequence. A related question asks which subsets X ⊂
G0 ∪ −G0 ⊂ Zr can be attained as the signed support of an elementary zero-sum
sequence. Given any U ∈ Brat(G0), we know that Un ∈ B(G0) for some n ≥ 1.
Applying Lemma 3.5, we see that X = supp+(U) for some elementary U ∈ B(G0)
is equivalent to X = supp+(U) for some elementary U ∈ Brat(G0) which in turn
is equivalent to X = supp+(U) for some elementary U ∈ A(G0). The same is true
when considering X = supp(U) for an elementary zero-sum sequence U over G0.
Of course, if X = supp+(U) for a zero-sum sequence U , then X ⊂ G0 ∪ −G0 is
symmetric and so X = Y ∪ −Y for some Y ⊂ G0 with Y ∩ −Y = ∅ .The following
lemma classifies the possibilities for X .

Lemma 3.8. Let r ≥ 1, let G0 ⊂ Zr be a nonempty subset, and let X ⊂ G0 ∪−G0

be a subset with X = −X. Then condition (a) holds if and only if conditions (b)
and (c) both hold. If G0 = −G0, then (a) and (b) are equivalent.

(a) X = supp+(U) for some elementary zero-sum sequence U ∈ B(G0).
(b) The elements of X ∩ G+

0 are linearly dependent over Q, but any proper subset
of X ∩ G+

0 is linearly independent over Q.
(c) There exists a nontrivial zero-sum sequence S ∈B(G0) with ∅ �=supp+(S)⊂X.

In particular, if U ∈ B(G0) is an elementary zero-sum sequence such that supp(S)∩
supp(−S) = ∅, then |supp(U)| ≤ r + 1.

Proof. We set Y = X ∩ G+
0 . Suppose that (a) holds. Then (c) holds and for each

g ∈ Y there exists a nonzero αg ∈ Q\{0} such that∑
g∈Y

αgg = 0 with αg > 0 whenever −g /∈ G0. (15)

Since each αg is nonzero, the elements of Y are linearly dependent.
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Now, if we assume that condition (b) does not hold, then there must be some
nonempty, proper subset Z � Y such that the elements of Z are linearly dependent.
But then for each g ∈ Z there exists βg ∈ Q such that∑

g∈Z

βgg = 0 (16)

with not all βg zero. Set βg = 0 for any g ∈ Y \Z. Suppose first that there is some
g ∈ Y with αg > 0 and βg �= 0. Multiplying the βg by −1 if need be, we may assume
αg > 0 and βg > 0. In this case, let γ = min{αg/βg : αg > 0, βg > 0, g ∈ Y } > 0.
If βg = 0 whenever αg > 0, we set γ = min{αg/βg : αg < 0, βg < 0, g ∈ Y } > 0.
Multiplying (16) by γ, we obtain∑

g∈Z

γβgg = 0. (17)

Moreover, by the definition of γ we see that γβg ≤ αg whenever αg > 0 and
βg > 0. Thus, if we subtract (17) from (15), the resulting coefficient αg − γβg will
be nonnegative whenever αg > 0. As a result, since αg > 0 whenever −g /∈ G0

(by (15)), we see that∑
g∈Z

(αg − γβg)g = 0 with αg − γβg ≥ 0 whenever −g /∈ G0. (18)

Furthermore, for an element g1 ∈ Y attaining the minimum in the definition of γ,
we see that the coefficient αg1 −γβg1 of g1 in (18) is zero, while not all coefficients in
(18) are zero since each αg is nonzero and since at least one βg is zero (Z is a proper
subset of Y ). Thus the Q-linear relation given in (18) corresponds to a nontrivial
rational zero-sum sequence V ∈ Brat(G0) whose support is strictly contained in the
support of U , contradicting that U ∈ B(G0) is an elementary zero-sum sequence.
We can then conclude that all proper subsets of Y are linearly independent, as
desired.

Now suppose that (b) holds and that either G0 = −G0 or (c) holds. Clearly, there
cannot be any zero-sum sequence U over G0 ⊂ Zr ⊂ Qr with supp(U) consisting
of linearly independent elements over Q. Thus, in order to show that (a) holds, it
suffices to show that there exists some U ∈ Brat(G0) with supp+(U) = X .

If (c) holds, then a nontrivial U ∈ Brat(G0) exists with ∅ �= supp+(U) ⊂ X .
However, since supp+(U) ∩ G+ can only be linearly independent if supp+(U) is
empty, we have supp+(U) = X as desired.

Next assume G0 = −G0. We need to show that there exists some U ∈ Brat(G0)
with supp+(U) = X . This is equivalent to showing that there exists some nonzero
α1, . . . , α� ∈ Q\{0} with

∑�
i=1 αigi = 0. As the elements of Y are linearly depen-

dent, there exist α1, . . . , α� ∈ Q not all zero with
∑�

i=1 αigi = 0. Thus, if αi = 0 for
some i ∈ [1, �], this would give a dependence relation on the elements of Y \{gi},
contradicting the hypothesis that every proper subset of Y is linearly independent.
Consequently, αi �= 0 for all i ∈ [1, �], and (a) follows as noted earlier.
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If U ∈B(G0) is an elementary zero-sum sequence such that supp(U) ∩
supp(−U) = ∅, then the first part of the theorem implies that supp(U)\{g} ⊂ Qr is
a set of linearly independent vectors for any g ∈ supp(U). Since any subset of vectors
of size r +1 must be linearly dependent in Qr, the desired bound |supp(U)| ≤ r +1
follows.

Lemma 3.9. Let r ≥ 1 and let G0 ⊂ Zr be a nonempty subset. Then D(G0) ≥ 3
if and only if there exists an elementary atom U ∈ A(G0). If this is the case, then
Delm(G0) ≥ 3 as well.

Proof. Since any elementary atom U ∈ A(G0) must satisfy |U | ≥ 3, one direction
is clear. Suppose now that D(G0) ≥ 3 and let V ∈ A(G0) be an atom with |V | ≥ 3.
Then supp+(V ) is nonempty, in which case Lemma 3.6 completes the proof.

Recall that, given any m × n integer matrix M with m ≤ n, we can perform
elementary row and column operations on M (swapping rows/columns, multiplying
a row/column by ±1, or adding an integer multiple of a row/column to another
row/column) to obtain a diagonal integer matrix D = (di,j)i,j with d1,1| · · · |dm,m

and di,i ≥ 0 for all i ∈ [1, m]. The matrix D is unique and is known as the Smith
normal form of the matrix M and the di,i are called the elementary divisors of M .
If g1, . . . , gn ∈ Zm are the columns of M , then Zm/〈g1, . . . , gn〉 ∼= Z/d1,1Z ⊕ · · · ⊕
Z/dm,mZ. Thus, when M has full rank (whence dm,m �= 0), we have dm,m =
exp(Zm/〈g1, . . . , gn〉). It is easily checked (and well-known) that for j ∈ [1, m]

gcd{det(M ′) : M ′ is a j × j submatrix of M}

remains invariant under elementary row and column operations and is thus equal
to d1,1 · · · dj,j . In particular, if m = n, so that M is a square matrix,

dm,m =
|det(M)|

gcd{|det(M ′)| : M ′ is a (m − 1) × (m − 1) submatrix of M} . (19)

These results can be found in many standard textbooks dealing with linear algebra
over Z.

We now turn our attention to finding bounds for D(G0) where G0 ⊂ Zr. Let
M be a r × |G+

0 | matrix whose columns are the vectors g ∈ G+
0 ⊂ Zr. Using

lattice theory and results from the geometry of numbers, Diaconis, Graham, and
Sturmfels [5] showed that

D(G0) ≤ (2r)r(r + 1)r+1 max{|det(M ′)| :M ′ is a r × r submatrix of M}

when G0 is finite with full rank r(〈G0〉) = r. However, when |G0| is not terribly
large, Theorem 3.7 can be used to obtain tighter bounds. To do so, we need to be
able to bound Delm(G0) and to do this we consider an argument of Sturmfels [52,
Chap. 4] which, when combined with additional results, allows us to give a linear
algebraic description of Delm(G0). In order to state the next theorem we first need
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the following definition. For a collection of r + 1 integer vectors g1, . . . , gr+1 ∈ Zr ,
we define

∆(g1, . . . , gr+1) =
∑r+1

i=1 |det(g1, . . . , gi−1, gi+1, . . . , gr+1)|
gcd{|det(g1, . . . , gi−1, gi+1, . . . , gr+1)| : i ∈ [1, r + 1]} ∈ N0,

where ∆(g1, . . . , gr+1) = 0 if r(〈g1, . . . , gr+1〉) < r.

Theorem 3.10. Let r ≥ 1 and let G0 ⊂ Zr be a nonempty subset with r(〈G0〉) = r

and D(G0) ≥ 3. Then

Delm(G0) = sup{∆(g1, . . . , gr+1) : g1, . . . , gr+1 ∈ G0 and D({g1, . . . , gr+1}) ≥ 3}

≤ sup{∆(g1, . . . , gr+1) : g1, . . . , gr+1 ∈ G0}.

Moreover, if G0 = −G0, then equality holds.

Proof. By Lemma 3.9, the hypothesis D(G0) ≥ 3 is equivalent to the existence
of an elementary atom U ∈ A(G0). Since any such elementary atom U satisfies
|U | ≥ 3, we conclude that

Delm(G0) ≥ 3. (20)

Let U ∈ A(G0) be an arbitrary elementary atom and let X = supp(U). Since
U is an elementary atom, supp(U) ∩ supp(−U) = ∅. By Lemma 3.8, X is linearly
dependent over Q, but any proper subset of X is linearly independent. In particular,
|X | = x + 1 ≥ 2 with

1 ≤ r(〈X〉) = x ≤ r(〈G0〉) = r.

Thus, if x < r, then we can find a subset X ′ ⊂ G0\(X∪−X) such that |X ′| = r−x

and r(〈X ∪ X ′〉) = r. Let Y = X ∪ X ′. Note that supp(U) ⊂ Y ⊂ G0 with
|Y | = r + 1, and that, for each g ∈ G0, g and −g are not both contained in Y . Let
Y = {g1, . . . , gr+1} where g1, . . . , gx+1 are the elements from X .

Let M be the r × (r + 1) matrix whose columns are the vectors gi ∈ Y ⊂ G0.
Then the vector of integer multiplicities x = (xi)i∈[1,r+1] ∈ Z|Y | = Zr+1 corre-
sponds to a zero-sum subsequence S =

∏r+1
i=1 gxi

i ∈ B(G0) with supp(S) ⊂ Y (with
supp(S) ∩ supp(−S) = ∅) and vgi(S) = xi precisely when x is in the kernel of the
matrix M and xi ≥ 0 for all i ∈ [1, r + 1]. Also, the vector x ∈ Zr+1 corresponds
to a zero-sum subsequence S =

∏
i∈I+ gxi

i

∏
i∈I−(−gi)−xi ∈ B(G0 ∪ −G0) with

supp+(S) ⊂ Y ∪−Y precisely when x is in the kernel of the matrix M , I+ ⊂ [1, r+1]
denotes the subset of indices i ∈ [1, r + 1] with xi > 0, and I− ⊂ [1, r + 1] denotes
the subset of indices i ∈ [1, r+1] with xi < 0. In the latter case, we have S ∈ B(G0)
precisely when −Y − ⊂ G0 for Y − = {yi ∈ Y : i ∈ I−}.

Consider the vector x = 1
δ (xi)i∈[1,r+1] ∈ Zr+1 given by

xi = (−1)i det(g1, . . . , gi−1, gi+1, . . . , gr+1) for i ∈ [1, r + 1],
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where

δ = gcd{det(g1, . . . , gi−1, gi+1, . . . , gr+1) : i ∈ [1, r + 1]}.

Since r(〈Y 〉) = r, the xi cannot all be zero, and thus δ > 0 is also nonzero. Since
each gi ∈ Zr is an integer-valued vector, it is clear from the above definition that
x ∈ Zr+1 with

gcd
{

xi

δ
: i ∈ [1, r + 1]

}
= 1. (21)

Moreover, since X = {g1, . . . , gx+1} is linearly dependent, xi = 0 for all i ∈ [x + 2,

r + 1].
We now show that x is in the kernel of the matrix M whose columns are the

vectors gi ∈ Zr. Let gi = (gi,j)j∈[1,r] with gi,j the jth entry of the column vector gi.
With j ∈ [1, r] arbitrary, the jth entry of Mx ∈ Zr is

1
δ

r+1∑
i=1

gi,jxi =
1
δ

r+1∑
i=1

(−1)igi,j det(g1, . . . , gi−1, gi+1, . . . , gr+1). (22)

However, by the cofactor expansion formula for the determinant of a matrix, the
right-hand side of (22) is equal (up to sign) to the product of 1

δ and the determinant
of the (r+1)×(r+1) matrix M ′ formed from the r×(r+1) matrix M by repeating
the jth row (gi,j)i∈[1,r] of M and then computing the cofactor expansion about this
duplicate row. As M ′ has two duplicate rows, its determinant is zero and thus (22)
is zero if j ∈ [1, r]. Since the jth entry of Mx ∈ Zr is equal to (22), this shows
that every coordinate of Mx is zero. Hence Mx = 0 and x is in the kernel of M as
claimed.

Since x = 1
δ (xi)i∈[1,r+1] ∈ Zr+1 is an integer-valued vector in the kernel of M , it

follows (as was noted earlier in the proof) that x corresponds to a nontrivial (not all
xi are zero) zero-sum sequence S ∈ B(G0∪−G0) with supp+(S) ⊂ X∪−X (xi = 0
for i ∈ [x + 2, r + 1] and X = {g1, . . . , gx+1}). Moreover, supp(S) ∩ supp(−S) = ∅.
Consequently, as X ∪ −X = supp+(U) with U ∈ A(G0) elementary, supp+(S) =
X ∪−X . From (21) we see that S �= T � for any T ∈ B(G0 ∪−G0) and � ≥ 2. Since
any proper subset of supp(U) is linearly independent, it follows that there is no
nontrivial zero-sum sequence V ∈ B(G0 ∪ −G0) with ∅ �= supp+(V ) � supp+(U).
Thus U is an elementary atom not just over G0, but also over G0 ∪ −G0. From
Lemma 3.5, U must be the unique (up to sign) elementary atom over G0 ∪ −G0

with signed support X ∪ −X , and all other elementary zero-sum sequences T over
G0 ∪ − G0 with supp+(T ) = X ∪ −X (for which supp(T ) ∩ supp(−T ) = ∅) must
be a power of either U or −U . Applying this conclusion to T = S, we find that
either S = U � or −S = U � for some � ≥ 1. By swapping the sign of each xi in the
definition of x = (xi)i∈[1,r] (thus replacing x by −x) if need be, we may without
loss of generality assume the former: S = U � and, in particular, S ∈ B(G0). Since
S �= T � for any T ∈ B(G0∪−G0) and � ≥ 2 as observed above, it follows that � = 1
and S = U .
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Now

|U | = |S| =
1
δ

r∑
i=1

|xi| =
1
δ

r+1∑
i=1

|det(g1, . . . , gi−1, gi+1, . . . , gr+1)|

= ∆(g1, . . . , gr+1).

Since U ∈ A(G0) was an arbitrary elementary atom with supp(U) ⊂ {g1, . . . , gr+1},
we have

Delm(G0) ≤ sup{∆(g1, . . . , gr+1) : g1, . . . , gr+1 ∈G0 and

D({g1, . . . , gr+1})≥ 3} (23)

≤ sup{∆(g1, . . . , gr+1) : g1, . . . , gr+1 ∈ G0}. (24)

Let g1, . . . , gr+1 ∈G0 be vectors with D({g1, . . . , gr+1})≥ 3 and such that
∆(g1, . . . , gr+1)> 0. Such vectors exist by (20) and (23). The condition
∆(g1, . . . , gr+1) > 0 implies that r(〈g1, . . . , gr+1〉) = r. Since D({g1, . . . , gr+1})≥ 3
and by Lemma 3.9, there exists an elementary atom U ∈A({g1, . . . , gr+1}), such
that, without loss of generality, supp(U) = {g1, . . . , gx+1}, where x ≤ r.
Now, repeating the above arguments using this particular elementary atom U ,
we find that Delm(G0) ≥ |U | = ∆(g1, . . . , gr+1). Taking the supremum over
∆(g1, . . . , gr+1) for all choices of g1, . . . , gr+1 ∈ G0 with D({g1, . . . , gr+1}) ≥ 3
and ∆(g1, . . . , gr+1) > 0, we see that equality holds in (23).

Next suppose that −G0 = G0. To complete the proof we need to show that
equality holds in (24). We may assume Delm(G0) < ∞ as the claim is triv-
ially true otherwise. Let g1, . . . , gr+1 ∈ G0 be vectors that obtain the maximum
in (23). If r(〈g1, . . . , gr+1〉) < r, then ∆(g1, . . . , gr+1) = 0 and, by the lower
bound Delm(G0)≥ 3 from (20), the g1, . . . , gr+1 ∈ G0 cannot maximize (24). Thus
we may assume that r(〈g1, . . . , gr+1〉) = r. Note that replacing any gi with −gi

does not alter the value of ∆(g1, . . . , gr+1) and that the hypothesis G0 = −G0

ensures that −gi ∈ G0. Thus, to show equality in (24), it suffices to show that
D({ε1g1, . . . , εr+1gr+1}) ≥ 3 for some choice of εi ∈ {1, −1} which, by Lemma 3.9,
is equivalent to the existence of an elementary atom U ∈ A({ε1g1, . . . , εr+1gr+1})
for some choice of εi ∈ {1,−1} which in turn is equivalent to the existence of an
elementary atom U ∈ A(G0) with supp+(U) ⊂ {g1, . . . , gr+1} ∪ −{g1, . . . , gr+1}.
To show the later we will use Lemma 3.8.

Let Y ⊂ {g1, . . . , gr+1} be those gi ∈ {g1, . . . , gr+1} such that det(g1, . . . , gi−1,

gi+1, . . . , gr+1) �= 0. It follows that {g1, . . . , gr+1}\{gi} is linearly independent
for any gi ∈ Y . Thus, any subset of {g1, . . . , gr+1}\{gi}, including Y \{gi}, must
also be linearly independent. This shows that all proper subsets of Y are linearly
independent.

Suppose the elements of Y are linearly independent. Then clearly |Y | ≤ r and
thus Y must be a proper subset of {g1, . . . , gr+1}. However, since r(〈g1, . . . , gr+1〉) =
r, it follows that we can complete Y to some full rank set Y ′ ⊂ {g1, . . . , gr+1} with
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Y ⊂ Y ′. Then det(g1, . . . , gi−1, gi+1, . . . , gr+1) �= 0 for the unique gi ∈ {g1, . . . ,

gr+1}\Y ′. By the definition of Y , this forces gi ∈ Y , contradicting that gi /∈ Y ′

with Y ⊂ Y ′. Thus we conclude that the elements of Y are linearly dependent.
In view of the conclusions of the previous two paragraphs, along with the hypoth-

esis G0 = − G0, we can now apply Lemma 3.8 and conclude that there exists an
elementary zero-sum sequence S ∈ B(G0) with supp+(S) = Y ⊂ {g1, . . . , gr+1}∪ −
{g1, . . . , gr+1}. By Lemma 3.5, this ensures that there exists an elementary atom
U ∈ A(G0) with supp+(U) = Y ⊂ {g1, . . . , gr+1}∪−{g1, . . . , gr+1} which completes
the proof.

Corollary 3.11. Let r ∈ N, (e1, . . . , er+1) denote the standard basis of Zr+1, and
G0 ⊂ G = 〈e1, . . . , er〉 be a nonempty subset with r(〈G0〉) = r and D(G0) ≥ 3.
Furthermore, let G̃0, G̃1 ⊂ Zr+1 be the subsets given by

G̃0 = {g + er+1 : g ∈ G0} ∪ G0 and

G̃1 = {g + er+1 : g ∈ G0} ∪ {g − er+1 : g ∈ G0},

and let M(G̃i) be all those nonsingular (r + 1) × (r + 1) matrices with columns
g̃1, . . . , g̃r+1 ∈ G̃i ⊂ Zr+1, for i ∈ [0, 1]. Also, let dr+1(M̃) denote the largest
elementary divisor of the matrix M̃ .

(1) Delm(G0) ≤ 2 sup{dr+1(M̃) : M̃ ∈ M(G̃0)} ≤ 2 sup{|det(M̃)| : M̃ ∈ M(G̃0)}
and

(2) Delm(G0) ≤ sup{dr+1(M̃) : M̃ ∈ M(G̃1)} ≤ sup{|det(M̃)| : M̃ ∈ M(G̃1)}.

Proof. By Lemma 3.9 and Theorem 3.10 we know that

3 ≤ Delm(G0) ≤ sup{∆(g1, . . . , gr+1) : g1, . . . , gr+1 ∈ G0}.

It follows that there exist g1, . . . , gr+1 ∈ G0 ⊂ Zr with ∆(g1, . . . , gr+1) > 0 and
that the supremum on the right-hand side is necessarily obtained for such a choice
of g1, . . . , gr+1. Let g1, . . . , gr+1 ∈ G0 be such that ∆(g1, . . . , gr+1) > 0. Then
r(〈g1, . . . , gr+1〉) = r.

For each i ∈ [1, r + 1], let g̃i = gi ± er+1, where an appropriate choice for the
sign of er+1 will be determined shortly, and let M̃ ∈ M(G̃1) be the (r +1)× (r+1)
integer matrix with columns g̃1, . . . , g̃r+1 ∈ G̃1 ⊂ Zr+1. Let

δ = gcd{|det(g1, . . . , gi−1, gi+1, . . . , gr+1)| : i ∈ [1, r + 1]} and

δ̃ = gcd{|det(M ′)| : M ′ is a r × r sub-matrix of M̃}.

Then δ̃ | δ. By using the cofactor expansion formula for the determinant and expand-
ing along the final row of M̃ , we see that by choosing the signs in each g̃i appro-
priately, 1

δ det(M̃) = ∆(g1, . . . , gr+1). Now, since δ̃ | δ and by (19), we have

∆(g1, . . . , gr+1) =
1
δ

det(M̃) ≤ 1
δ̃

det(M̃) = dr+1(M̃).
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Since the choice of g1, . . . , gr+1 ∈ G0 was arbitrary, subject to the restriction
∆(g1, . . . , gr+1) > 0, the bound from Theorem 3.10 establishes (2).

For each i ∈ [1, r + 1], redefine g̃i as either g̃i = gi + er+1 or g̃i = gi, where the
choice of coefficient for er+1 will be determined shortly, and let M̃ ∈ M(G̃0) be the
(r + 1) × (r + 1) integer matrix with columns g̃1, . . . , g̃r+1 ∈ G̃0 ⊂ Zr+1. Let

δ = gcd{|det(g1, . . . , gi−1, gi+1, . . . , gr+1)| : i ∈ [1, r + 1]} and

δ̃ = gcd{|det(M ′)| : M ′ is a r × r sub-matrix of M̃}.

Then δ̃ | δ. By again using the cofactor expansion formula for the determinant and
expanding along the final row of M̃ , we see that by choosing the coefficients for
er+1 in each g̃i appropriately, we can achieve

det(M̃) =
∑
i∈I

|det(g1, . . . , gi−1, gi+1, . . . , gr+1)|

for some subset I ⊂ [1, r]. By using the exact opposite choices for the g̃i, we can
instead achieve

det(M̃) = −
∑

i∈[1,r+1]\I

|det(g1, . . . , gi−1, gi+1, . . . , gr+1)|.

Between these two options, take the one where |det(M̃)| is larger. Then

2|det(M̃)| ≥
r+1∑
i=1

|det(g1, . . . , gi−1, gi+1, . . . , gr+1)|,

in which case (19) and δ̃ | δ give

∆(g1, . . . , gr+1) ≤
2
δ
|det(M̃)| ≤ 2

δ̃
|det(M̃)| = 2dr+1(M̃),

establishing (1).

The special case G0 = G+
r ∪ −G+

r . Our goal for the remainder of this section
is to apply the machinery above to the case when

G0 = G+
r ∪ −G+

r ,

where G+
r denotes the nonzero vertices of the r-dimensional hypercube as defined

in Sec. 2. Specifically, we wish to obtain upper and lower bounds for D(G+
r ∪−G+

r )
which we will apply to the study of invariants of monoids of modules in Sec. 4.

If r = 1, then clearly D(G0) = 2. Thus we suppose for the remainder of this
section that r > 1 in which case D(G0) ≥ 3. Note that ∆(g1, . . . , gr+1) is unaffected
if any gi is replaced by −gi. Thus we need only consider matrices with columns
from G+

r when applying Theorem 3.10 and Corollary 3.11. By Corollary 3.11 we
see that Delm(G0) is bounded from above by twice the maximal determinant of a
(r + 1) × (r + 1) (0, 1)-matrix. It is well-known that this value is 1

2r+1 times the
maximal value of a (r + 2)× (r + 2) (1,−1)-matrix and this value, in turn, is equal
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to the maximal value of a (r+2)×(r+2) (−1, 0, 1)-matrix. Moreover, this maximal
value is bounded by Hadamard’s bound and, together with Theorem 3.7, we obtain
the following upper bound

D(G0) ≤ (|G+
0 | − r)Delm(G0) ≤

(2r − r − 1)
2r

(r + 2)
r+2
2 < (r + 2)

r+2
2 .

We now construct a lower bound for D(G0). Suppose we have an (r + 1) ×
(r + 1) (0, 1)-matrix M whose determinant is a large prime p. Then we must
have dr+1 = p and dr = 1 where the d1| · · · |dr+1 are the elementary divisors
of M . Therefore, by (19), we see that the greatest common divisor of the deter-
minants of r × r sub-matrices of M must be 1. On the other hand, if we delete
any row of M , we obtain, by applying the cofactor expansion formula to det(M)
and expanding along the deleted, row r + 1 vectors g1, . . . , gr+1 ∈ G0 where
gcd{|det(g1, . . . , gi−1, gi+1, . . . , gr+1)| : i ∈ [1, r + 1]} divides det(M) = p. As p is
prime, we can conclude that gcd{det(g1, . . . , gi−1, gi+1, . . . , gr+1) : i ∈ [1, r + 1]} is
either 1 or p. Moreover, since the greatest common divisor of the determinants of
r × r sub-matrices is 1, we see that we can achieve 1 rather than p by choosing
an appropriate row of M to delete. Then, in this case, ∆(g1, . . . , gr+1) = dr+1 =
|det(M)| = p and we obtain the lower bound

max{|det(M)| : M is a (r + 1) × (r + 1) (0, 1)-matrix with |det(M)| prime}

≤ Delm(G0) ≤ D(G0).

In general, the possible values of |det(M)| for an arbitrary (0, 1)-matrix are
not known, though this question is of great interest to many researchers (see [46]
for known results on the spectrum of the determinant). However, computational
evidence obtained for small values of r has led many to observe that there is (at
least for r small) a constant C ∼= 1

2 and a large consecutive interval [0, C 2−r−1

(r + 2)(r+2)/2] of obtainable values for |det(M)|, leading some to conjecture that
the set of values of det(M) is dense in a interval whose length is a fraction of
the maximal possible value (see [45]). For any interval of obtainable values [0, n],
Bertrand’s postulate ensures that a prime of size at least 1

2n will occur in that
interval. Thus, if the intuitions gathered from examining small values of r hold true
for larger values in a very strong sense, we would expect a lower bound for D(G0)
of the form (

r + 2
C

)(r+2)/2

� Delm(G0) ≤ D(G0),

where C ≥ 1 is some constant. We note that such a lower bound would very nearly
match the upper bound in order of magnitude.

Constructively, the best lower bounds we have been able to achieve involve the
Fibonacci numbers. We now present a construction giving a lower bound on D(G0)
regardless of concerns about the possible values of det(M). We note that for small
values of r, examples of (0, 1)-matrices with large prime determinant are known
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and can thus be used to improve upon this bound. For r ∈ N0, we denote by Fr the
rth Fibonacci number. That is, F0 = 0, F1 = 1, and Fr = Fr−1 + Fr−2 for all r ≥ 2.

Proposition 3.12. Let r ∈ N, let (e1, . . . , er) denote the standard basis of Zr, and
set Hr = 〈e1 + · · · + er〉. Then there exists a sequence Sr ∈ F(G+

r ) with

σ(Sr) ∈ Hr and Σ≤|Sr|−1(Sr) ∩ Hr = ∅

such that

|supp(Sr)| = r with supp(Sr) spanning Qr,

|Sr| = Fr+1 and σ(Sr) = Fre1 + · · · + Frer.

Proof. The sequence S1 = e1 is easily seen to satisfy the conditions of the theorem.
We proceed recursively to define Sr for r ≥ 2, assuming that

Sr−1 = g1 · . . . · gFr ∈ F(G+
r−1)

has already been constructed so as to satisfy the conclusions of the theorem.
Let

S′
r = Sr−1e

Fr−1
r ∈ F(G+

r )

and let

Sr = ϕ(S′
r) ∈ F(Zr),

where ϕ : Zr → Zr is the map defined by x �→ −(x − (e1 + · · · + er)) and extends
to an affine linear isomorphism of Qr. The map ϕ acts on an element x ∈ G+

r

simply by exchanging each 0 for a 1 and each 1 for a 0. Therefore, ϕ(x) ∈ G+
r

for each x ∈ G+
r \{e1 + · · · + er}. As a result, since e1 + · · · + er /∈ supp(S′

r) (as
supp(Sr−1) ⊂ G+

r−1 and r ≥ 2), we see that

Sr ∈ F(G+
r ) with |Sr| = |S′

r| and |supp(Sr)| = |supp(S′
r)|.

Observe that

|Sr| = |S′
r| = |Sr−1| + Fr−1 = Fr + Fr−1 = Fr+1

and that

σ(Sr) = σ(ϕ(S′
r)) = |Sr|e1 + · · · + |Sr|er − σ(S′

r)

= Fr+1e1 + · · · + Fr+1er − (Fr−1e1 + · · · + Fr−1er)

= Fre1 + · · · + Frer ∈ Hr.

Moreover, since ϕ : Qr → Qr is an affine linear isomorphism, we have that

|supp(Sr)| = |supp(ϕ(S′
r))| = |supp(S′

r)| = |supp(Sr−1)| + 1 = r.
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Since ϕ : Qr → Qr is an affine linear isomorphism, to show that supp(Sr) =
supp(ϕ(S′

r)) spans Qr it suffices to show that supp(S′
r) spans Qr. But this is clear

since supp(S′
r) = supp(Sr−1) ∪ {er} with supp(Sr−1) spanning Qe1 + · · · + Qer−1

by hypothesis. It remains to show that Σ≤|Sr|−1(Sr)∩Hr = ∅. Since σ(ϕ(T )) ∈ Hr

if and only if σ(T ) ∈ Hr for any sequence T ∈ F(Zr), we see that in order to show
Σ≤|Sr|−1(Sr) ∩ Hr = ∅, it suffices to show that Σ≤|S′

r|−1(S′
r) ∩ Hr = ∅.

Suppose that T |Sr is a nontrivial subsequence with σ(T ) ∈ Hr, that is, the
coordinates of each entry of T are equal. Then the coordinates of the first r − 1
entries are equal. However, since S′

r = Sr−1e
Fr−1
r and by the hypothesis that

Σ≤|Sr−1|−1(Sr−1) ∩ Hr−1 = ∅, this is only possible if either T | eFr−1
r or Sr−1 |T .

In the former case, since r ≥ 2, it is clear that σ(T ) /∈ H . In the latter case, since
σ(Sr−1) = Fr−1e1 + · · · + Fr−1er−1 and S′

r = Sr−1e
Fr−1
r , σ(T ) ∈ H only if T = S′

r.
Thus Σ≤|S′

r|−1(S′
r) ∩ Hr = ∅ follows, completing the proof.

Theorem 3.13. Let r ∈ N≥2, let (e1, . . . , er) denote the standard basis of Zr, and
let G0 = G+

r ∪ −G+
r . Then

Fr+2 ≤ D(G0) ≤
(2r − r − 1)

2r
(r + 2)

r+2
2 ≤ (r + 2)

r+2
2 .

Proof. The upper bounds follow from Corollary 3.11 (see the discussion following
the corollary). It remains to show Fr+2 ≤ D(G0). Let S0 ∈ F(G+

r ) be a sequence
satisfying the conclusions of Proposition 3.12 and define

U = Sr(−e1 − · · · − er)Fr ∈ F(G0).

Then |U | = |Sr| + Fr = Fr+1 + Fr = Fr+2 and σ(U) = σ(Sr) − (Fre1 + · · · +
Frer) = 0. Moreover, by the definition of U it is clear that if T |U is a zero-
sum subsequence with T = T +T− where supp(T +) ⊂ G+

r and supp(T−) ⊂ −G+
r ,

then we must have σ(T +) ∈ H with T + |Sr. However, since σ(Sr) ∈ Hr and
Σ≤|Sr|−1(Sr) ∩ Hr = ∅, this is only possible if either T + is trivial or T + = Sr.
If T + is trivial, then T = (−e1 − · · · − er)|T | which is a zero-sum sequence only
if T is trivial. If T + = Sr, then σ(T +) = σ(Sr) = Fre1 + · · · + Frer and it then
follows from the definition of U that the only way T can be a zero-sum is if T = U .
Therefore, U is a zero-sum sequence of length Fr+2 having no proper nontrivial
zero-sum subsequences. Thus D(G0) ≥ Fr+2 as desired.

Remark 3.14. Let r ∈ N, (e1, . . . , er), and G0 be as in Theorem 3.13 but with
r > 1. From Theorem 3.7 we know that Delm(G0) ≤ D(G0) ≤ 1

2 |G0|Delm(G0).
But the expected value of Delm(G0) is much larger than |G0|, meaning that
D(G0) ≈ Delm(G0). Indeed, by a computer based search we have verified that
D(G0) = Delm(G0) for r ∈ {2, 3}. However, whether D(G0) = Delm(G0) remains
true for r ≥ 4 is not known. For the module-theoretic relevance of this question
see [2, Lemma 6.9 and Corollary 6.10].
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4. Monoids of Modules Over Commutative
Noetherian Local Rings

In this section, we study direct-sum decompositions of finitely generated modules
over commutative Noetherian local rings. With R a commutative Noetherian local
ring and C a class of finitely generated modules over R, it is well-known that the
monoid of modules V(C) is Krull. Our first lemma summarizes some basic informa-
tion about C.

Lemma 4.1. Let (R, m) be a commutative Noetherian local ring with maximal ideal
m and let (R̂, m̂) denote its m-adic completion. Let C denote the class of all finitely
generated R-modules and let C′ denote a subclass of C such that V(C′) ⊂ V(C) is a
divisor-closed submonoid.

(1) The embedding V(C) ↪→ V(Ĉ), defined by [M ] �→ [M⊗R̂], is a divisor homomor-
phism into the free abelian monoid V(Ĉ), where Ĉ denotes the class of finitely
generated R̂-modules. In particular, V(C) is a Krull monoid.

(2) V(C′) is a Krull monoid whose class group is an epimorphic image of a sub-
group of the class group of V(C). If V(C′) is tame, then each of the arithmetical
finiteness results of Proposition 2.1 hold.

(3) Suppose, in addition, that R is one-dimensional and reduced (no nonzero nilpo-
tent elements). Let G denote the class group of V(C′) and let GP ⊂ G denote
the set of classes containing prime divisors.

(a) The class group G of V(C′) is a finitely generated abelian group.
(b) V(C′) is tame if and only if D(GP ) < ∞ if and only if GP is finite.

Proof. The monoid V(Ĉ) is free abelian by the theorem of Krull–Remak–Schmidt–
Azumaya. Also, the embedding defined by [M ] �→ [M ⊗ R̂] is a divisor homomor-
phism by [53] or [40, Corollary 1.15], and hence V(C) is a Krull monoid, proving (1).

Let H =V(C) and suppose that the inclusion H ↪→ F = F(P ) a divisor
theory. Then C(H) = q(F )/q(H). If H ′ ⊂ H is divisor-closed, the inclusion
H ′ ↪→ F ′ = F(P ′), where P ′ = {p ∈ P : p divides some a ∈ H ′ in F}, is a
divisor homomorphism. Note that H ′ = F ′∩q(H ′) and that q(H ′) = q(F ′)∩q(H).
Therefore, the homomorphism q(F ′) → q(F )/q(H), defined by a �→ aq(H) for each
a ∈ q(F ′), has kernel q(F ′)∩ q(H) = q(H ′). Consequently, there exists a monomor-
phism q(F ′)/q(H ′) → q(F )/q(H) = C(H). Finally, [28, Theorem 2.4.7] implies that
the class group of H ′ is an epimorphic image of a subgroup of q(F ′)/q(H ′), and
hence of a subgroup of C(H), proving (2).

We first consider the first statement of (3). The class group of V(C) is free abelian
of finite rank by [38, Theorem 6.3]. Therefore, by statement (2), the class group G

of V(C′) is finitely generated. We now consider the second statement of (3). Since
G is finitely generated, [30, Theorem 4.2] implies that V(C′) is tame if and only if
D(GP ) < ∞. Again, since G is finitely generated, [28, Theorem 3.4.2] implies that
D(GP ) < ∞ if and only if GP is finite.
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Remark 4.2. We now make two brief remarks on certain hypothesis in state-
ment (3) of Lemma 4.1.

(1) The assumption that R is reduced can be slightly weakened (see [38, Sec. 6]).
However, the assumption that R is one-dimensional is essential for guaranteeing
that the class group of V(C′) is finitely generated (see [40, Lemma 2.16]). Indeed,
there is a two-dimensional complete Noetherian local Krull domain S whose
class group is not finitely generated. By a result of Heitman, there is a factorial
two-dimensional Noetherian local domain R whose completion is isomorphic
to S. Then, if C is the class of finitely generated torsion-free R-modules, the
class group of V(C) is isomorphic to the class group of S (see [2, Sec. 5]), and
hence not finitely generated.

(2) Both characterizations in (3)(b) strongly depend on the fact that the class
group of V(C′) is finitely generated and thus the hypothesis that R is one-
dimensional in (3)(a) is critical for the results of this section pertaining to
monoids of modules.

Let R be a one-dimensional reduced commutative Noetherian local ring and let
C′ be a class of finitely generated R-modules such that V(C′) is a divisor-closed
submonoid of the monoid V(C) of all finitely generated R-modules. Then V(C′) is
a Krull monoid with finitely generated class group G and we let GP ⊂ G denote
the set of classes containing prime divisors. By Proposition 2.3, sets of lengths in
V(C′) can be studied in the monoid B(GP ) of zero-sum sequences over GP . Using
the combinatorial results of Sec. 3, we study sets of lengths in such Krull monoids
in Theorem 4.3 in the case where GP contains the set G+

r ∪G−
r where G+

r denotes
the nonzero vertices of the hypercube in a finitely generated free abelian group.
We then investigate finer arithmetical invariants of V(C′) for small values of r. We
conclude this section with an explicit example of a monoid of modules realizing
such a Krull monoid (see Corollary 4.7).

Theorem 4.3. Let H be a Krull monoid whose class group C(H) is free abelian
with basis (e1, . . . , er) for some r ≥ 2, and let GP ⊂ C(H) denote the set of classes
containing prime divisors. Suppose that GP is finite and that GP = −GP with
GP ⊃ G+

r .

(1) There exists M ∈ N0 such that, for each k ≥ 2, Uk(H) = L′ ∪ L∗ ∪ L′′, where
L∗ is an interval, L′ ⊂ min L∗ + [−M,−1], and L′′ ⊂ maxL∗ + [1, M ].

(2) For each k ∈ N,

ρ2k(H) = kD(GP ) ≥ kFr+2 and

kD(GP ) + 1 ≤ ρ2k+1(H) ≤ kD(GP ) +
D(GP )

2
.

Upper bounds for D(GP ), and hence for each ρk(H), then follow from Theorem 3.13.

Proof. By Proposition 2.3, B(GP ) and H are tame and thus, by Lemma 2.2, it
suffices to prove all assertions about H for the monoid B(GP ).
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By Proposition 2.1(3), it suffices to show that min ∆(GP ) = 1. If U = e1e2(−e1−
e2), then U ∈ A(GP ) with L((−U)U) = {2, 3}. Therefore 1 ∈ ∆(GP ), proving (1).

Since GP ⊃ G+
r ∪ −G+

r , the monoid B(G+
r ∪ −G+

r ) is a divisor closed sub-
monoid of B(GP ) and thus D(GP ) ≥ D(G+

r ∪ −G+
r ). Theorem 3.13 now implies

that D(GP ) ≥ D(G+
r ∪ − G+

r ) ≥ Fr+2. The inequalities involving ρk(GP ) now
follow easily from the definitions. Indeed, if k ∈ N and A ∈ B(GP ) with

A = 0v0(A)U1 · . . . · Uk = 0v0(A)V1 · . . . · Vl,

where U1, . . . , Uk, V1, . . . , Vl ∈ A(GP )\{0} are minimal zero-sum sequences, then

2l ≤
l∑

i=1

|Vi| = |A| − v0(A) =
k∑

i=1

|Ui| ≤ kD(GP ),

whence l ≤ kD(GP )/2 and thus ρk(GP ) ≤ kD(GP )/2. If U = g1 · . . . ·gl is a minimal
zero-sum sequence of length |U | = l = D(GP ), then

Uk(−U)k =
l∏

i=1

((−gi)gi)k (25)

and hence ρ2k(GP ) ≥ kD(GP ). Multiplying each side of (25) by any fixed atom, we
find that ρ2k+1(GP ) ≥ kD(GP ) + 1.

We now make a conjecture that claims that, at least for sufficiently large k ∈ N,
the first statement of Theorem 4.3 holds with M = 0.

Conjecture 4.4. Let H be a Krull monoid as in Theorem 4.3 and suppose, in
addition, that GP = G+

r ∪ −G+
r . Then there exists k∗ ∈N such that for each k ≥ k∗,

Uk(H) is an interval.

We now discuss one possible strategy for proving Conjecture 4.4. If one
could show that there exists A∗ ∈B(GP ) with L(A∗) an interval and maxL(A∗)/
min L(A∗) = D(GP )/2, then there must exist k∗ ∈N such that for each k ≥ k∗,

Uk(H) is an interval (see [20, Theorem 3.1]). Unfortunately, this strategy seems to
require knowledge of the precise value of the Davenport constant, which is currently
known only for r ∈ [2, 3]. Even for r = 4, it seems to be computationally infeasible
to compute the Davenport constant. However, for small values of r we can provide
a direct proof of Conjecture 4.4. Indeed, we are even able to show in Corollary 4.6
that the conjecture holds when r ∈ [2, 3] for k∗ = 2. We first provide a simple
lemma.

Lemma 4.5. Let G be a free abelian group of rank r ∈ N, let (e1, . . . , er) denote a
basis for G, and set G0 = G+

r ∪ −G+
r . For every U ∈ A(G0) with |U | ≥ 3 and any

g ∈ G0, we have vg(U) < |U |/2.

Proof. Let U = gkg1 · . . . · gl ∈ A(G0) where k = vg(U) and |U | = k + l. By
symmetry we may suppose that g ∈ G+

r . Clearly, we have k ≤ l = |U |−k and hence
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k ≤ |U |/2. Assume for the sake of contradiction that 2k = |U |. Then g1, . . . , gl ∈
−G+

r . For each h ∈ G0 with h =
∑r

i=1 aiei for some a1, . . . , ar ∈ Z, we denote by
S(h) the set S(h) = {i ∈ [1, r] : ai �= 0}. We now obtain that

S(g1) ∪ · · · ∪ S(gl) ⊂ S(g) ⊂
l⋂

i=1

S(gi),

and hence g1 = · · · = gl = −g. Unless U = g(−g), this contradicts the fact that
U ∈ A(G0).

Corollary 4.6. Let H be a Krull monoid whose class group G is free abelian with
basis (e1, . . . , er) for some r ∈ [2, 3]. Let GP ⊂ G denote the set of classes containing
prime divisors and suppose that GP = G+

r ∪ −G+
r .

(1) Suppose r = 2. Then c(H) = t(H) = D(GP ) = 3 and, for each k ≥ 2, the set
Uk(H) is an interval. Moreover, for all k ≥ 2 and j ∈ [0, 1], ρ2k+j(H) = 3k + j.

(2) Suppose r = 3. Then c(H) = D(GP ) = 5 and, for each k ≥ 2, the set Uk(H) is
an interval. Moreover, for all k ≥ 2 and j ∈ [0, 1], ρ2k+j(H) = 5k + j.

Proof. When r = 2, the statement c(H) = t(H) = D(GP ) = 3 is a simple obser-
vation. Indeed, this setting is a special case of [2, Theorem 6.4]. The remaining
assertions follow from Theorem 4.3.

We now assume r = 3. A lengthy technical proof or a computer search shows
that D(GP ) = 5 and that {V ∈ A(GP ) : |V | = 5} = {Vi,−Vi : i ∈ [1, 4]} where

V1 = (e1 + e2)(e1 + e3)(e2 + e3)(−e1 − e2 − e3)2,

V2 = (e1 + e2)(e1 + e3)(−e2 − e3)(−e1)2,

V3 = (−e1 − e3)(e1 + e2)(e2 + e3)(−e2)2, and

V4 = (−e1 − e2)(e1 + e3)(e2 + e3)(−e3)2.

Lemma 4.5 then implies that each minimal zero-sum sequence of length four is
squarefree. Clearly, L((−V1)V1) = {2, 5}. Proposition 2.3 now implies that 5 ≤
2 + max∆(H) ≤ c(H) ≤ D(GP ) = 5, whence c(H) = 5. Again, by Proposition 2.3,
it suffices to prove the remaining assertions for B(GP ).

Theorem 4.3 implies that ρ2k(GP ) = kD(GP ) = 5k and that 5k + 1 ≤ ρ2k+1

(GP ) ≤ 5k + 2 for all k ∈ N. In order to prove that Uk(H) is an interval for each
k ∈ N, it suffices to show that Uk(GP ) ∩ N≥k is an interval for each k ∈ N. Indeed,
this follows from a simple symmetry argument (see [20, Lemma 3.5]). We proceed
to conclude the proof by proving the following three claims A1, A2, and A3 which
clearly imply the assertion.

A1. For each k ∈ N, U2k(GP ) ∩ N≥2k = [2k, 5k].
A2. For each k ∈ N, ρ2k+1(GP ) = 5k + 1.
A3. For each k ∈ N, U2k+1(GP ) ∩ N≥2k+1 = [2k + 1, 5k + 1].
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Proof of A1. For any k ∈ N, the inclusion U2k(GP ) ∩ N≥2k ⊂ [2k, ρ2k(GP )] =
[2k, 5k] is clear. To prove the reverse inclusion we proceed by induction on k. For
every j ∈ [3, 5] there exists U ∈ A(GP ) with |U | = j, and it follows that {2, j} ⊂
L((−U)U). Therefore, U2(GP ) = [2, 5] and, together with the induction hypothesis,
we see that for k ≥ 2,

[2k, 5k] = [2, 5] + [2k − 2, 5k − 5] = U2(GP ) + U2k−2(GP ) ⊂ U2k(GP ).

Proof of A2. Assume for the sake of contradiction that there exists k′ ∈ N such
that ρ2k′+1(GP ) = 5k′ + 2, and let k ∈ N denote the smallest integer with this
property. Let B ∈ B(GP ) be such that

B = A1 · . . . · A2k+1 = B1 · . . . · B5k+2, where

A1, . . . , A2k+1, B1, . . . , B5k+2 ∈ A(GP ).

Then

10k + 4 ≤
5k+2∑
ν=1

|Bν | = |B| =
2k+1∑
ν=1

|Aν | ≤ 5(2k + 1),

and hence, after renumbering if necessary, |A1| = · · · = |A2k| = 5, A2k+1 ∈
[4, 5], |B1| = · · · = |B5k+1| = 2, and |B5k+2| ∈ [2, 3]. Suppose there are i, j ∈
[1, 2k + 1] with i < j such that Ai = −Aj . Without loss of generality, i = 1 and
j = 2 in which case B′ = A3 · . . . · A2k+1 satisfies 2k − 1, 5(k − 1) + 2 ∈ L(B′),
contradicting the minimality of k.

Thus there are distinct U1, . . . , U4 ∈ {Vi,−Vi : i ∈ [1, 4]} such that {Ai : i ∈
[1, 2k]} ⊂ {U1, . . . , U4} with Ui �= −Uj for all i, j ∈ [1, 4]. Suppose that U1 =
g2
1g2g3g4 such that |{i ∈ [1, 2k] :Ai = U1}| ≥ �k/2�. Then vg1(B) ≥ max{k, 2}. By

inspection of all W ∈ A(GP ) with |W | = 5, it follows that v−g1(U1 · . . . ·U4) = 0 =
v−g1(A1 · . . . ·A2k), and hence v−g1(B) = v−g1 (A2k+1). Since |B1| = · · · = |B5k+1| =
2, |B5k+2| ∈ [2, 3], and vg1(B5k+2) ≤ 1, it follows that

v−g1(A2k+1) = v−g1(B) ≥ vg1(B) − 1 ≥ max{k − 1, 1},

and thus |A2k+1| = 4. Therefore |B5k+2| = 2, v−g1(A2k+1) = v−g1(B) = vg1(B) ≥
max{k, 2}. However, as we noted before, each minimal zero-sum sequences of length
four is squarefree, a contradiction.

Proof of A3. Let k ∈ N. By assertion A2, U2k+1(GP ) ∩ N≥2k+1 ⊂ [2k + 1,

ρ2k+1(GP )] = [2k + 1, 5k + 1]. On the other hand,

[2k + 1, 5k + 1] = 1 + [2k, 5k] = U1(GP ) + U2k(GP ) ⊂ U2k+1(GP ).

Module theory provides an abundance of examples of Krull monoids satisfying
the assumptions of Theorem 4.3 (see [2, Sec. 4], or [40, Chap. 1] for various realiza-
tion results). Below we provide one specific example of a Krull monoid where the
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set GP of classes containing prime divisors is precisely GP = G+
r ∪G−

r where Gr is
the set of nonzero vertices of the r-dimensional hypercube.

Corollary 4.7. Let (R, m) be a one-dimensional analytically unramified commu-
tative Noetherian local domain with unique maximal ideal m. Further assume that
the m-adic completion R̂ of R has r + 1 minimal primes q1, . . . , qr+1, and let M be
a torsion-free R-module whose completion M̂ = M ⊗R R̂ satisfies

M̂ ∼=
⊕

∅	=I⊂[1,r+1]

R̂⋂
i∈I qi

.

Then V(add(M)) is a Krull monoid with class group G ∼= Zr and the set GP of
classes containing prime divisors satisfies GP = G+

r ∪−G+
r , where G, GP , and G+

r

are as in Theorem 4.3. Therefore, all arithmetical invariants, including all sets
Uk(V(add(M))), are as described in Theorem 4.3 and Corollary 4.6.

Proof. The statements about G and GP follow from [2, Example 4.21]. The arith-
metical consequences then follow from Theorem 4.3 and Corollary 4.6.

5. Monoids of Modules Over Prüfer Rings

In this section, we study classes C of finitely presented modules over Prüfer rings
and characterize the algebraic structure of the monoid V(C). Specifically, we study
certain classes of projective modules over various types of Prüfer rings, and show
that they are always half-factorial. We also study the catenary and tame degrees of
these monoids. We first recall the definition of a Prüfer ring and related topics as
well as that of finitely primary monoids. For a general reference on modules over
Prüfer rings, the reader may wish to consult the monograph of Fuchs and Salce [22].
For modules over Prüfer rings with zero-divisors, we refer the reader to [18]. For
additional information on finitely primary monoids, see [28, Secs. 2.7, 3.1, and 4.3].

A Prüfer ring is a commutative ring in which every finitely generated regular
ideal is invertible. A commutative ring R has

• the 1 1
2 generator property if, for any invertible ideal I ⊂ R and any regular

element a ∈ I\rad(R)I, there exists an element b ∈ R such that I = Ra + Rb,
• small zero-divisors if for every zero-divisor a ∈ R and any ideal A ⊂ R, A +

aR = R implies that A = R.

A monoid H is called finitely primary if there exist s, α ∈ N with the following
properties:

H is a submonoid of a factorial monoid F = F× × [p1, . . . , ps] for s pairwise
non-associated prime elements p1, . . . , ps satisfying

H\H× ⊂ p1 · . . . · psF and (p1 · . . . · ps)αF ⊂ H.

1550016-40



October 14, 2014 11:38 WSPC/S0219-4988 171-JAA 1550016

Direct-sum decompositions and associated combinatorial problems

In this case, we say that H is finitely primary of rank s and exponent α.
It is easy to show that the complete integral closure of such a finitely primary

monoid H is F , and hence H is a Krull monoid if and only if H is factorial.
Moreover, Hred is finitely generated if and only if s = 1 and (Ĥ× : H×) < ∞. The
main (and motivating) examples of finitely primary monoids stem from ring theory.
For example, if R is a one-dimensional local Mori domain with nonzero conductor
(R : R̂) and R̂ denotes the complete integral closure of R, then R• is finitely primary
(see [28, Proposition 2.10.7]). The arithmetic of finitely primary monoids is well-
studied (see [28, Secs. 2.7, 3.1, and 4.3]). In particular, the sets Uk(H) are finite (for
one k ≥ 2, or equivalently for all k ≥ 2) if and only if s = 1. In our main results of
this section, Theorems 5.1 and 5.3, we apply these arithmetical results to monoids
of modules of modules over Prüfer rings.

Theorem 5.1. Let R be a Prüfer ring such that R has the 1 1
2 generator property

and R has small zero-divisors. Let Cproj be the class of finitely generated projective
R-modules.

(1) V(Cproj) is a finitely primary monoid of rank 1 and of exponent 1. Moreover,
V(Cproj) is finitely generated if and only if Pic(R) is finite.

(2) If Cproj does not satisfy KRSA, then V(Cproj) is half-factorial with c(V(Cproj)) =
t(V(Cproj)) = 2.

Proof. We first consider statement (1). By [18, Corollary 4], every module P in
Cproj is isomorphic to Rn−1⊕I where n ∈ N is the rank of P, I is an invertible ideal,
and the isomorphism class of P is determined by that of I and by the rank n. Thus
the map ϕ :V(Cproj) → H = (Pic(R) × N) ∪ {(0, 0)}, defined by P �→ ([I], n), is an
isomorphism. By definition, H ⊂ Pic(R)× (N0, +) is finitely primary of rank 1 and
exponent 1. Since H is reduced, we obtain that (Ĥ× :H×) = |Pic(R)| and thus H

is finitely generated if and only if Pic(R) is finite.
We now compute the catenary and tame degrees based on the monoid described

in (1). Suppose that Cproj does not satisfy KRSA. Then H is not factorial and
hence c(H) ≥ 2. By [28, Theorem 3.1.5], every finitely primary monoid of rank 1
and exponent α satisfies c(H) ≤ t(H) ≤ 3α − 1, and hence c(H) = t(H) = 2. Now
Proposition 2.1 implies that ∆(H) = ∅, that is, H is half-factorial.

We now restrict our attention to direct-sum decompositions of modules over
Prüfer domains. Specifically, we consider the class of all finitely presented modules,
including torsion modules. Before proceeding, we recall the following characteriza-
tion of Prüfer domains. An integral domain R is Prüfer if and only if the following
two equivalent conditions are satisfied:

(P1) The torsion submodule of any finitely generated R-module M is isomorphic
to a direct summand of M (see [22, Chap. V, Corollary 2.9]).
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(P2) Every finitely generated R-module is projective if and only if it is torsion-free
(see [22, Chap. V, Theorem 2.7]).

In Theorem 5.3 we can provide a more precise arithmetical description of V(C),
where C is the class of finitely presented modules over a Prüfer domain, if we further
assume that the domain is h-local. We now recall this class of integral domains.
Let R be a domain and, for an ideal I ⊂ R, let Ω(I) denote the set of maximal
ideals of R containing I. Note, that |Ω(I)| = 1 implies that R/I is local and hence
indecomposable as an R-module. Also recall that a domain R has finite character
if each nonzero element of R is contained in at most finitely many maximal ideals
of R. Now, we say that an integral domain R is h-local if the following equivalent
conditions are satisfied (see [44, Theorem 2.1]):

(H1) R has finite character and each nonzero prime ideal of R is contained in a
unique maximal ideal.

(H2) For each nonzero ideal I of R, R/I has a decomposition
⊕m

ν=1 R/Iν with
|Ω(I1)| = · · · = |Ω(Im)| = 1.

(H3) Each torsion R-module M is canonically isomorphic to
⊕

p∈max(R) Mp.

For additional information on h-local domains we refer the reader to the survey
paper by Olberding [44] and to the monograph by Fontana, Houston, and Lucas [19].
The next proposition gathers together the module-theoretic results necessary for
the arithmetical results we present in Theorem 5.3. We would like to thank Bruce
Olberding for the short proof of Proposition 5.2(1).

Proposition 5.2. Let R be a commutative ring.

(1) Let m ∈ N and let I, I1, . . . , Im be ideals of R such that R/I ∼= R/I1 ⊕ · · · ⊕
R/Im. If I is finitely generated and projective as an R-module, then I1, . . . , Im

are also finitely generated and projective as R-modules.
(2) Let m, n ∈ N and let I1, . . . , Im, J1, . . . , Jn be ideals of R. If Im ⊂ · · · ⊂ I1,

Jn ⊂ · · · ⊂ J1, and

R/I1 ⊕ · · · ⊕ R/Im
∼= R/J1 ⊕ · · · ⊕ R/Jn,

then m = n and Iν = Jν for each ν ∈ [1, m].
(3) Let R be an h-local Prüfer domain and let M be a finitely presented R-module.

Then, as an R-module, M decomposes as

M ∼= R/I1 ⊕ · · · ⊕ R/Im ⊕ Im+1 ⊕ · · · ⊕ In,

where n ∈ N0, m ∈ [0, n], Im ⊂ · · · ⊂ I1 are proper invertible ideals of R, and
Im+1, . . . , In are invertible ideals of R.

Proof. Clearly, it is sufficient to prove that I1 is finitely generated and projective.
We set J = I2 ∩ · · · ∩ Im and, by [22, Lemma 1.1, Chap. V], obtain that I = I1 ∩ J
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and R = I1 + J . Therefore, there is a short exact sequence

0 → I → I1 ⊕ J → R → 0

of R-modules where the second map is the embedding and where the third map is
given by (x, y) �→ x − y for all x ∈ I1 and all y ∈ J . This sequence splits, and thus
I1 ⊕ J ∼= R ⊕ I. Now, since I is finitely generated and projective, so is I1. This
proves (1).

For the proofs of statements (2) and (3), see Proposition 2.10 and Theorem 4.12
in [22, Chap. V].

We now state our main results about finitely presented modules over Prüfer
domains.

Theorem 5.3. Let R be a Prüfer domain, C the class of all finitely presented
R-modules, Ctor the class of finitely presented torsion modules, and Cproj the class
of finitely generated projective modules.

(1) V(C) = V(Cproj) × V(Ctor).
(2) If R has the 1 1

2 generator property, then V(Cproj) is finitely primary of rank 1
and exponent 1.

(3) Assume, in addition, that R is h-local. Then V(Ctor) is free abelian and V(C) is
half-factorial. Furthermore, V(C) is either factorial or c(V(C)) = t(V(C)) = 2.

Proof. The proof of (1) follows immediately from (P1) and (P2), and state-
ment (2) follows immediately from Theorem 5.1.

We now prove statement (3), and we begin by showing that V(Ctor) is free
abelian. Since R has finite character, R has the 1 1

2 generator property. Let M be a
finitely presented nonzero torsion R-module. We now argue that the module M has
a decomposition as a direct sum of indecomposable finitely presented R-modules,
and that such a decomposition is unique up to isomorphism. By Proposition 5.2(3),
M has a decomposition

M ∼= R/I1 ⊕ · · · ⊕ R/Im,

with m ∈ N and invertible ideals Im ⊂ · · · ⊂ I1 � R. Property (H2) then implies
that for each ν ∈ [1, m], R/Iν has a direct-sum decomposition into indecomposables
modules, each of the form R/J where J ⊂ R and |Ω(J)| = 1. Since each Iν is
invertible, each Iν is finitely generated and projective and, by Proposition 5.2(1),
the same is true for all ideals J with R/J occurring in the direct-sum decomposition
of R/Iν . Thus, after replacing the R/Iν with direct sums of finitely generated
indecomposable R-modules of the form R/J and then renaming, we may suppose
that each R/Iν is an indecomposable R-module, that each Iν is an invertible ideal,
and that |Ω(Iν)| = 1 for each ν ∈ [1, m].

Let M ∼= C1 ⊕ · · · ⊕ Cn be any direct-sum decomposition of M into indecom-
posable finitely presented R-modules. Then Proposition 5.2 and (H2) imply that,
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for each ν ∈ [1, n], Cν
∼= R/Jν for some invertible ideal Jν ⊂ R with |Ω(Jν)| = 1.

Therefore M ∼= R/J1 ⊕ · · · ⊕ R/Jn. Let p be a maximal ideal of R. Then

Mp
∼= (R/I1)p ⊕ · · · ⊕ (R/Im)p

∼= (R/J1)p ⊕ · · · ⊕ (R/Jn)p

and, by (H3), it suffices to prove uniqueness for the Rp-module Mp. Since the set
of all ideals in the valuation domain Rp form a chain, the uniqueness follows from
Proposition 5.2(2).

Suppose now that V(C) is not factorial. By (1) and (2), V(C) ∼= F ×D where F

is free abelian and where D is not factorial, but is finitely primary of rank 1 and
exponent 1. Then

c(F × D) = t(F × D) = c(D) = t(D) = 2

and hence F × D is half-factorial.

Remark 5.4. Since a Noetherian Prüfer domain is precisely a Dedekind domain
and since in the Noetherian setting the concepts of finitely presented and finitely
generated modules coincide, Theorem 5.3 also describes the monoid of all finitely
generated modules over a Dedekind domain. Of course, these results can be obtained
even more simply from the classical results of Steinitz. In Sec. 6, we consider direct-
sum decompositions of yet another class of rings that generalize Dedekind domains.

6. Monoids of Modules Over Hereditary Noetherian Prime Rings

In this final section, we study classes C of finitely generated right modules over HNP
rings, a generalization of Dedekind prime rings (see [43, Sec. 5.7]). Module theory
over HNP rings is carefully presented in the monograph of Levy and Robson [41],
and it is on this work that this section is based. We begin with the arithmetical
preparations necessary to state the main result in this section, Theorem 6.5. There
we give a characterization of the monoid of stable isomorphism classes of finitely
generated projective right modules over HNP rings and use this information to
study its arithmetic.

Proposition 6.1. Let H0 and D be monoids and define

H = H0 ∝ D = (H0\H×
0 ) × D ∪ H×

0 × {1D}.

Then H is a submonoid of H0 × D. If D = {1D} or H0 is a group, then H = H0.
Suppose that D �= {1D} and that H0 is not a group.

(1) H× = H×
0 × {1D}.

(2) q(H) = q(H0) × q(D), H ⊂ H0 × D is not saturated, and Ĥ = Ĥ0 × D̂. In
particular, H is not completely integrally closed and hence not a Krull monoid.

(3) The projection θ : H → H0, (a, d) �→ a is a transfer homomorphism.
(4) Suppose H0 and D are atomic. Let u ∈ A(H0) and let d ∈ D. Then

max{ω(H0, u), ω(D, d)} ≤ ω(H, (u, d)) ≤ ω(H0, u) + ω(D, d) + ε,
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where ε = 1 if u is prime and d ∈ D×, and ε = 0 otherwise. In particular,
ω(H, (u, d)) < ∞ if and only if ω(H0, u) < ∞ and ω(D, d) < ∞, and if D is
not a group, then ω(H) = ∞ and t(H) = ∞.

(5) Suppose H0 is atomic, D is a group, and let d ∈ D. If u ∈ A(H0) is a prime
element, then

ω(H, (u, d)) = 2, τ(H, (u, d)) = 1 and t(H, (u, d)H×) = 2.

If u ∈ A(H0) is not a prime element, then

ω(H, (u, d)) = ω(H0, u), τ(H, (u, d)) = τ(H0, u) and

t(H, (u, d)H×) = t(H0, uH×
0 ).

In particular,

t(H) = max{2, t(H0)}, ω(H) = max{2, ω(H0)} and

τ(H) = max{1, τ(H0)}.

(6) Suppose H0 and D are atomic. Let d ∈ D and a ∈ H0\(A(H0) ∪ H×
0 ). Then

cH((a, d)) = 0 if

• D× = {1, d}, and ZH0(a) = {(uH×
0 )2} for some u ∈ A(H0), or

• D is reduced, d = 1 and cH0(a) = 0, or
• D is reduced, d ∈ A(D) and ZH0(a) = {(uH×

0 )k} for some u ∈ A(H0) and
k ∈ N≥2.

In any other case, cH((a, d)) = max{2, cH0(a)}. In particular,

c(H) = max{2, c(H0)}.

Before proceeding with the proof, the reader may find it useful to note that

H = H0 ∝ D = {(h, d) ∈ H0 × D : h ∈ H×
0 only if d = 1D}.

Also, it will be convenient in the proof to introduce the following notation. For a
monoid S and elements a, b ∈ S, we write a ‖ b to denote that a | b and b � a, that
is, a is a strict divisor of b.

Proof of Proposition 6.1. It is easily checked that H is a submonoid of H0 ×D

and that H = H0 if H0 = H×
0 or D = {1D}. Assume now that D �= {1D} and

H0 �= H×
0 . Fix a0 ∈ H0\H×

0 and d0 ∈ D\{1D}.
The proof of (1) is clear.
For statement (2), note that we have q(H) ⊂ q(H0) × q(D) and must show the

reverse inclusion. Let a, b ∈ H0 and d, e ∈ D. Then aa0, ba0 ∈ H0\H×
0 and thus

(ab−1, de−1) = (aa0, d)(ba0, e)−1 ∈ q(H). Therefore q(H0) × q(D) ⊂ q(H). To see
that the inclusion H ⊂ H0×D is not saturated, note that (1, d0) ∈ q(H)∩ (H0×D),
but (1, d0) �∈ H .

We now show that Ĥ = Ĥ0 × D̂. Since H ⊂ H0 × D, and since both monoids
have the same quotient group, it is certainly true that Ĥ ⊂ Ĥ0 × D = Ĥ0 × D̂.
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For the reverse inclusion, let (x, y)∈ Ĥ0 × D̂. By definition, there exist c ∈ H0 and
d ∈ D such that (c, d)(x, y)n ∈ H0 × D for all n ∈ N0. But then ca0x

n ∈ H0\H×
0

and dyn ∈D for all n∈N0 and thus (ca0, d)(x, y)n ∈ H . Therefore (x, y) ∈ Ĥ. Since
H �= Ĥ, H is not completely integrally closed and thus not a Krull monoid.

We now prove statement (3). Clearly θ is surjective and, by (1), θ−1(H×
0 ) = H×.

Let (a, d) ∈ H and b, c ∈ H0 such that θ((a, d)) = bc. To establish that θ is a transfer
homomorphism, it will suffice to find e, f ∈ D such that (b, e), (c, f) ∈ H and ef = d

since, in this case, (a, d) = (b, e)(c, f), θ((b, e)) = b and θ((c, f)) = c. If b is not a
unit in H0, then e = d and f = 1 gives (b, d), (c, 1) ∈ H with ef = d. Similarly, if
c is not a unit, then e = 1 and f = d gives (b, 1), (c, d) ∈ H with ef = d. If both
b, c ∈ H×

0 , then a ∈ H×
0 and it necessarily follows that d = 1. Now e = f = 1 gives

(b, 1), (c, 1) ∈ H .
To show (4) we first observe that, for (a, d), (b, e) ∈ H, (a, d) | (b, e) if and only

if a | b and d = e or a ‖ b and d | e. We first prove the correctness of the lower bound
and for this we may assume that k = ω(H, (u, d)) < ∞. Suppose that m, k ∈ N
with k ≤ m and that u1, . . . , um ∈ A(H) are such that u |u1 · . . . · um. Then
(u, d) | (u1, d)·. . .·(um, d), and hence there exists a subproduct of at most k elements
that is divisible by (u, d), say (u, d) | (u1, d) · . . . · (uk, d). But then u |u1 · . . . ·uk and
consequently ω(H0, u) ≤ k. Similarly, suppose m, k ∈ N with k ≤ m and suppose
d1, . . . , dm ∈ A(D) are such that d | d1 · . . . · dm. Then (u, d) | (u2, d1) · . . . · (u2, dm),
and so there is a subproduct of at most k elements that is divisible by (u, d), say
(u, d) | (u2, d1) · . . . · (u2, dk). But then d | d1 · . . . · dk and so ω(D, d) ≤ k.

We now verify the upper bound, and for this we may assume that k = ω(H, u) <

∞ and l = ω(D, d) < ∞. Suppose that m, k, l ∈ N with m ≥ k + l + ε and suppose
(u1, d1), . . . , (um, dm) ∈ A(H) are such that (u, d) | (u1, d1) · . . . · (um, dm). Then
u |u1 · . . . ·um and d | d1 · . . . ·dm, whence there are subsets I, J ⊂ [1, m] with |I| ≤ k

and |J | ≤ l such that u |
∏

i∈I ui and d |
∏

j∈J dj . Now |I ∪ J | ≤ k + l and, after
renumbering and possibly enlarging I and/or J , we have that I ∪J = [1, k + l] with
u |u1 · . . . · uk+l and d | d1 · . . . · dk+l. If u is not a prime element, then k ≥ 2. If d is
not a unit then l ≥ 1. In either of these cases, k + l ≥ 2 and thus u ‖ u1 · . . . · uk+l.
Therefore, (u, d) | (u1, d1) · . . . · (uk+l, dk+l), and consequently ω(H, (u, d)) ≤ k + l.
On the other hand, if u is a prime element and d is a unit (i.e. k + l = 1), then
u ‖ u1 · . . . · uk+l+1 and hence (u, d) | (u1, d1) · . . . · (uk+l+1, dk+l+1).

The claim that ω(H, (u, d)) < ∞ if and only if ω(H0, u) < ∞ and ω(D, d) < ∞
is clear from the now-verified inequalities. If D is not a group, then (since D is
atomic) there exists some atom d ∈ D. Then ω(D, dk) ≥ k for all k ∈ N, and thus
ω(H, (u, dk)) ≥ k for all u ∈ A(H0). This implies that ω(H) = ∞ and therefore
t(H) = ∞ by Proposition 2.1.

We now prove statement (5) in which case we assume that D is a group.
Since, for any atomic monoid S and any non-prime atom u ∈ S, t(S, uS×) =
max{ω(S, u), τ(S, u) + 1} (see Sec. 2), it will suffice to establish the claim for the
ω- and τ -invariants.
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First observe that since every element of D is a unit, if (a, e), (b, f) ∈ H with
a | b, then (a, e) | (b, f)(c, g) for any (c, g) ∈ H\H×, and if a ‖ b then (a, e) | (b, f). In
particular, if k ≥ 2, u1, . . . , uk ∈ A(H0), and u ∈ A(H0), then u |u1 · . . . · uk if and
only if (u, e) | (u1, e1) · . . . · (uk, ek) for any (equivalently, all) e, e1, . . . , ek ∈ D.

Since d ∈ D×, we have that ω(D, d) = 0 and thus statement (4) implies that
ω(H, (u, d)) = ω(H0, u) if u is not a prime element, and ω(H, (u, d)) ∈ [1, 2] if
u is a prime element (since then ω(H0, u) = 1). Moreover, (u, d) | (u, dd0)2 but
(u, d) � (u, dd0), and hence ω(H, (u, d)) ≥ 2 implying that if u is a prime element,
then ω(H, (u, d)) = 2.

A similar argument shows that τ(H, (u, d)) ≥ 1 for all u ∈ A(H0). Suppose
that u is a prime element and that k ∈ N≥2, (u1, d1), . . . , (uk, dk) ∈ A(H), and
(u, d) | (u1, d1) · . . . ·(uk, dk). Then u |u1 · . . . ·uk and thus u divides one of u1, . . . , uk,
say u |u1. But then (u, d) | (u1, d1)(u2, d2), showing τ(H, (u, d)) ≤ 1.

Recall the definition of the τ -invariant as the supremum of a certain set from
Eq. (1) in Sec. 2. If u ∈ A(H0) is not a prime element, then the supremum of this
set is attained for k ≥ 2, and since LH((a, e)) = LH0(a) for all a ∈ H0 and e ∈ D

(by statement (3)), it is immediate that τ(H, (u, d)) = τ(H0, u). We note that if
k = 2, then there may be factorizations in H that contribute elements to this set
that are not already contributed by factorizations in H0. However, if k = 2, then we
necessarily have that min L(u−1a) = 1 and thus the result is the same as for k > 2.

We assume now that H0 and D are atomic and make use of the transfer homo-
morphism from statement (3) in order to prove statement (6). By Lemma 2.2(3)(b),
we have that cH0(a) ≤ cH((a, d)) ≤ max{c(a, θ), cH0(a)}. We first show that
c(a, θ) ≤ 2. For an element (b, e) ∈ H we write (b, e) = (b, e)H× for its class in
Hred. Suppose that z = (u1, d1) · . . . · (uk, dk) and z′ = (u1, d′1) · . . . · (uk, d′k) with
k, k′ ≥ 2, u1, . . . , uk ∈ A(H0), and d1, . . . , dk, d′1, . . . , d

′
k ∈ D are two factorizations

of (a, d) lying in the same fiber of θ. Then (u1, d1) · . . . · (uk−1, dk−1dk) (uk, 1) is also
a factorization of (a, d) lying in the same fiber and

d((u1, d1) · . . . · (uk−1, dk−1) (uk, dk), (u1, d1) · . . . · (uk−1, dk−1dk) (uk, 1)) ≤ 2.

Inductively, we find a 2-chain from z to (u1, d1 · . . . · dk) (u2, 1)·. . .·(uk, 1). Similarly,
we find a 2-chain from z′ to (u1, d′1 · . . . · d′k) (u2, 1) · . . . · (uk, 1) and hence a 2-chain
from z to z′. This shows that c(a, θ) ≤ 2.

Recall that cH((a, d)) = 0 is equivalent to (a, d) having a unique factorization
in H and, in any other case, cH((a, d)) ≥ 2. Therefore, to establish the remain-
ing claims, it will suffice to show that in each of the cases listed, the element
(a, d) has a unique factorization and that in any other case, (a, d) has at least two
distinct factorizations. From the inequalities already proven, we then obtain that
cH((a, d)) = max{2, cH0(a)}.

We first suppose that D is not reduced. Assume that there exists ε ∈ D×\{1, d}
and let k ∈ N≥2 and u1, . . . , uk ∈ A(H0) with a = u1 · . . . · uk. Then

(u1, d) (u2, 1) · . . . · (uk, 1) and (u1, dε−1) (u2, ε) (u3, 1) · . . . · (uk, 1)
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are two distinct factorizations of (a, d) since (dε−1, ε) �= {(d, 1), (1, d)}. Therefore,
in this case, cH((a, d)) ≥ 2.

We now consider the case where D× = {1, d} with d �= 1. If ZH0(a) = {(uH×
0 )2}

for some u ∈ A(H0), then the unique factorization of (a, d) is (u, d) (u, 1). The
remaining cases are as follows.

• If a has two distinct factorizations, then so does (a, d).
• If a has a unique factorization represented by u1 · . . . · uk for some k ∈ N≥2 and

u1, . . . , uk ∈ A(H0) with u1 �� u2, then

(u1, d) (u2, 1) (u3, 1) · . . . · (uk, 1) and (u1, 1) (u2, d) (u3, 1) · . . . · (uk, 1)

are two distinct factorizations of (a, d).

• If a � uk for some k ∈ N≥3 and u ∈ A(H0), then (u, d) (u, 1)
k−1

and

(u, d)
3
(u, 1)

k−3
are two distinct factorizations of (a, d) (here we use d2 = 1).

Now suppose that D is reduced. If d = 1 and, for some k ∈ N≥2 and u1, . . . , uk ∈
A(H0), a = u1 · . . . · uk represents the unique factorization of a in H0, then
(u1, 1) · . . . · (uk, 1) is the unique factorization of (a, d) in H . If d ∈ A(D) and
for some u ∈ A(H0) and k ∈ N≥2, a � uk represents the unique factorization of a

in H0, then (u, d) (u, 1)
k−1

is the unique factorization of (a, d) in H .
We now show that in each of the remaining cases there exist two distinct fac-

torizations of (a, d) in H . This is clear if a has two distinct factorizations in H0,
and we may assume in the following that a has a unique factorization represented
by a = u1 · . . . · uk for some k ∈ N≥2 and u1, . . . , uk ∈ A(H0).

• If d �= 1 is not an atom, there must exist d1, d2 ∈ D\{1} such that d = d1d2. Then
(a, d) = (u1, d)(u2, 1) · . . . · (uk, 1) and (a, d) = (u1, d1)(u2, d2)(u3, 1) · . . . · (uk, 1)
give rise to two distinct factorizations of (a, d).

• If d ∈ A(D) and there exist two distinct factors in the factorization of a, say
u1 �� u2, then (a, d) = (u1, d)(u2, 1)(u3, 1) · . . . · (uk, 1) and (a, d) = (u1, 1)(u2, d)
(u3, 1) · . . . · (uk, 1) give rise to two distinct factorizations of (a, d).

Note that we have so far showed that c(H0) ≤ c(H) ≤ max{2, c(H0)}. We now
show that 2 ≤ c(H). Since H0 is atomic, but not a group, there exists a ∈ H0\H×

0 .
Taking a power of a if necessary, we may further assume that a ∈ H0\A(H0). If D

is not reduced, then 2 ≤ c((a, 1)) ≤ c(H). If D is reduced, then, since D �= {1D}
by assumption, there exists d ∈ D\D× and, again taking a power of a if necessary,
we may assume d ∈ D\A(D). Thus 2 ≤ c((a, d)) ≤ c(H).

We note that if H0 = N0 and D is a group, then H = N0 ∝ D as above is a
finitely primary monoid of rank 1 and exponent 1 (as discussed at the beginning
of Sec. 5). Also, if H0, D and E are monoids, then (H0 ∝ D) ∝ E = H0 ∝
(D × E). Before defining, in Definition 6.3, a monoid that will later be used to
describe the monoid of stable isomorphism classes of finitely generated projective
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right modules over an HNP ring, we give a simple lemma that will be used in the
proof of Proposition 6.4.

Lemma 6.2. Let G be an additive abelian group and let G0 ⊂ G be a subset.

(1) If G0 = {g} for some torsion element g ∈ G, then A(G0) = {gord(g)}.
(2) Let n ∈ N≥2, let (e1, . . . , en−1) be a family of independent elements of G each

of infinite order, and let

G0 = {Aiei : i ∈ [1, n − 1]} ∪
{
−

n−1∑
i=1

Biei

}
,

where Ai, Bi ∈ N with gcd(Ai, Bi) = 1 for each i ∈ [1, n−1]. Then A(G0) = {U}
where

U =
n−1∏
i=1

(Aiei)
BiL

Ai

(
−

n−1∑
i=1

Biei

)L

with L = lcm{Ai : i ∈ [1, n − 1]}.

In particular, B(G0) is factorial in each case.

Proof. If A(G0) = {S}, then S is a prime element, in which case B(G0) is factorial.
Statement (1) is clear and we now prove statement (2). From the definition of

L, we have Ai |BiL. Moreover, σ(U) =
∑n−1

i=1 (BiL
Ai

Ai − BiL)ei = 0 ∈ G which
shows that U ∈ B(G0). Suppose that S =

∏n−1
i=1 (Aiei)ki(−

∑n−1
i=1 Biei)k ∈ B(G0)

for some k1, . . . , kn, k ∈ N0. Note that the k1, . . . , kn are uniquely determined by
k and σ(S) = 0. Therefore, to establish that U is an atom of B(G0), and in fact
the unique atom, it will suffice to show that L | k. Since σ(S) = 0, we have that
Aiki = kB i for each i ∈ [1, n − 1]. Since gcd(Ai, Bi) = 1, this implies Ai | k and
hence L = lcm{Ai : i ∈ [1, n − 1]} | k.

Definition 6.3. Let Ω be a set containing a designated element 0 and let c ∈ QΩ
>0

such that c0 = 1 and ci ∈ N for all but finitely many i ∈ Ω. Define

NΩ
0 (c) = {x ∈ NΩ

0 : x0 > 0 and |suppZΩ(x − x0c)| < ∞} ∪ {0},

that is, NΩ
0 (c) consists of those vectors which are almost everywhere equal to a

nonzero multiple (determined by the coordinate x0) of c, together with the vec-
tor 0. We write �(x) = x0. If |Ω| < ∞, then NΩ

0 (c)∼= (N×NΩ\{0}
0 )∪{0}∼=(N×

N(Ω\{0})
0 )∪ {0}. Let Λ be a (possibly empty) set of finite, pairwise disjoint subsets

of Ω\{0} each containing at least two elements and, for each I ∈ Λ, let CI =
∑

i∈I ci.
We assume that CI ∈ N for all I ∈ Λ. Define

NΩ
0 (c, Λ) =

{
x ∈ NΩ

0 (c) :
∑
i∈I

xi = CI�(x) for all I ∈ Λ

}
.

By definition, NΩ
0 (c) and NΩ

0 (c, Λ) are reduced submonoids of (NΩ
0 , +). However,

note that the inclusion NΩ
0 (c) ⊂ NΩ

0 is not saturated. Indeed, if x,y ∈ NΩ
0 (c), then
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x divides y if and only if y − x ∈ NΩ
0 (c), that is, x ≤ y and either x0 < y0

or x = y.

Proposition 6.4. Let H = NΩ
0 (c, Λ) with Ω, c and Λ as in Definition 6.3. Then

H is a saturated submonoid of NΩ
0 (c) and the map � : H → (N0, +) is a transfer

homomorphism. In particular, x ∈ H is an atom if and only if �(x) = 1, and H is
half-factorial.

(1) If |Ω| = 1, then H = N0.
(2) Suppose 2 ≤ |Ω| < ∞ and

⋃
Λ = Ω\{0}. Write Ω = [0, r] with r ∈ N, and

Λ = {I1, . . . , In} with n ∈ N and Ω\{0} = I1 � · · · � In. Set Ci = CIi for all
i ∈ [1, n].

(a) The map j : H ↪→ Nr
0,x �→ (x1, . . . , xr) is a divisor theory (note that x0 is

omitted), and hence H is a Krull monoid. Then G = Zr/q(j(H)) is the
divisor class group and GP = {ei + q(j(H)) : i ∈ [1, r]} ⊂ G is the set of
classes containing prime divisors. There is a monomorphism

ϕ∗ :G →
{

Z/C1Z if n = 1,

Zn−1 if n ≥ 2

with the following properties :
If n = 1, then ϕ∗ is an isomorphism, ϕ∗(GP ) = {1+C1Z}, and the unique
class in GP contains precisely |I1| prime divisors. Let n ≥ 2 and, for all
i ∈ [1, n−1], set Ai = Cn

gcd(Ci,Cn) and Bi = Ci

gcd(Ci,Cn) . Then ϕ∗(G) is a full
rank subgroup of Zn−1 and

ϕ∗(GP ) = {Aiei : i ∈ [1, n − 1]} ∪
{
−

n−1∑
i=1

Biei

}
.

For each i ∈ [1, n−1], the class mapped onto the element Aiei contains pre-
cisely |Ii| prime divisors and the class mapped onto −

∑n−1
i=1 Biei contains

precisely |In| prime divisors.
(b) An element u ∈ H is an atom if and only if

∑
i∈I ui = CI for all

(equivalently, any) I ∈ Λ.
(c) We have that c(H) ≤ 2. Moreover, the monoid H is factorial if and only

if |Λ| = 1 and C1 = 1. In this case, the prime elements are precisely
the e0 + ei for i ∈ [1, r]. If H is not factorial, then H contains no prime
elements.

(d) For any atom u ∈ A(H) we have∑
I∈Λ

(
CI − min

i∈I
ui

)
≤ ω(H,u) ≤

∑
I∈Λ

CI .

(e) If H is not factorial, then t(H) = ω(H) =
∑

I∈Λ CI .

(3) If 2 ≤ |Ω| < ∞ but
⋃

Λ � Ω\{0}, set Ω′ =
⋃

Λ ∪ {0}. Let c′ ∈ QΩ′
>0 be defined

by c′i = ci for all i ∈ Ω′ and let H ′ = NΩ′
0 (c′, Λ). Then H ∼= H ′ ∝ N|Ω|−|Ω′|

0 .
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For each (u,x) ∈ A(H),

max{ω(H ′,u), |x|} ≤ ω(H, (u,x)) ≤ ω(H ′,u) + |x| + 1

and thus ω(H, (u,x)) < ∞ and t(H, (u,x)) < ∞. Moreover, H is a half-
factorial FF-monoid with c(H) = 2 and t(H) = ∞. Also, H is not a Krull
monoid.

(4) If |Ω| = ∞, then

(a) |ZH(x)| = ∞ for all x ∈ H\(A(H) ∪ H×). In particular, H is not a FF-
monoid and is therefore not a submonoid of a free abelian monoid,

(b) cH(x) = 2 for all x ∈ H\(A(H) ∪ H×) and
(c) ω(H,u) = τ(H,u) = t(H,u) = ∞ for all u ∈ A(H).

Proof. Suppose that x,y ∈ H such that x divides y in NΩ
0 (c). That is, y − x ∈

NΩ
0 (c). For each I ∈ Λ, we have

∑
i∈I yi − xi = CI(�(y) − �(x)) = CI�(y − x), and

thus y − x ∈ H . Therefore, the inclusion H ⊂ NΩ
0 (c) is saturated. We now show

that � :H → N0 is a transfer homomorphism. Clearly this map is surjective and,
since H is reduced, it will suffice to show: If x ∈ H and �(x) = k + l with k, l ∈ N0,
then there exist y, z ∈ H such that x = y + z and �(y) = k, �(z) = l.

If one of k or l is 0 we may, without restriction, assume that l = 0. Then y = x
and z = 0 give the result. From now on, we assume that k, l > 0. Let Λ′ ⊂ Λ
consist of those finitely many I ∈ Λ with I ∩ supp(x− �(x)c) �= ∅. For i ∈

⋃
Λ′,

let y′
i, z

′
i ∈ N0 be such that y′

i + z′i = xi and such that, for all I ∈ Λ′, it holds that∑
i∈I y′

i = CIk and
∑

i∈I z′i = CI l. Define y and z ∈ NΩ
0 by

yi =

y′
i if i ∈

⋃
Λ′,

kci if i ∈ Ω\
⋃

Λ′,
zi =

z′i if i ∈
⋃

Λ′,

lci if i ∈ Ω\
⋃

Λ′.

Then y, z ∈ NΩ
0 (c, Λ) with �(y) = k, �(z) = l, and x = y + z as required.

Statement (1) is clear and thus we suppose that 2 ≤ |Ω| < ∞ and Ω\{0} =
⋃

Λ.
We first verify statement (2)(a). Since

∑
i∈I1

xi = C1x0 and C1 �= 0, j is
injective. We now check that j is a divisor homomorphism. Let x,y ∈ H with
j(x) ≤ j(y). If x = y, there is nothing to show. If x �= y, then there necessarily
exists I ∈ Λ with

∑
i∈I xi <

∑
i∈I yi and hence x0 < y0. Consequently, x divides

y in H and thus j is a divisor homomorphism. To prove that j is a divisor theory,
we need to show that each standard basis vector ei ∈ Nr

0 is the greatest common
divisor of a finite, nonempty set in the image of j. Let i ∈ [1, r], let I0 ∈ Λ be such
that i ∈ I0, and let i′ ∈ I0\{i}. Define

x = e0 + ei + (CI0 − 1)ei′ +
∑

I∈Λ\{I0}
CIemin I , and

y = e0 + CI0ei +
∑

I∈Λ\{I0}
CIemax I .
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Then x,y ∈ H and, recalling that |I| ≥ 2 for all I ∈ Λ, gcd(Nr
0,+)(j(x), j(y)) = ei.

Thus j :H ↪→ Nr
0 is a divisor theory, H is a Krull monoid, and the class group of

H is q(Nr
0)/q(j(H)) = Zr/q(j(H)).

We now determine the structure of the divisor class group of H and determine
the set of classes containing prime divisors. Suppose that n = 1 and define ϕ∗ : Zr →
Z/C1Z by x �→

∑r
i=1 xi +C1Z. We see immediately that ϕ∗ is an epimorphism and

ker(ϕ∗) = q(j(H)) follows easily. Therefore G ∼= Z/C1Z. Since ϕ∗(ei) = 1 + C1Z
for all i ∈ [1, r], GP is as claimed. Now suppose that n ≥ 2 and let ϕ∗ : Zr → Zn−1

be defined by

x �→

A1

∑
i∈I1

xi − B1

∑
i∈In

xi, A2

∑
i∈I2

xi − B2

∑
i∈In

xi, . . . ,

An−1

∑
i∈In−1

xi − Bn−1

∑
i∈In

xi

.

One easily checks that ker(ϕ∗) = q(j(H)), showing that G embeds into Zn−1 via ϕ∗.
Considering the images of e1, . . . , er under ϕ∗, the description of GP given in state-
ment (2)(a) follows, and we see that ϕ∗(G) is a subgroup of full rank of Zn−1.

For statement (2)(b), note that an element u ∈ H is an atom if and only if
�(u) = 1, and this is the case if and only if

∑
i∈I ui = CI for all (equivalently, any)

I ∈ Λ.
Consider statement (2)(c). By Lemma 6.2, B(GP ) is factorial and hence

c(GP )= 0. Thus Proposition 2.3 implies that c(H) ≤ max{2, c(GP )} ≤ 2. If |Λ| = 1
and C1 = 1, then j is surjective. Thus H ∼= Nr

0, showing that H is factorial. The
prime elements of (Nr

0, +) are simply the standard basis vectors ei for i ∈ [1, r],
and their preimages under j are precisely the elements e0 + ei ∈ H for i ∈ [1, r]. If
|Λ| > 1 or C1 > 1, then no atom is prime and thus H is not factorial. Let u ∈ A(H).
The lower bound given in (2)(d), which we will soon verify, implies that ω(H,u) ≥ 2
unless |Λ| = 1, C1 = 2, and u1 = u2 = 1. Note that mini∈I ui ≤ �CI/2� for each
I ∈ Λ and thus, in this case, u is not a prime element. In the remaining case, one
easily checks that again, u is not a prime element.

We now verify the bounds on the omega invariant as given in (2)(d). If |Λ| = 1
and C1 = 1, then H is factorial and the inequalities hold trivially. We assume
from now on that this is not the case and hence

∑
I∈Λ CI ≥ 2. We first show that

ω(H,u) ≤
∑

I∈Λ CI . Let k ∈ N≥2 and let v1, . . . ,vk ∈ A(H) be such that u divides∑k
i=1 vi. If J ⊂ [1, k], then u divides

∑
j∈J vj if and only if u ≤

∑
j∈J vj . Since

u ≤
∑k

i=1 vi and
∑

i∈Ω\{0} ui =
∑

I∈Λ CI , we can recursively construct a subset
J ⊂ [1, k] of size at most

∑
I∈Λ CI such that u ≤

∑
j∈J vj . This is done by adding,

in each step, a vector vj with vj,i > 0 for some i ∈ Ω\{0} for which ui <
∑

j∈J vj,i.
We now prove the lower bound. By renumbering the coordinates if necessary,

we may assume umin I = mini∈I ui for all I ∈ Λ. For i ∈ Ω, let I ∈ Λ be the unique
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set containing i and define

vi = e0 + ei + (CI − 1)emin I +
∑

I′∈Λ\{I}
CI′emin I′ ∈ A(H).

Since u =
∑

i∈Ω uiei =
∑

I∈Λ

∑
i∈I uiei, it is clear that u divides∑

I∈Λ

∑
i∈I\{min I} uivi. For I ∈ Λ with CI > 1, this is clear from the definition of

the vi’s. If CI = 1, then umin I = 0 since |I| ≥ 2, yet u does not divide any proper
subsum. Therefore

ω(H,u) ≥
∑
I∈Λ

[(∑
i∈I

ui

)
− min

i∈I
ui

]
=
∑
I∈Λ

(
CI − min

i∈I
ui

)
.

We now prove statement (2)(e). By definition, ω(H) = supu∈A(H) ω(H,u). Since
H is half-factorial, t(H) = ω(H). The element

u = e0 +
∑
I∈Λ

CIemin I ∈ H

is an atom and the bounds in (2)(d) imply that ω(H,u) =
∑

I∈Λ CI . Therefore,
ω(H) ≥

∑
I∈Λ CI and the upper bound again follows from (2)(d).

Consider statement (3) and let D = N|Ω|−|Ω0|
0 . The isomorphism H ∼= H ′ ∝ D

is immediate from the definitions. Because D is factorial, we have ω(D,x) = |x|
for all x ∈ D. Proposition 6.1(6) together with (2)(c) implies that c(H) = 2, and
Proposition 6.1(4) implies the remaining inequalities. As a submonoid of a free
abelian monoid, H is an FF-monoid (see [28, Corollary 1.5.7]). However, since it
is not completely integrally closed in its quotient group (by Proposition 6.1(2)), it
cannot be a Krull monoid.

We suppose for the remainder of the proof that |Ω| = ∞. For notational ease
we assume N0 ⊂ Ω.

Consider statement (4)(a). To show |ZH(x)| = ∞ it suffices to show that there
are infinitely many atoms of H dividing x. By definition of H , there exists a finite
subset Ω′ ⊂ Ω having the property that I ∩ Ω′ �= ∅ already implies I ⊂ Ω′ for all
I ∈ Λ and such that for each i ∈ Ω\Ω′ it holds that xi = �(x)ci and ci ∈ N. We
may assume that N0 ⊂ Ω\Ω′. Moreover, we may assume that for each I ∈ Λ we
have |I ∩ N| ≤ 1 and, if i ∈ I ∩ N, then ci = mini′∈I ci′ .

For each i ∈ N, define ui ∈ NΩ
0 as follows: If there exists I ∈ Λ with i ∈ I, then

let i′ ∈ I\{i}. Note also that i′ ∈ Ω\Ω′ by the choice of Ω′. We set ui,i = 0, ui,i′ =
ci + ci′ , and ui,j = cj for each j ∈ Ω\(Ω′ ∪ {i, i′}). On the other hand, if i is not
contained in any I ∈ Λ, we set ui,i = 0 and ui,j = cj for each j ∈ Ω\(Ω′ ∪ {i}). In
either case, we can choose ui,j ≤ xi,j for each j ∈ Ω′ such that

∑
j∈I ui,j = CI for

all I ∈ Λ with I ⊂ Ω′. Therefore,
∑

j∈I ui,j = CI for all I ∈ Λ and ui,j = cj for all
but finitely many j ∈ Ω. Therefore ui ∈ A(H). By construction, ui ≤ x. In the first
case, due to the minimal choice of ci, we have ui,i′ = ci + ci′ ≤ 2ci′ ≤ �(x)ci′ = xi′ ,
with the last equality holding since i′ ∈ Ω\Ω′. Since �(ui) = 1 < �(x),ui divides x.
Clearly these atoms are pairwise distinct. By what we have just shown, H is not
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an FF-monoid and therefore cannot a submonoid of a free abelian monoid by [28,
Corollary 1.5.7].

We now compute the catenary degree of H as stated in (4)(b). From (4)(a),
every nonzero, non-atom element has at least two distinct factorizations and hence
cH(x) ≥ 2 for all x ∈ H . We now show that cH(x) ≤ 2 by projecting to the finite
case. Suppose that x = u1 + · · · + uk = v1 + · · · + vk for some k ∈ N≥2 and that
u1, . . . ,uk,v1, . . . ,vk ∈ A(H). Let Ω′ ⊂ Ω be the smallest subset containing

{j ∈ Ω : ui,j �= cj or vi,j �= cj for some i ∈ [1, k]} ∪ {0}

and having the property that whenever I ∩ Ω′ �= ∅ for I ∈ Λ, then already I ⊂ Ω′.
Observe that Ω′ is finite and that ui,j = vi′,j = cj for all i, i′ ∈ [1, k] and j ∈ Ω\Ω′.
Set Λ′ = {I ∈ Λ : I ⊂ Ω′} and let c′ ∈ NΩ′

0 be defined by c′i = ci for all i ∈ Ω′. Define
H ′ = NΩ′

0 (c′, Λ′) and note that there is a canonical projection π :H → H ′. By the
finiteness of Ω′ we immediately have that c(H ′) ≤ 2. Thus there exists a sequence
of factorizations z′1, . . . , z

′
l ∈ Z(H ′) of π(x) with z′1 = π(u1) · . . . · π(uk), z′l =

π(v1) · . . . · π(vk) and such that d(z′i, z
′
i+1) ≤ 2 for all i ∈ [1, l − 1]. For any

factor w′ occurring in some z′j, we lift it to w ∈ H by setting wj = u1,j for all
j ∈ Ω\Ω′. Then w ∈ A(H) and we can lift the factorizations z′1, . . . , z

′
l of π(x) to

factorizations z1, . . . , zl of x. These factorizations form a sequence connecting the
two factorizations of x that we began with and have the property that d(zi, zi+1) ≤ 2
for all i ∈ [1, l − 1].

Finally, we consider the infinitude of the invariants given in (4)(c). Let u ∈ A(H)
and k ∈ N≥2. We will show that ω(H,u) ≥ k, as the other invariants are then equal
to ω(H, u) by half-factoriality. Note that u is necessarily nonzero in all but finitely
many coordinates and so we may assume ui �= 0 for i ∈ [1, k]. Moreover, since Ω is
infinite and each I ∈ Λ is finite, we may suppose that no two i, j ∈ [1, k] belong to
the same set I ∈ Λ. (For the following argument it would suffice that I �⊂ [1, k].)
Modifying finitely many coordinates of u as needed, we can therefore construct
u1, . . . ,uk ∈ A(H) such that ui,j = ujδi,j for all i, j ∈ [1, k], and ui,j ≥ uj for all
i ∈ [1, k] and j ∈ Ω\[1, k]. Then u divides u1 + · · · + uk, but for all j ∈ [1, k], uj >

u1,j + · · · + uk,j − uj,j = 0, showing that u divides no proper subsum.

Now with the appropriate arithmetical results, we apply Propositions 6.1 and 6.4
to study direct-sum decompositions of modules over HNP rings. For a HNP ring R,
we consider the class C of finitely generated right R-modules. In the noncommuta-
tive setting there are two invariants (the genus and the Steinitz class) which describe
the stable isomorphism class of a finitely generated projective right R-module P .
In general, however, the isomorphism class of P is determined by its stable iso-
morphism class only if udim(P ) ≥ 2 and such a module is indecomposable if
and only if udim(P ) = 1. Thus the forthcoming description of the direct-sum
decomposition of finitely generated projective right R-modules is one where the
indecomposable factors are determined up to stable isomorphism. If R has the addi-
tional property that any two finitely generated projective right R-modules that are
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stably isomorphic are already isomorphic, then this result is a description up to
isomorphism.

Let V and W be two simple right R-modules. Then W is called a successor
of V and V is called a predecessor of W if Ext1R(V, W ) �= 0. Let W be a set of
representatives (of isomorphism classes) of the simple unfaithful right R-modules.
We note that every V ∈ W is contained in a unique tower of R (see [41, Sec. 19]).
A tower T is a finite set of simple right R-modules, ordered with respect to the
successor relationship, and having the following structure: Every tower T is either
cyclically ordered and each simple module in T is unfaithful, in which case we say
that T is a cycle tower, or T is linearly ordered and only the first module (the
only module in the tower not having a predecessor) is faithful, in which case T is
said to be a faithful tower. The length of a tower is the number of distinct modules
contained in it, and a tower is nontrivial if it contains more than one module.

We briefly recall the notions of rank, genus and the Steinitz class of a finitely
generated projective right R-module, as these invariants are used to describe sta-
ble isomorphism classes of finitely generated projective right R-modules. We refer
the reader to [41, Secs. 33 and 35] for additional details. Let P be a finitely gen-
erated projective right R-module and let V ∈ W . Then M = ann(V ) is a max-
imal ideal of R, R/M is simple artinian, and the rank of M at V , denoted by
ρ(P, V ) ∈ N0, is defined to be the length of the R/M -module P/PM . If T is a
cycle tower, we set ρ(P, T ) =

∑
V ∈T ρ(P, V ). Let modspec(R) denote the set of iso-

morphism classes of all unfaithful simple right R-modules together with the trivial
module 0. For a finitely generated projective right R-module P , we set ΨV (P ) =
ρ(P, V ) if V is an unfaithful simple right R-module, and Ψ0(P ) = udim(P ).
Then

Ψ(P ) = (ΨV (P ))V ∈modspec(R) ∈ Nmodspec(R)
0

is called the genus of P . Two finitely generated projective right R-modules P and Q

are stably isomorphic if there exists a finitely generated projective right R-module
X such that P ⊕ X ∼= Q ⊕ X . We denote by [P ] the stable isomorphism class
of P . The direct-sum operation on modules induces the structure of a commutative
semigroup on the set of stable isomorphism classes, and by K0(R) we denote its
quotient group. The genus Ψ induces a homomorphism Ψ+ :K0(R) → Zmodspec(R),
and G(R) = Ker(Ψ+) is called the ideal class group of R. By choosing a base point
set B of nonzero finitely generated projective right R-modules consisting of exactly
one module in each genus, and such that B is closed, up to isomorphism, under
direct sums, we can associate to any nonzero finitely generated projective right
R-module P a class S(P ) = [P ] − [B] ∈ G(R), where B ∈ B. We call S(P ) the
Steinitz class of P and we set S(0) = 0.

We are now ready to characterize the semigroup of stable isomorphism classes
of finitely generated projective right modules over an HNP ring. We note that the
characterization of factoriality in Theorem 6.5 was already obtained by Levy and
Robson in [41, Theorem 39.5].
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Theorem 6.5. Let R be an HNP ring and let H be the semigroup of stable isomor-
phism classes of finitely generated projective right R-modules with operation induced
by the direct sum of modules.

(1) Let Ω denote the set of isomorphism classes of all unfaithful simple right
R-modules which are contained in a nontrivial tower, together with the triv-
ial module, denoted by 0. For V ∈ Ω\{0}, let cV = ρ(R,V )

udim(R) ∈ Q>0 and c0 = 1.
Finally, let Λ be the set of all nontrivial cycle towers. Then

H ∼= NΩ
0 (c, Λ) ∝ G(R)

with the product ∝ as defined in Proposition 6.1. In particular, H is half-
factorial, c(H) ≤ 2 and the following are equivalent :

(a) H is factorial (i.e. R satisfies stable uniqueness).
(b) G(R) = 0 and either R has no nontrivial towers (i.e. R is a Dedekind

prime ring), or R has a unique nontrivial tower T which is a cycle tower
and ρ(R, T ) = udim(R).

(2) If R has infinitely many nontrivial towers, then t(H, [U ]) = ω(H, [U ]) = ∞ for
each indecomposable finitely generated projective right R-module U .

(3) Suppose that R has only finitely many nontrivial towers. Then t(H, [U ]),
ω(H, [U ]) < ∞ for each indecomposable finitely generated projective right
R-module U . If R has at least one nontrivial faithful tower, then t(H) =
ω(H) = ∞. If R has no nontrivial faithful tower, only finitely many nontrivial
cycle towers T1, . . . , Tn with n ∈ N0, and H is not factorial, then

t(H) = ω(H) =
1

udim(R)

n∑
i=1

ρ(R, Ti).

Proof. It will suffice to establish that H ∼= NΩ
0 (c, Λ) ∝ G(R) as the remaining

claims will then follow from Proposition 6.4. The genus and the Steinitz class are
both additive on direct sums and thus give rise to a monoid homomorphism H →
Nmodspec(R)

0 ∝ G(R), [P ] �→ (Ψ(P ),S(P )). We note that S(0) = 0 and that 0 is the
only module of uniform dimension zero. The genus satisfies a number of necessary
conditions, namely that ΨV (P ) = cV Ψ0(P ) for almost all V ∈ modspec(R) and
that it has standard rank at every cycle tower, that is, ρ(P, T ) =

∑
V ∈T cV Ψ0(P )

for all cycle towers T . In particular, if V is contained in a trivial tower, then this
is necessary a cycle tower and hence implies ΨV (P ) = cV Ψ0(P ). Thus instead of
Ψ(P ) we may consider Ψ′(P ) ⊂ NΩ

0 were we omit the components corresponding to
unfaithful simple right R-modules that are contained in a trivial tower. We obtain
a homomorphism

Φ : H → NΩ
0 (c, Λ) ∝ G(R), [P ] �→ (Ψ′(P ),S(P )).

The main theorem of Levy and Robson (see [41, Theorem 35.13]) implies that
the genus and the Steinitz classes are independent invariants, and that up to the
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stated conditions on the rank, all values can be obtained. In other words, Φ is an
isomorphism.

Remark 6.6. (1) If R is such that each two stably isomorphic right R-modules
are isomorphic, then H = V(Cproj). If this is not the case, then H still provides
information on direct-sum decompositions of finitely generated projective mod-
ules with the summands determined up to stable isomorphism. Specifically, we
have the following: Clearly, if P = U1 ⊕ · · · ⊕ Uk for some k ∈ N and indecom-
posable right R-modules U1, . . . , Uk, then [P ] = [U1]+· · ·+[Uk] is a factorization
of [P ] in H . Let P be a right R-module with udim(P ) ≥ 2 (that is, P is nei-
ther the zero module nor indecomposable). If [P ] = [U1] + · · · + [Uk] for some
k ∈ N≥2 and atoms [U1], . . . , [Uk] of H , then [P ] = [U1 ⊕ · · · ⊕ Uk] and, since
udim(P ) ≥ 2, [41, Theorem 34.6] implies that P ∼= U1 ⊕ · · · ⊕ Uk. Therefore,
a factorization of [P ] in H gives rise to one of P into indecomposables, with
the stable isomorphism classes of the indecomposable summands determined
by the factorization of [P ] in H .

(2) An HNP ring R has finitely many nontrivial towers if and only if it is a mul-
tichain idealizer from a Dedekind prime ring S (see [41, Proposition 30.5]). A
sufficient (but not necessary) condition for there to be no nontrivial faithful
towers is for R to be right (equivalently, left) bounded (see [41, Lemma 18.2]).

(3) Let R be an HNP ring and let C denote the class of finitely generated right
R-modules. Then V(C) ∼= V(Ctor) × V(Cproj) and V(Ctor) is factorial.

Proof. By [41, Corollary 12.16(ii), Theorem 12.18], every finitely generated right
R-module decomposes uniquely as a direct sum of a torsion module and a torsion-
free module. The first has finite length and hence has a unique decomposition into
indecomposables, while the second is projective.

A detailed description of V(Ctor) is given in [41, Sec. 41].
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