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Let K be an algebraic number field with non-trivial class group G and let OK be its
ring of integers. For k ∈ N and some real x ≥ 1, let Fk(x) denote the number of non-
zero principal ideals aOK with norm bounded by x such that a has at most k distinct
factorizations into irreducible elements. It is well known that Fk(x) behaves, for x → ∞,
asymptotically like x(log x)−1+1/|G|(log log x)Nk(G). We study Nk(G) with new methods
from Combinatorial Number Theory.
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1. Introduction

Le K be an algebraic number field, OK be its ring of integers and G be its ideal class
group. For a non-zero element a ∈ OK , let Z(a) denote the set of all (essentially
distinct) factorizations of a into irreducible elements. Then OK is factorial (in other
words, |Z(a)| = 1 for all non-zero a ∈ OK) if and only if |G| = 1. Suppose that
|G| ≥ 2 and let k ∈ N. Inspired by a paper of Fogels [4] and a question of Turán,
Narkiewicz initiated in the 1960s the systematic study of the asymptotic behavior
of counting functions associated with non-unique factorizations (for an overview
and historical references, see [14, 31]). Among others, the function

Fk(x) = |{aOK | a ∈ OK\{0}, (OK :aOK) ≤ x and |Z(a)| ≤ k}|
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was considered. It counts the number of principal ideals aOK where 0 �= a ∈ OK

has at most k distinct factorizations and whose norm is bounded by x. After a
first paper in 1964, Narkiewicz proved in 1972 (see [28, 29]) that Fk(x) behaves, for
x→ ∞, asymptotically like

x(log x)−1+1/|G|(log log x)Nk for some Nk > 0.

This result was refined and extended in several ways: the asymptotics were sharp-
ened in [21], while the function field case was handled in [19], Chebotarev formations
in [16] and non-principal orders in global fields in [15]. For more and recent develop-
ment, see [12, 14, Sec. 9.3; 22–25, 34]. In [30, 32], Narkiewicz and Śliwa showed that
the exponents Nk depend only on the class group G, and they gave a combinatorial
description of this constant Nk(G) (see Definition 2.1). This description was used
by Gao for the first detailed investigation of Nk(G) in [5]. We continue these inves-
tigations of Nk(G) with new methods from Combinatorial Number Theory. Before
going into details, we briefly outline how these investigations are embedded into the
more general study of the arithmetic of OK .

Suppose that G ∼= Cn1 ⊕ · · · ⊕ Cnr with 1 < n1 | · · · |nr. Since |G| ≥ 2, OK is
not factorial. The non-uniqueness of factorizations in OK is described by a variety
of arithmetical invariants — such as sets of lengths or the catenary degree — and
they depend only on the class group G (the same is true not only for rings of inte-
gers but more generally for Krull monoids with finite class group where every class
contains a prime divisor). Thus the goal is to determine their precise values in terms
of the group invariants n1, . . . , nr, or to describe them in terms of classical com-
binatorial invariants, such as the Davenport constant or the Erdős–Ginzburg–Ziv
constant. Roughly speaking, a good understanding of these combinatorial invariants
is restricted to groups of rank at most two, and thus no more can be expected for
the more sophisticated arithmetical invariants.

Back to the Narkiewicz constants. A straightforward example shows that
N1(G) ≥ n1 + · · · + nr (see inequality (2.2)), and in 1982, Narkiewicz and
Śliwa stated the conjecture that the equality holds. Since, on the other hand, the
Davenport constant D(G) is a lower bound for N1(G) (see inequality (2.1)), the
Narkiewicz–Śliwa Conjecture, if true, would provide an upper bound for the Dav-
enport constant which is substantially stronger than all bounds known so far. Thus
it is not surprising that up to now this conjecture has been validated only for a
few classes of groups including cyclic groups, elementary 2-groups and elementary
3-groups (see [14, Theorem 6.2.8]). A main part of this paper deals with the study
of N1(G) for groups of rank two. A key strategy in Combinatorial Number Theory
for such investigations divides the problem into the following two steps.

Step A. Determine the precise value for the invariant under investigation for
groups of the form Cp ⊕ Cp, where p is a prime.

Step B. Show that the problem is “multiplicative”, in the sense that the precise
value for the invariant can be lifted from groups of the above form to
arbitrary groups of rank two.
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This procedure is applied successfully in a variety of investigations — as, for exam-
ple, in the study of the Davenport constant and of the Erdős–Ginzburg–Ziv constant
in groups of rank two — and both steps usually require essentially different methods.
In the present paper, we perform Step B for the Narkiewicz constant N1(G) (indeed,
we do more; see the discussions before Theorem 3.15 and after Theorem 4.1). For
that purpose, we introduce a new combinatorial invariant, η∗(G), which is of a
similar type as the Erdős–Ginzburg–Ziv constant (see Sec. 3). In the final section,
we study the Narkiewicz constants Nk(G) for higher values of k in the context of
cyclic groups and of elementary 2-groups (see Theorems 5.1 and 5.3). Our investiga-
tions are based on the recent characterization of the structure of minimal zero-sum
sequences of maximal length over groups of rank two (see [7, 35, 38]) and on a
recent result on the structure of long zero-sum free sequences over cyclic groups
(see Lemmas 3.7 and 5.2).

2. Preliminaries

We denote by N the set of positive integers, by P ⊂ N the set of prime numbers, and
we set N0 = N ∪ {0}. For real numbers a, b ∈ R, we set [a, b] = {x ∈ Z | a ≤ x ≤ b}.
By a monoid, we always mean a commutative semigroup with identity which satisfies
the cancelation law (that is, if a, b, c are elements of the monoid with ab = ac, then
b = c follows).

Let H be a monoid and a, b ∈ H . We denote by A(H) the set of atoms (irre-
ducible elements) of H and by H× the set of invertible elements of H . The monoid
H is said to be reduced if H× = {1}. Let Hred = H/H× = {aH× | a ∈ H} be the
associated reduced monoid.

A monoid F is called free (with basis P ⊂ F ) if every a ∈ F has a unique
representation of the form

a =
∏
p∈P

pvp(a) with vp(a) ∈ N0 and vp(a) = 0 for almost all p ∈ P.

We set F = F(P ) and call

|a| =
∑
p∈P

vp(a) (the length of a) and supp(a)

= {p ∈ P | vp(a) > 0} (the support of a).

The monoid Z(H) = F(A(Hred)) is the factorization monoid of H and π : Z(H) →
Hred denotes the natural homomorphism given by mapping a factorization to the
element it factorizes. Then the set Z(a) = π−1(aH×) ⊂ Z(H) is called the set of
factorizations of a, and we say that a has unique factorization if |Z(a)| = 1. The set
L(a) = {|z| | z ∈ Z(a)} ⊂ N0 is called the set of lengths of a.

All abelian groups will be written additively. For n ∈ N, let Cn denote a
cyclic group with n elements. Let G be an abelian group and G0 ⊂ G be a
subset. Then 〈G0〉 ⊂ G is the subgroup generated by G0, G•

0 = G0\{0}, and
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−G0 = {−g | g ∈ G0}. A family (ei)i∈I of non-zero elements of G is said to be inde-
pendent if ∑

i∈I
miei = 0 implies miei = 0 for all i ∈ I, where mi ∈ Z.

If I = [1, r] and (e1, . . . , er) is independent, then we simply say that e1, . . . , er are
independent elements ofG. The tuple (ei)i∈I is called a basis if (ei)i∈I is independent
and 〈{ei | i ∈ I}〉 = G. If 1 < |G| <∞, then we have

G ∼= Cn1 ⊕ · · · ⊕ Cnr , and we set d∗(G) =
r∑
i=1

(ni − 1),

where r = r(G) ∈ N is the rank ofG, n1, . . . , nr ∈ N are integers with 1 < n1 | · · · |nr
and nr = exp(G) is the exponent of G. If |G| = 1, then r(G) = 0, exp(G) = 1, and
d∗(G) = 0.

The multiplicative monoid of non-zero elements in a ring of integers (more gen-
erally, in an arbitrary Dedekind or Krull domain) is a Krull monoid. The arithmetic
of Krull monoids is studied by using two classes of auxiliary monoids: the monoid of
zero-sum sequences and the monoid of zero-sum types (see [14, Secs. 3.4 and 3.5]
or [13]). We need both concepts for our investigations.

Monoid of zero-sum sequences. The elements of the free monoid F(G0) are
called sequences over G0. Let

S =
∏
g∈G0

gvg(S), where vg(S) ∈ N0 for all g ∈ G0 and

vg(S) = 0 for almost all g ∈ G0,

be a sequence over G0. We call vg(S) the multiplicity of g in S, and we say that S
contains g if vg(S) > 0. A sequence S1 is called a subsequence of S if S1 |S in F(G)
(equivalently, vg(S1) ≤ vg(S) for all g ∈ G). If a sequence S ∈ F(G0) is written in
the form S = g1 · . . . · gl, we tacitly assume that l ∈ N0 and g1, . . . , gl ∈ G. For a
sequence

S = g1 · . . . · gl =
∏
g∈G0

gvg(S) ∈ F(G0),

we call σ(S) =
∑l

i=1 gi =
∑

g∈G0
vg(S)g ∈ G the sum of S, and Σ(S) =

{
∑
i∈I gi | ∅ �= I ⊂ [1, l]} the set of subsums of S. For g ∈ G, we set g + S =

(g + g1) · . . . · (g + gl) ∈ F(G). The sequence S is called

• a zero-sum sequence if σ(S) = 0,
• short (in G) if 1 ≤ |S| ≤ exp(G),
• zero-sum free if there is no non-empty zero-sum subsequence,
• a minimal zero-sum sequence if S is a non-empty zero-sum sequence and every

subsequence S′ of S with 1 ≤ |S′| < |S| is zero-sum free.
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By definition, the empty sequence 1 ∈ F(G) is both zero-sum free and a zero-sum
sequence of length |1| = 0. We denote by B(G0) = {S ∈ F(G0) |σ(S) = 0} the
monoid of zero-sum sequences over G0, by A(G0) the set of all minimal zero-sum
sequences over G0 (this is the set of atoms of the monoid B(G0)), and by

D(G0) = sup{|U | |U ∈ A(G0)} ∈ N ∪ {∞}

the Davenport constant of G0.

Monoid of zero-sum types. The elements of the free monoid F(G0 × N) are
called types over G0. Clearly, they are sequences over G0 ×N, but we think of them
as labeled sequences over G0 where each element from G0 carries a label from the
positive integers. Let α : F(G0 × N) → F(G0) denote the unique homomorphism
(called the unlabeling homomorphism) satisfying

α((g, n)) = g for all (g, n) ∈ G0 × N,

and let σ = σ ◦ α : F(G0 × N) → G. For a type T ∈ F(G0 × N), note that α(T ) ∈
F(G0) is the associated (unlabeled) sequence. A type T1 is called a subtype of T if
T1 |T in F(G0 × N). We say that T is a zero-sum type (short, zero-sum free or a
minimal zero-sum type) if the associated sequence has the relevant property, and
we set Σ(T ) = Σ(α(T )). We denote by

T (G0) = {T ∈ F(G0 × N) |σ(T ) = 0} = α−1
(
B(G0)

)
⊂ F(G0 × N)

the monoid of zero-sum types over G0 (briefly, the type monoid over G0). Type
monoids were introduced by Halter-Koch in [18] and applied successfully in the ana-
lytic theory of so-called type-dependent factorization properties (see [14, Sec. 9.1],
and [16, 17] for some early papers).

Let G1 be an abelian group. Every map ϕ : G0 → G1 extends to a unique homo-
morphism ϕ : F(G0) → F(G1) extending ϕ, and there is a unique homomorphism
ϕ : F(G0 ×N) → F(G1 ×N) satisfying ϕ((g, n)) = (ϕ(g), n) for all (g, n) ∈ G0 ×N .
Suppose that S = g1 · . . . · gl ∈ F(G0). Then, obviously, ϕ(S) = ϕ(g1) · . . . · ϕ(gl),
and if ϕ is a homomorphism, then ϕ(S) is a zero-sum sequence if and only if
σ(S) ∈ Ker(ϕ). We denote by ϕ = ϕ ◦ α : F(G0 × N) → F(G1) the unique homo-
morphism satisfying ϕ((g, n)) = ϕ(g) for all (g, n) ∈ G0 × N . For the sum function
σ : F(G0) → G, we have σ ◦ ϕ = σ ◦ ϕ = ϕ ◦ σ : F(G0 × N) → G1.

The greatest common divisor of sequences S, S′ ∈ F(G0) will always be taken
in the monoid F(G0), and the sequences will be called coprime if gcd(S, S′) = 1.
The greatest common divisor of types T, T ′ ∈ F(G0 × N) will always be taken in
the monoid F(G0 × N), and the types will be called coprime if gcd(T, T ′) = 1.

Let τ : F(G0) → F(G0 × N) be defined by

τ(S) =
∏
g∈G0

vg(S)∏
k=1

(g, k) ∈ F(G0 × N).
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Thus τ is a labeling function, and for S ∈ F(G0), we call τ(S) the type associated
with S. The map β = α | T (G0) : T (G0) → B(G0) is a transfer homomorphism
(see [14, Proposition 3.5.5]), and hence we have in particular that L(B) = L(τ(B))
for all B ∈ B(G•).

Narkiewicz constants. We start with the definition of the Narkiewicz constants
(see [14, Definition 6.2.1]). Theorem 9.3.2 in [14] provides an asymptotic formula for
the Fk(x) function — the Narkiewicz constants occur as exponents of the log log x
term — in the frame of obstructed quasi-formations (this setting includes non-
principal orders in holomorphy rings in global fields).

Definition 2.1. A type T ∈ F(G × N) is called squarefree if vg,n(T ) ≤ 1 for all
(g, n) ∈ G× N. For every k ∈ N, the Narkiewicz constant Nk(G) of G is defined by

Nk(G) = sup{|T | |T ∈ T (G•) squarefree, |Z(T )| ≤ k} ∈ N0 ∪ {∞}.

The labeling function τ — defined as above — maps a sequence onto a squarefree
type, and the labeling is done in such a way to meet the requirements of the analytic
theory (see [14, Sec. 9.1]). For the combinatorial work on Nk(G), any other such
function — mapping a sequence onto a squarefree type — would do. For instance,
one could simply fix some indexing of the sequence T = g1 · . . . · gl and then label
each gi with its index i, thus using the type (g1, 1) · . . . · (gl, l). In other words, study
of the Narkiewicz Constants can be done by simply replacing the usual un-indexed
sequences with their natural indexed (i.e. ordered) counterparts. More formally, if
T and T ′ are two squarefree zero-sum types with α(T ) = α(T ′), then there is a
bijection from Z(T ) to Z(T ′), and hence |Z(T )| = |Z(T ′)|. In particular, we have

• |Z(T )| = |Z(τ(α(T )))|.
• if T = (g1, a1) · . . . · (gl, al), where g1, . . . , gl ∈ G• and a1, . . . , al ∈ N, and T̃ =

(g1, ã1) · . . . · (gl, ãl), where ã1, . . . , ãl ∈ N are pairwise distinct, then |Z(T )| =
|Z(T ′)|.

Thus we have

Nk(G) = sup{|T | |T ∈ T (G•) has pairwise distinct labels and |Z(T )| ≤ k}

∈ N0 ∪ {∞}.

If U ∈ A(G•), then τ(U) has unique factorization, and hence we get

D(G) ≤ N1(G). (2.1)

Let G = Cn1 ⊕ · · · ⊕ Cnr with 1 < n1 | · · · |nr and let (e1, . . . , er) be a basis of G
with ord(ei) = ni for all i ∈ [1, r]. If

B =
r∏
i=1

eni

i , then τ(B) =
r∏
i=1

ni∏
k=1

(ei, k)
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has unique factorization, and hence
r∑
i=1

ni ≤ N1(G) ≤ N2(G) ≤ · · · (2.2)

In [32], Narkiewicz and Śliwa conjectured that N1(G) equals the above lower bound
for all finite abelian groups. We will use the above chain of inequalities without
further mention and continue with a simple lemma needed in the sequel.

Lemma 2.2. Let G be an abelian group with |G| > 1 and let T ∈ T (G•) be a
squarefree zero-sum type. Then the following statements are equivalent.

(a) |Z(T )| = 1.
(b) If U, V ∈ T (G)\{1} with T = UV, then Σ(U) ∩ Σ(V ) = {0}.
(c) If U, V ∈ T (G) with U |T and V |T, then gcd(U, V ) has sum zero.
(d) If U, V ∈ A(T (G)) are distinct with U |T and V |T, then gcd(U, V ) = 1.

Proof. (a) ⇒ (b) Let T = U1 · . . . · Ur with r ∈ N, U1, . . . , Ur ∈ A(T (G)), and let
U, V ∈ T (G)\{1} with T = UV . Since T has unique factorization, there exists a non-
empty subset I ⊂ [1, r], say I = [1, q] with q ∈ [1, r−1], such that U = U1 ·. . .·Uq and
V = Uq+1 · . . . ·Ur. Assume to the contrary that there are U ′, U ′′, V ′, V ′′ ∈ F(G×N)
such that U = U ′U ′′, V = V ′V ′′ and σ(U ′) = σ(V ′) �= 0. Then U ′V ′′, U ′′V ′ ∈ T (G).
Since T is squarefree, factorizations of U ′V ′′ and U ′′V ′ give rise to a factoriza-
tion of T = (U ′V ′′)(U ′′V ′) which is different from the factorization (U1 · . . . · Uq)
(Uq+1 · . . . · Ur), a contradiction.

(b) ⇒ (c) Let U, V ∈ T (G) with U |T and V |T . We write T in the form
T = U ′WV ′X where W = gcd(U, V ), U ′, V ′, X ∈ F(G × N), U = U ′W and
V = V ′W . Then −σ(W ) = σ(U ′) = σ(V ′) ∈ Σ(U ′W ) ∩ Σ(V ′X) = {0}.

(c) ⇒ (d) Let U, V ∈ A(T (G)) be distinct with U |T and V |T . Since gcd(U, V )
has sum zero and divides the atom U , it follows that gcd(U, V ) = 1.

(d) ⇒ (a) Let T = U1 · . . . · Ur = V1 · . . . · Vs where U1, . . . , Ur, V1, . . . , Vs ∈
A(T (G)). For every i ∈ [1, r] there is a j ∈ [1, s] such that gcd(Ui, Vj) �= 1, and
hence (d) implies that Ui = Vj . Thus r = s and, after renumbering if necessary,
Ui = Vi for all i ∈ [1, r].

3. On a Variant of the Erdős–Ginzburg–Ziv Constant

We introduce a variant of the Erdős–Ginzburg–Ziv constant which will play a crucial
role for the investigation of N1(G). We will outline the program of this section after
Definition 3.3.

Definition 3.1. Let G be a finite abelian group and g ∈ G. Let η∗(G) (respectively,
η∗g(G)) denote the smallest integer � ∈ N0 such that every squarefree type T ∈
F(G• × N) of length |T | ≥ � (respectively, with sum σ(T ) = g) has two distinct
short minimal zero-sum subtypes which are not coprime.
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Let T be a squarefree type. When in the following we consider two subtypes with
special properties, then we always mean two distinct subtypes. The next lemma
shows that η∗(G) (and questions related to it) can also be formulated in the setting
of sequences. In what follows, we will use both languages (the language of sequences
and those of types), and always choose the one which is most convenient for the
particular situation. Although the proof of Lemma 3.2 is completely straightforward,
we give it in detail. It should help the reader to get acquainted with the definitions.

Lemma 3.2. Let G be an abelian group and g ∈ G.

(1) For a squarefree type T ∈ T (G•) the following conditions are equivalent.

(a) T has two short minimal zero-sum subtypes T1 and T2 which are not
coprime, i.e. gcd(T1, T2) �= 1.

(b) α(T ) has short minimal zero-sum subsequences S1 and S2 with the following
properties:

• S1 and S2 are not coprime, i.e. gcd(S1, S2) �= 1;
• S1 = S2 implies that there exists some g ∈ G such that 0 < vg(S1) <

vg(α(T )).

(2) η∗(G) (respectively, η∗g(G)) is the smallest integer � ∈ N0 such that every
sequence S ∈ F(G•) of length |S| ≥ � (respectively, with sum σ(S) = g) satisfies
the properties given in condition (1)(b).

(3) η∗(G) = sup{η∗h(G) |h ∈ G}.
(4) Let T ∈ T (G•) be a squarefree type that does not have two short minimal

zero-sum subtypes which are not coprime, and let s ∈ N0 and T1, . . . , Ts be
all short minimal zero-sum subtypes of T . Then T can be written in the form
T = T0 ·. . .·Ts with T0 ∈ T (G•), T0, . . . , Ts are pairwise coprime (in F(G•×N))
and α(T0), . . . ,α(Ts) are pairwise coprime (in F(G•)).

Proof. (1) (a) ⇒ (b) Let T = (g1, a1) · . . . · (gl, al) where l ∈ N, g1, . . . , gl ∈ G•,
a1, . . . , al ∈ N and (g1, a1), . . . , (gl, al) pairwise distinct. Let I1, I2 ⊂ [1, l] such
that T1 =

∏
λ∈I1(gλ, aλ) and T2 =

∏
λ∈I2(gλ, aλ) have the required properties.

Since (g1, a1), . . . , (gl, al) are pairwise distinct, it follows that 1 �= gcd(T1, T2) =∏
λ∈I1∩I2(gλ, aλ). Since T1 and T2 are distinct, we get I1∩I2 � I1 and I1∩I2 �

I2. For ν ∈ [1, 2], we set Sν =
∏
λ∈Iν

gλ = α(Tν), and S = α(T ). Clearly, S1 and
S2 are short minimal zero-sum subsequences of S and 1 �=

∏
λ∈I1∩I2 gλ divides

gcd(S1, S2). Suppose that S1 = S2. Then there exist λ1 ∈ I1\I2, λ2 ∈ I2\I1 and
g ∈ G such that g = gλ1 = gλ2 , and it follows that 0 < vg(S1) < vgλ1

(S1) +
v(gλ2 ,aλ2)(T2) ≤ vg(S).
(b) ⇒ (a) The proof is similar.

(2) Since every sequence S is the image of a squarefree type under α, the assertion
follows from condition (1).

(3) The proof is obvious.
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(4) First one has to show that T1, . . . , Ts are pairwise coprime, and then define
T0 = T (T1 · . . . · Ts)−1. We outline only the details that α(T0), . . . ,α(Ts) are
pairwise coprime (the coprimeness of T1, . . . , Ts is even simpler). Assume to the
contrary that there are i, j ∈ [0, s] with j < i and g ∈ G such that g |α(Ti)
and g |α(Tj). Then there exist k, l ∈ N with k �= l, (g, k) |Ti and (g, l) |Tj. This
implies that T ′

i = (g, l)(g, k)−1Ti is a short minimal zero-sum subtype of T with
T ′
i �= Ti and |Ti| ≥ 2 implies that gcd(T ′

i , Ti) �= 1, a contradiction.

The requirement in Lemma 3.2(1) that the short zero-sum sequences T1 and T2

(respectively, the short zero-sum subtypes) are minimal is essential, as the following
example shows. Let (e1, e2, e3) be independent with ord(e1) = ord(e2) = ord(e3) =
m ≤ exp(G)/2. Then S = em1 e

m
2 e

m
3 does not satisfy condition (1)(b), but S satisfies

a modified condition (1)(b) where the requirement of minimality is canceled (with
T1 = em1 e

m
2 and T2 = em1 e

m
3 ). We recall the definition of the Erdős–Ginzburg–Ziv

constant and of two of its variants.

Definition 3.3. Let G be a finite abelian group and g ∈ G. We denote by

• s(G) the smallest integer � ∈ N such that every sequence S ∈ F(G) of length
|S| ≥ � has a zero-sum subsequence T of length |T | = exp(G). The invariant s(G)
is called the Erdős–Ginzburg–Ziv constant of G.

• η(G) the smallest integer � ∈ N such that every sequence S ∈ F(G) of length
|S| ≥ � has a short zero-sum subsequence (equivalently, S has a short minimal
zero-sum subsequence).

• g(G) the smallest integer � ∈ N such that every squarefree sequence S ∈ F(G) of
length |S| ≥ � has a zero-sum subsequence T of length |T | = exp(G).

Together with the Davenport constant D(G), the invariants s(G) and η(G) are
classical invariants in Combinatorial Number Theory (see [13, Secs. 4 and 5] for a
survey, or [3] for recent progress). By definition, we have

D(G) ≤ η(G) ≤ η∗(G),

and Proposition 3.10 will show that η∗(G) < ∞. A straightforward argument will
show that in the case of a cyclic group we have η∗0(G) = η∗(G) = |G|+1. The main
aim of this section is to study η∗(G) for groups of the form G = Cn⊕Cn with n ≥ 2.
A simple example shows that η∗(Cn ⊕Cn) ≥ 3n+ 1 (see Proposition 3.10(2)), and
our conjecture is that

η∗(Cn ⊕ Cn) = 3n+ 1 for all n ≥ 2.

We will show that it suffices to verify the above conjecture for primes, and that more-
over, for every m ∈ N there is a multiple n ∈ mN satisfying the above conjecture
(Theorem 3.15 and Corollary 3.16). The direct problem, to find the precise value
of η∗(Cn ⊕Cn), is intimately connected with the associated inverse problem which
asks for the structure of squarefree types T ∈ F(G• ×N) of length |T | = η∗(G)− 1
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that do not have two short zero-sum subtypes which are not coprime. We formu-
late a conjecture and a simple consequence, whose proof will be given right after
Corollary 3.11.

Conjecture 3.4. Let G = Cn⊕Cn with n ≥ 2 and let T ∈ F(G•×N) be a squarefree
type of length |T | = 3n. If T does not have two short minimal zero-sum subtypes
which are not coprime, then there exist a basis (e1, e2) of G and a1, a2 ∈ [1, n− 1]
with gcd(a1, a2, n) = 1 such that α(T ) = en1 e

n
2 (a1e1 + a2e2)n.

Note that ord(a1e1 + a2e2) = n if and only if gcd(a1, a2, n) = 1.

Lemma 3.5. Let G = Cn ⊕ Cn with n ≥ 2, and suppose that G satisfies Conjec-
ture 3.4. Then

η∗0(G) = η∗(G) = 3n+ 1 and η∗g(G) ≤ 3n for all g ∈ G•.

In the present paper we will not work on the inverse problem, but focus on the
direct problem which is precisely what is needed for the subsequent investigation
of the Narkiewicz constant in Sec. 4. We have formulated Conjecture 3.4 because
it reveals the structural reason why η∗(Cn ⊕ Cn) = 3n+ 1 should hold true for all
n ≥ 2. In general, the inverse problems are much harder than the direct problems:
even for groups of rank two, the inverse problem with respect to the Davenport
constant has been solved only recently with considerable effort (see [7, 35, 38]), and
the inverse problem with respect to the classical Erdős–Ginzburg–Ziv constant s(G)
is still open (see [13, Sec. 5.2]).

We gather the results on s(G), η(G) and g(G) which are needed in what follows.
The precise values of D(G), s(G) and η(G) (in terms of the group invariants) are
well-known, among others, for groups of rank at most two. We will use them without
further mention.

Lemma 3.6. Let G = Cn1 ⊕ Cn2 with 1 ≤ n1 |n2. Then

s(G) = 2n1 + 2n2 − 3, η(G) = 2n1 + n2 − 2 and D(G) = n1 + n2 − 1.

Proof. For the proof, see [14, Theorem 5.8.3].

We need the solution for the inverse problem with respect to the η(G)-invariant,
which is based on the recent characterization of all minimal zero-sum sequences of
maximal length over groups of the form Cn ⊕ Cn with n ≥ 2.

Lemma 3.7. Let G = Cn ⊕ Cn with n ≥ 2, and let S ∈ F(G) be a sequence of
length |S| = η(G) − 1. Then the following statements are equivalent.

(a) S has no short zero-sum subsequence.
(b) There exists a basis (e1, e2) of G and some x ∈ [1, n − 1] with gcd(x, n) = 1

such that

S = (e1e2(xe1 + e2))n−1.
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Proof. The group G has Property B by [35], and hence it has Property C by [13,
Theorem 5.2.5]. Therefore the assertion follows from [13, Proposition 5.2.6], which
is based on [37].

The invariant g(G) was introduced by Harborth in 1973 for groups of the form
G = Crn (see [20]). If G = Cr3 , then g(G)−1 is the maximal size of a cap in AG(r, 3)
(see [2, Lemma 5.2] and also [9, Sec. 5.2]). In [11] it is conjectured that g(Cn⊕Cn)
is equal to 2n−1 for every odd n ≥ 3 and equal to 2n+1 for every even n ≥ 3, and
it is observed that these values are lower bounds. We will need the following result.

Lemma 3.8. Let G = Cp⊕Cp with p ∈ P. If p ≤ 7 or p ≥ 47, then g(G) = 2p− 1.

Proof. For the proof see [8, Theorem 5.1; 26, 27].

Lemma 3.9. Let G be a finite abelian group with |G| > 1, and let T = U1 · . . . ·Ur ∈
T (G•) be a squarefree type with r ∈ N and U1, . . . , Ur ∈ A(T (G•)).

(1) If |Z(T )| = 1, then
∏r
i=1 |Ui| ≤ |G|.

(2) Let S1, . . . , St ∈ F(G × N) such that S1 · . . . · St is a zero-sum subtype of T
and σ(S1), . . . , σ(St) are all non-zero. If |Z(T )| = 1 and b1, . . . , bt ∈ N are
pairwise distinct, then the squarefree type (σ(S1), b1) · . . . · (σ(St), bt) has unique
factorization.

(3) If T does not have two short minimal zero-sum subtypes which are not coprime
and |T | ≤ 2 exp(G) + 1, then |Z(T )| = 1.

Proof. (1) A special case was proved in [14, Proposition 6.2.6], and we follow the
lines of that proof. For every i ∈ [1, r], we set Ui = (gi,1, ai,1) · . . . · (gi,mi , ai,mi),
where mi = |Ui| ≥ 2, and for all j ∈ [1,mi], gi,j ∈ G and ai,j ∈ N. In order to show
that m1 · . . . ·mr ≤ |G|, we shall prove that the m1 · . . . ·mr elements

r∑
i=1

li∑
λ=1

gi,λ where li ∈ [1,mi] for all i ∈ [1, r]

are distinct. Assume the contrary. Then we may suppose that there exists some
r′ ∈ [1, r] and li, l

′
i ∈ [1,mi] such that l′i < li for all i ∈ [1, r′], l′i ≥ li for all

i ∈ [r′ + 1, r], and

r∑
i=1

li∑
λ=1

gi,λ =
r∑
i=1

l′i∑
λ=1

gi,λ.

Then we have

g =
r′∑
i=1

li∑
λ=l′i+1

gi,λ =
r∑

i=r′+1

l′i∑
λ=li+1

gi,λ.
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Since g ∈ Σ(U1 · . . . · Ur′) ∩ Σ(Ur′+1 · . . . · Ut), Lemma 2.2(b) implies that g = 0.
Then

V =
r′∏
i=1

 li∏
λ=l′i+1

(gi,λ, ai,λ)

 ∈ T (G)\{1}.

If V1 ∈ A(T (G)) with (g1,l1 , a1,l1) |V1 |V , then V1 �= U1 (because (g1,1, a1,1) � V )
and (g1,l1 , a1,l1) | gcd(U1, V1), a contradiction to Lemma 2.2(d).

(2) Assume to the contrary that (σ(S1), b1) · . . . · (σ(St), bt) does not have unique
factorization. By Lemma 2.2(c), there exist I, J ⊂ [1, t] such that

∏
i∈I(σ(Si), bi)

and
∏
i∈J(σ(Si), bi) are zero-sum types, but gcd(

∏
i∈I(σ(Si), bi),

∏
i∈J (σ(Si), bi)) =∏

i∈I∩J (σ(Si), bi) does not have sum zero. It follows that
∏
i∈I Si and

∏
i∈J Si are

zero-sum types such that gcd(
∏
i∈I Si,

∏
i∈J Si) =

∏
i∈I∩J Si does not have sum

zero. Now Lemma 2.2(c) implies that |Z(T )| > 1, a contradiction.

(3) Assume to the contrary that |Z(T )| ≥ 2. For ν ∈ [1, 2], let

zν = Uν,1 · . . . · Uν,rν ∈ Z(T ) where Uν,1, . . . , Uν,rν ∈ A(T (G•)).

After renumbering if necessary, there is a u ∈ [0, r1] such that U1,ν = U2,ν for
all ν ∈ [1, u] and U1,ν �= U2,ν′ for all ν ∈ [u + 1, r1] and all ν′ ∈ [u + 1, r2],
and that |U2,u+1| ≤ · · · ≤ |U2,r2 |. Note that r1 − u ≥ 2, r2 − u ≥ 2 and thus
|U2,u+1| ≤ �|T |/2� ≤ exp(G). There are at least two indices j ∈ [u+1, r1] such that
gcd(U2,u+1, U1,j) �= 1. We pick a j ∈ [u + 1, r1] with this property for which |U1,j |
is minimal, and thus it follows that |U1,j | ≤ �|T |/2� ≤ exp(G). Therefore, U1,j and
U2,u+1 are two short minimal zero-sum subtypes of T which are not coprime, a
contradiction.

Now we are well-prepared for our investigations on η∗(G).

Proposition 3.10. Let G = Cn1 ⊕ · · · ⊕ Cnr where r, n1, . . . , nr ∈ N with 1 <

n1 | · · · |nr.

(1) η∗0(G) ≤ η∗(G) ≤ 2 η(G) − 1 ≤ 2|G| − 1.
(2) If r ≥ 2, then η∗(G) ≥ η∗0(G) ≥

∑r
i=1 ni + nr + 1.

(3) Let g, h ∈ G with ord(g) = ord(h) = nr. Then η∗g(G) = η∗h(G).

Proof. (1) By definition, we have η∗0(G) ≤ η∗(G), and [13, Theorem 4.2.7] shows
that η(G) ≤ |G|. Assume to the contrary that η∗(G) ≥ 2η(G). Then there exists a
squarefree type S ∈ F(G• × N) of length |S| ≥ 2η(G) − 1 that does not have two
short minimal zero-sum subtypes which are not coprime. Let t ∈ N0 and S1, . . . , St
be all short minimal zero-sum subtypes of S. Then S1, . . . , St are pairwise coprime,
and thus S can be written in the form

S = S0S1 · . . . · St with S0 ∈ F(G• × N).
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For every ν ∈ [1, t] we choose an element gν ∈ supp(Sν). Then the type S0(g−1
1 S1)

· . . . · (g−1
t St) does not have a short minimal zero-sum subtype which implies that

t ≤ |(g−1
1 S1) · . . . · (g−1

t St)| ≤ |S0(g−1
1 S1) · . . . · (g−1

t St)| ≤ η(G) − 1,

and hence

|S| = |S0S1 · . . . · St| = t+ |S0(g−1
1 S1) · . . . · (g−1

t St)| ≤ 2η(G) − 2.

a contradiction.

(2) Let r ≥ 2, (e1, . . . , er) be a basis of G with ord(ei) = ni for every i ∈ [1, r], and
set e0 = e1 + · · · + er. The sequence

S = en1
1 · . . . · enr

r e
nr
0

has sum zero and precisely r+ 1 short minimal zero-sum subsequences, namely
en1
1 , . . . , enr

r , e
nr
0 . Using Lemma 3.2(2) we infer that η∗0(G) > |S| =

∑r
i=1 ni+nr.

(3) If ϕ : G → G′ is a group isomorphism and g ∈ G, then we obviously have
η∗g(G) = η∗ϕ(g)(G

′). Since ord(g) = ord(h) = exp(G), there exists a group auto-
morphism ϕ : G→ G with ϕ(g) = h, and thus the assertion follows.

Corollary 3.11. Let G be a finite abelian group with |G| > 1.

(1) If G is cyclic, then η∗0(G) = η∗(G) = |G| + 1.
(2) If G is an elementary 2-group, then η∗0(G) = η∗(G) = 2|G| − 1.

Proof. (1) Let G be cyclic of order n ≥ 2 and g ∈ G with ord(g) = n. Then the
sequence S = gn has precisely one short minimal zero-sum subsequence, and
hence η∗0(G) > |S| = n. In order to show that η∗(G) ≤ n + 1, we choose a
squarefree type T ∈ F(G•×N) of length |T | = n+1. Let t ∈ N0 and A1, . . . , At
be all short minimal zero-sum subtypes of T . Assume to the contrary that they
are pairwise coprime. By Lemma 3.2(4), S = α(T ) can be written in the form
S = S0S1 · . . . · St, where Si = α(Ti) for all i ∈ [1, t] and S0 ∈ F(G•) is
zero-sum free. For every i ∈ [1, t] we choose an element ai ∈ supp(Si). Then
S(a1 · . . . · at)−1 is zero-sum free, and thus [14, Proposition 5.3.5] implies that

|Σ(S(a1 · · · at)−1)| ≥ |S(a1 · . . . · at)−1| + | supp(S(a1 · . . . · at)−1)| − 1

≥ n+ 1 − t+ t− 1 = n,

a contradiction.
(2) LetG be an elementary 2-group, setG• = {g1, . . . , gl} and consider the sequence

S = g2
1 · . . . · g2

l . Then every short minimal zero-sum subsequence of S has the
form g2 for some g ∈ G•. Hence, by Lemma 3.2(2), we obtain that η∗0(G) >
|S| = 2|G| − 2. So the assertion follows from Proposition 3.10(1).
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Now we can give the simple proof of Lemma 3.5.

Proof of Lemma 3.5. Assume to the contrary that η∗(G) > 3n+ 1. Then there
exists a squarefree type T of length |T | = 3n + 1 that does not have two short
minimal zero-sum subtypes which are not coprime. Clearly, the same is true for
g−1
1 T and g−1

2 T , where g1, g2 ∈ supp(T ), and hence the structural statement of
Conjecture 3.4 shows that there is an element g ∈ G with vg(α(T )) ≥ n + 1. This
implies that condition (1)(b) of Lemma 3.2 is satisfied, a contradiction. Thus it
follows that η∗(G) ≤ 3n+ 1, and using Proposition 3.10(2) we infer that

3n+ 1 ≤ η∗0(G) ≤ η∗(G) ≤ 3n+ 1.

Let g ∈ G• and assume to the contrary that η∗g(G) ≥ 3n + 1. Then there exists a
type T ∈ F(G• × N) of length |T | = 3n and with σ(T ) = g that does not have
two short minimal zero-sum subtypes which are not coprime, a contradiction to the
statement of Conjecture 3.4.

Next we show that for the first small primes we have η∗0(Cp ⊕ Cp) = η∗(Cp ⊕
Cp) = 3p+ 1 (note that this is based on the deep and recent results formulated in
Lemmas 3.7 and 3.8). Whereas it would be possible to increase the list of primes,
the handling of the general case definitely requires a different method.

Proposition 3.12. Let G = Cp ⊕ Cp with p ∈ P. If p ≤ 7, then η∗0(G) = η∗(G) =
3p+ 1.

Proof. By Proposition 3.10(2) we have 3p + 1 ≤ η∗0(G), and thus it remains to
show that η∗(G) ≤ 3p+1. Assume to the contrary that η∗(G) > 3p+1. Then there
exists a squarefree type S = g1 · . . . · gl ∈ F(G• ×N) of length |S| = l = 3p+ 1 that
does not have two short minimal zero-sum subtypes which are not coprime. Let
t ∈ N0 and S1, . . . , St be all short minimal zero-sum subtypes of S. Then S1, . . . , St
are pairwise coprime, and thus S can be written in the form

S = S0S1 · . . . · St with S0 ∈ F(G• × N).

For every ν ∈ [1, t] we choose an element gν ∈ supp(Sν), and we set lν = |Sν |. After
renumbering if necessary we may suppose that l1 ≤ · · · ≤ lt, and we define

L =
t∏

ν=1

lν ∈ F(N) = F.

Assume to the contrary that t ≤ 3. Then S(g1 · . . . · gt)−1 has length at least
3p − 2, and hence by Lemma 3.6 it has a short minimal zero-sum subtype S′.
By construction, S′ is different from S1, . . . , St, a contradiction. Assume to the
contrary that t = 4. Then S(g1g2g3g4)−1 has length 3p − 3. Since S1, . . . , St are
all short minimal zero-sum subtypes of S, each two elements of α(Si) and α(Sj),
i �= j ∈ [1, 4], are distinct. Thus α(S1S2S3S4(g1g2g3g4)−1) contains at least four
distinct elements and hence the same is true for α(S(g1g2g3g4)−1). Now Lemma 3.7
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implies that S(g1g2g3g4)−1 has a short minimal zero-sum subtype, a contradiction.
Therefore it follows that t ≥ 5.

Now we discuss the individual primes.

Case 1: p = 2. We obtain that 7 = 3p + 1 = |S| ≥
∑t
i=1 |Si| ≥ 2t ≥ 10, a

contradiction.

Case 2: p = 3. We obtain that 10 = 3p+ 1 = |S| ≥
∑t

i=1 |Si| ≥ 10, which implies
that |S1| = · · · = |St| = 2 and | supp(α(S))| ≥ | supp(α(S1 · . . . · St))| ≥ 10 > |G•|,
a contradiction.

Case 3: p = 5. We will apply repeatedly Lemma 3.9 (items (1) and (3), with
T =

∏
ν∈I Sν , Uν = Sν and I ⊂ [1, t]).

Assume to the contrary that 5 | FL. Then l5 = 5 and l1+l2+l3+l4 ≤ |S|−5 = 11,
and thus l1 = 2. If 3 | FL, then 2 + 3 + 5 ≤ 2 exp(G) + 1 and 2 · 3 · 5 > |G|,
a contradiction to Lemma 3.9. Thus 3 �F L, and the same argument shows that
4 �F L. Since l2 + l3 + l4 ≤ |S| − l1 − l5 = 9, it follows that l2 = l3 = 2. However,
l1+l2+l3+l5 = 11 ≤ 2 exp(G)+1 and l1l2l3l5 > |G|, a contradiction to Lemma 3.9.

Assume to the contrary that 2 �F L. Since 3 +3 +3 ≤ 2 exp(G)+1 and 3 · 3 · 3 >
|G|, Lemma 3.9 implies that 33 �F L and hence 42 | FL. Again Lemma 3.9 implies
that 3 · 42 �F L. Therefore we get that l1 = · · · = l5 = 4 and l1 + · · ·+ l5 = 20 > |S|,
a contradiction.

Assume to the contrary that 3 �F L. Then l1, . . . , l5 ∈ {2, 4}. Lemma 3.9 implies
that 2 · 42 �F L. Thus we obtain that either L = 25 or L = 4 · 24. In each case
Lemma 3.9 yields a contradiction.

Summing up we know that 2 ·3 | FL and that 5 �F L. Using Lemma 3.9 again we
infer that 33 � L and that 2 ·42 � L. Thus v3(L) ≤ 2, v4(L) ≤ 1 and hence v2(L) ≥ 2.
Again by Lemma 3.9 we infer that 22 · 32 �F L and that 22 · 3 · 4 �F L which implies
that v3(L) = 1 and that v4(L) = 0. Therefore we obtain that 24 ·3 | FL, which again
is a contradiction to Lemma 3.9.

Case 4: p = 7. Again we apply Lemma 3.9. If t ≥ 6, then the proof is similar to
that of Case 3. Suppose that t = 5. If L �= 25 and L �= 24 · 3, then we obtain a
contradiction by Lemma 3.9. Thus we distinguish these two cases.
Case 4.1: l1 = · · · = l5 = 2. Since S does not have two short minimal zero-sum
subtypes which are not coprime we infer that

| supp(α(S1 · . . . · S5))| = |α(S1 · . . . · S5)| = 10 and

supp(α(S1 · . . . · S5)) ∩ supp(α(S0)) = ∅.
Assume to the contrary that | supp(α(S0))| ≥ 3. Let S′

0 be a subtype of S0 such that
α(S′

0) consists of three distinct elements. By Lemma 3.8, S′
0S1 ·. . .·S5 has a zero-sum

subtype T of length |T | = 7. Therefore T has a short minimal zero-sum subtype T ′

of length |T ′| �= 2, and hence T ′ is distinct from S1, . . . , S5, a contradiction. Thus
| supp(α(S0))| ≤ 2, and since S0 has no short zero-sum subtype, it follows that

α(S0) = b6c6 with b, c ∈ G•.
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We assert that S5S0 has a minimal zero-sum subtype S′ of length |S′| = 8. Suppose
this holds true. Then l1+ l2 + l3+ |S′| = 14 ≤ 2 exp(G)+1 and l1l2l3|S′| = 64 > |G|,
a contradiction to Lemma 3.9.

To verify this assertion, we set α(S5) = (−a)a with a ∈ G•. Since D(G) = 13,
the sequence ab6c6 has a minimal zero-sum subsequence aεbucv with ε ∈ {0, 1} and
u, v ∈ [0, 6]. Since S1, . . . , S5 are all short minimal zero-sum subtypes of S, it follows
that

ε+ u+ v = |aεbucv| ≥ 8 and hence u, v ∈ [1, 6].

Assume to the contrary that ε = 0. Then b7−uc7−v is a zero-sum subsequence of
b6c6. Since |b6c6| + |b7−uc7−v| = 14, it follows that bucu or b7−uc7−v has a short
minimal zero-sum subsequence, and by construction, the associated type differs
from S1, . . . , S5, a contradiction. Thus we infer that ε = 1. Then (−a)b7−uc7−v
is a zero-sum subsequence of (−a)b6c6. Since |abucv| + |(−a)b7−uc7−v| = 16 and
S1, . . . , S5 are all short minimal zero-sum subtypes of S, it follows that both, abucv

and (−a)b7−uc7−v, are minimal zero-sum subsequences of α(S0S5) having length 8.

Case 4.2: l1 = · · · = l4 = 2 and l5 = 3. Then |S5| = 3. We set α(S5) = a1a2a3

with a1, a2 ∈ G distinct, and let S′
5 be a subtype of S5 such that α(S′

5) = a1a2.
Since S does not have two short minimal zero-sum subtypes which are not coprime
we infer that

| supp(α(S1 · . . . · S4S
′
5))| = |α(S1 · . . . · S4S

′
5)| = 10 and

supp(α(S1 · . . . · S4S
′
5)) ∩ supp(α(S0)) = ∅.

As above we obtain that | supp(α(S0))| = 2, and we set

α(S0) = b6c5 with b, c ∈ G•.

We assert that S5S0 has a minimal zero-sum subtype S′ of length |S′| ∈ [8, 9].
Suppose this holds true. Then l1 + l2 + l3 + |S′| ≤ 15 = 2 exp(G)+1 and l1l2l3|S′| ≥
64 > |G|, a contradiction to Lemma 3.9.

Now we verify this assertion. Since D(G) = 13, the sequence a1a2b
6c5 has a

minimal zero-sum subsequence

aε11 a
ε2
2 b

ucv with ε1, ε2 ∈ [0, 1], u ∈ [0, 6] and v ∈ [0, 5].

If ε1 + ε2 + u+ v ≤ 9, then the assertion follows. Suppose that ε1 + ε2 + u+ v ≥ 10.
Then u ≥ 3 and v ≥ 2. We distinguish four subcases.

Case 4.2.1: ε1 = ε2 = 0. As in Case 4.1 it follows that bucv or b7−uc7−v has a short
minimal zero-sum subsequence, and, by construction, the associated type differs
from S1, . . . , S5, a contradiction.

Case 4.2.2: ε1 = 0 and ε2 = 1. Then a1a3b
7−uc7−v is a zero-sum subsequence of

a1a3b
6c5. Since |a2b

ucv| + |a1a3b
7−uc7−v| = 17 and since S1, . . . , S5 are all short
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minimal zero-sum subtypes of S, it follows that the shorter sequence of a2b
ucv and

a1a3b
7−uc7−v is a minimal zero-sum sequence of length 8.

Case 4.2.3: ε1 = 1 and ε2 = 0. Similar to Case 4.2.2.

Case 4.2.4: ε1 = ε2 = 1. Similar to Case 4.2.2.

The following two lemmas constitute the essential tools in the proof of our main
result, which is Theorem 3.15.

Lemma 3.13. Let G = Cn ⊕ Cn with n ≥ 2 and let S ∈ F(G• × N) be squarefree.
Suppose that one of the following two conditions holds :

(a) |S| ≥ 4n−1 and there are two distinct elements g1, g2 ∈ G such that vg1(α(S))+
vg2(α(S)) ≥ 2n.

(b) |S| ≥ 4n and there are three distinct elements g1, g2, g3 ∈ G such that
vg1(α(S)) + vg2 (α(S)) + vg3(α(S)) ≥ 2n.

Then S has two short minimal zero-sum subtypes which are not coprime.

Proof. For every subsequence T of α(S), let α−1(T ) denote the corresponding
subtype of S. By Proposition 3.12 we may suppose that n ≥ 4. Let ψ ∈ {2, 3} such
that

∑ψ
ν=1 vgν (α(S)) ≥ 2n. We may suppose that |S| = 4n−δ with δ ∈ {0, 1}, where

δ = 1 implies that ψ = 2. Let S1, . . . , St be all short minimal zero-sum subtypes of
S
∏ψ
ν=1 g

−vgν (S)
ν . Assume to the contrary that S does not have two short minimal

zero-sum subtypes which are not coprime. Let W = α−1(
∏ψ
ν=1 g

vgν (α(S))
ν ). Then

supp(α(Si)) ∩ supp(α(Sj)) = ∅ for all i �= j ∈ [1, t],

S1 · . . . · St |SW−1 and hence |S1 · . . . · St| ≤ 2n− δ.

For every ν ∈ [1, t] we choose an element hν ∈ supp(Sν). Then S(g1
· . . . ·gψh1 · . . . ·ht)−1 has no short zero-sum subtype, and hence |S|−ψ− t < η(G) =
3n−2. Since |Sν | ≥ 2 for all ν ∈ [1, t], the inequality |S1 ·. . .·St| ≤ 2n−δ implies that
t ≤ n− δ. Thus we obtain that 3n−2 > |S|−ψ− t ≥ 4n− δ−ψ− (n− δ) = 3n−ψ,
which implies that ψ = 3, δ = 0, |S| = 4n, |S| − ψ − t = 3n− 3 and t = n. Since
supp(α(S1)), . . . , supp(α(Sn)) are pairwise disjoint, α(S(g1g3g3h1 · . . . · hn)−1) has
at least n ≥ 4 distinct elements, a contradiction to Lemma 3.7.

Lemma 3.14. Let G = Cmn⊕Cmn with m,n ≥ 2, ϕ :G→ G be the multiplication
by m, and S ∈ F(G• × N) be squarefree. Let u ∈ N0 and S1, . . . , Su ∈ F(G• × N)
with the following properties.

(i) S1 · . . . · Su |S.
(ii) For every ν ∈ [1, u], ϕ(Sν) is a short zero-sum sequence over ϕ(G).
(iii) The sequence σ(S1)·. . .·σ(Su) ∈ F(Ker(ϕ)) has no short zero-sum subsequence.
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Let T1 and T2 be subtypes of S(S1 · . . . · Su)−1 such that ϕ(T1) and ϕ(T2) are short
minimal zero-sum types which are not coprime. Then one of the following three
conditions holds.

(a) The sequence σ(T1)σ(S1) · . . . · σ(Su) ∈ F(Ker(ϕ)) has no short zero-sum
subsequence.

(b) The sequence σ(T2)σ(S1) · . . . · σ(Su) ∈ F(Ker(ϕ)) has no short zero-sum
subsequence.

(c) S has two short minimal zero-sum subtypes which are not coprime.

Proof. Suppose that for λ ∈ [1, 2], the sequence σ(Tλ)σ(S1) · . . . ·σ(Su) has a short
zero-sum subsequence. Then there exist, for λ ∈ [1, 2], subsets Iλ ⊂ [1, u] with |Iλ|+
1 ∈ [1,m] such that

TλVλ, where Vλ =
∏
ν∈Iλ

Sν ,

are zero-sum types, and since∣∣∣∣∣Tλ ∏
ν∈Iλ

Sν

∣∣∣∣∣ ≤ n+ |Iλ|n ≤ mn,

they are short. We assert that gcd(T1V1, T2V2) /∈ T (G). In order to verify this, note
that by construction, we have gcd(Ti, Vj) = 1 for all i, j ∈ [1, 2], and therefore

gcd(T1V1, T2V2) = gcd(T1, T2) gcd(V1, V2).

Now we obtain that

gcd(V1, V2) =
∏

ν∈I1∩I2
Sν , σ ◦ ϕ(gcd(V1, V2)) =

∑
ν∈I1∩I2

σ ◦ ϕ(Sν)

=
∑

ν∈I1∩I2
σ ◦ ϕ(Sν) = 0

and hence

ϕ ◦ σ(gcd(T1V1, T2V2)) = σ ◦ ϕ(gcd(T1V1, T2V2)) = σ ◦ ϕ(gcd(T1, T2))

= σ(gcd(ϕ(T1), ϕ(T2)) �= 0.

Therefore, gcd(T1V1, T2V2) /∈ T (G), and hence there exist minimal zero-sum sub-
types W1 |T1V1 and W2 |T2V2 such that gcd(W1,W2) �= 1. Since |WλVλ| ≤ |TλVλ| ≤
mn for λ ∈ [1, 2], it follows that W1 and W2 are short.

Now we formulate the main result of this section. It shows that, if η∗(Cp⊕Cp) =
3p+1 holds for all primes, then η∗(Cn⊕Cn) = 3n+1 holds for all positive integers
n ≥ 2. Moreover, Corollary 3.16 shows that every integer m ∈ N has a multiple
n ∈ mN satisfying η∗(Cn⊕Cn) = 3n+1. We will make substantial use of Lemma 3.7.
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Theorem 3.15. Let G = Cmn ⊕ Cmn with m,n ≥ 2.

(1) Suppose that η∗(Cm ⊕ Cm) = 3m+ 1.

(a) If η∗(Cn ⊕ Cn) = 3n+ 1, then η∗(G) = 3mn+ 1.
(b) If gcd(6,m) = 1 and n = p ∈ P with m ≥ 33p3

4 , then η∗(G) = 3mp+ 1.

(2) If η∗0(Cm ⊕ Cm) = 3m+ 1 and η∗0(Cn ⊕ Cn) = 3n+ 1, then η∗0(G) = 3mn+ 1.

Proof. The proof of (2) runs along the same lines as the proof of (1)(a). Thus we
show only (1).

(1) By Proposition 3.10(2), it suffices to prove that η∗(G) ≤ 3mn + 1. Let
S ∈ F(G• × N) be a squarefree type of length |S| = l = 3mn + 1, which has
pairwise distinct labels. We have to show that S has two short minimal zero-sum
subtypes which are not coprime. Let ϕ :G → G denote the multiplication by m.
Then Ker(ϕ) ∼= C2

m and ϕ(G) = mG ∼= C2
n.

We set S = g1 · . . . · gl, where l ∈ N0 and g1, . . . , gl ∈ G• ×N, such that for some
t ∈ [0, l] we have ϕ(gi) = 0 for all i ∈ [1, t] and ϕ(gi) �= 0 for all i ∈ [t + 1, l]. If
t ≥ 3m+ 1 = η∗(Ker(ϕ)), then g1 · . . . · gt ∈ F(Ker(ϕ) × N) has two short minimal
zero-sum subtypes which are not coprime. So we may suppose that t ∈ [0, 3m].

Let r ∈ N0 and let B1, . . . , Br be all short minimal zero-sum subtypes of
g1 · . . . · gt. If two of them are not coprime, then we are done. Otherwise,
B1 · . . . ·Br | g1 · . . . · gt, and for every ν ∈ [1, r] we choose an element τν ∈ supp(Bν).
It follows that g1 · . . . ·gt(τ1 · . . . ·τr)−1 has no short zero-sum subtype. Since |Bν | ≥ 2
for all ν ∈ [1, r], we infer that r ≤ t/2. Let u0 = |g1 · . . . · gt(τ1 · . . . · τr)−1| = t− r.
After renumbering if necessary we may assume g1 · . . . ·gu0 = g1 · . . . ·gt(τ1 · . . . ·τr)−1.
We set

Sν = gν for every ν ∈ [1, u0], and note that u0 ∈ [t/2, t]. (3.1)

(1)(a) Let u1 ∈ N0 be maximal such that there are types Su0+1, . . . , Su0+u1 ∈
F(G• × N) with the following properties.

• S1 · . . . · Su0+u1 |S.
• For every ν ∈ [1, u0 + u1], ϕ(Sν) is a short zero-sum sequence over ϕ(G).
• The sequence σ(S1) · . . . · σ(Su0+u1) ∈ F(Ker(ϕ)) has no short zero-sum

subsequence.

Lemma 3.6 implies that η(Ker(ϕ)) = 3m− 2 and hence u0 + u1 ∈ [0, 3m− 3]. Note
that the number of nonzero terms in ϕ(S(S1 · . . . · Su0+u1)−1) is equal to

|S(g1 · . . . · gt)−1(Su0+1 · . . . · Su0+u1)
−1|

≥ l − t− (3m− 3 − u0)n

≥ 3mn+ 1 − (3m− 3)n+ u0n− t ≥ 3n+ 1.

Since η∗(ϕ(G)) = 3n+1, there are subtypes T1 and T2 of S(S1 · . . . ·Su)−1 such that
ϕ(T1), ϕ(T2) ∈ F(ϕ(G)• × N) are two short minimal zero-sum types which are not



August 29, 2011 16:27 WSPC/S1793-0421 203-IJNT
S1793042111004721

1482 W. Gao, A. Geroldinger & Q. Wang

coprime. Since u1 is maximal, Lemma 3.14 implies that S has two short minimal
zero-sum subtypes which are not coprime.

(1)(b) The proof of (1)(b) uses the same ideas as the proof of (1)(a). But since
it is of higher technical complexity we discuss its strategy before going into details.
We will always use Lemma 3.14 which requires the construction of an integer u ∈ N0

and of types S1, . . . , Su satisfying the given conditions. In order to obtain the types
T1 and T2 we proceed as follows. We have to find a subtype T of S(S1 · . . . · Su)−1

such that ϕ(T ) ∈ F(ϕ(G)• × N) has two short minimal zero-sum subtypes which
are not coprime. This is guaranteed in each of the following cases.

• |ϕ(T )| ≥ η∗(ϕ(G)). Note that ϕ(G) ∼= Cp ⊕ Cp, and that by Lemma 3.6 and
Proposition 3.10(1), η∗Cp ⊕ Cp) ≤ 6p− 5.

• There is an element a ∈ ϕ(G)• such that va(ϕ(T )) > ord(a) = p.
• The group ϕ(G) and the type ϕ(T ) satisfy the assumptions of Lemma 3.13.
• The sequence ϕ(T ) has a short minimal zero-sum subsequence ξ�11 ξ

�2
2 ξ

�3
3 , and

ξ�11 ξ
�2
2 ξ

�3+1
3 is also a subsequence of ϕ(T ).

We will proceed by constradiction, and hence during the constructions we can
alwayss assume that a given subtype ϕ(T ) ∈ F(ϕ(G)• × N) does not have any
of the above properties. In particular, Lemma 3.14 is used as follows: since con-
dition (c) in Lemma 3.14 does not hold, we obtain (step by step) types satisfying
conditions (i)–(iii) in Lemma 3.14.

Now let gcd(6,m) = 1 and let n = p be a prime with m ≥ 33p3/4. By (1)(a)
and Proposition 3.12, we may suppose that p ≥ 11, and we assume to the contrary
that S does not have two short minimal zero-sum subtypes which are not coprime.
We set

W = S(g1 · . . . · gt)−1 and ϕ(W ) = er11 · . . . · erk

k , (3.2)

where e1, . . . , ek ∈ ϕ(G) are distinct and r1, . . . , rk ∈ N. For every i ∈ [1, k], let Wei

denote the subtype of W with ϕ(Wei ) = eri

i . After renumbering if necessary there is
some f ∈ [0, k] such that ri ≥ (6p−6)(p−2)+1 for i ∈ [1, f ] and rj ≤ (6p−6)(p−2)
for every i ∈ [f + 1, k]. We continue with the following assertion.

Assertion A1. f ≥ 2.

Proof of Assertion A1. By rearranging if necessary we may assume that r1 =
max{ri | i ∈ [1, k]}. We assert that r1 ≤ 2mp+ 2m− 4. If this holds, then

max{ri | i ∈ [2, k]} ≥ |S| − t− ve1(ϕ(W ))
|ϕ(G)\{0, e1}|

≥ 3mp+ 1 − 3m− (2mp+ 2m− 4)
p2 − 2

≥ (6p− 6)(p− 2) + 1,

and hence f ≥ 2. Assume to the contrary that r1 ≥ 2mp + 2m − 3. Then We1 =
(g+h1) · . . . · (g+hv) where g ∈ G×N with ϕ(g) = e1, h1, . . . , hv ∈ Ker(ϕ)×N and
v ≥ 2mp+ 2m− 3. Let U1, . . . , U� be all short minimal zero-sum subtypes of We1 .
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By our assumption on S, they are pairwise coprime and hence U1 · . . . · U� |We1 .
For every ν ∈ [1, �], we choose an element xν ∈ supp(Uν), and clearly we have
|Uν | ≥ 2 which implies that � ≤ |We1 |

2 . Then We1(x1 · . . . · x�)−1 has no short zero-
sum subtype, and |We1 (x1 · . . . ·x�)−1| ≥ v/2 ≥ mp+m− 3/2. After renumbering if
necessary, we may assume that We1 (x1 · . . . ·x�)−1 = (g+ h1) · . . . · (g+ hv−�). Note
that v − � ≥ mp +m − 3/2 ≥ 4m− 3. Since, by Lemma 3.6, s(Ker(ϕ)) = 4m− 3,
the type h1 · . . . · hv ∈ F(Ker(ϕ) × N) may be written as

h1 · . . . · hv = V1 · . . . · V2p−1V
′,

where V ′, V1, . . . , V2p−1 ∈ F(Ker(ϕ)× N) and, for every ν ∈ [1, 2p− 1], Vν has sum
zero and length |Vν | = m. Furthermore, we suppose that V1 |h1 · . . . · hv−�. We set
W1 =

∏p
ν=1(g + Vν) and W2 = (g + V1)

∏2p−1
ν=p+1(g + Vν). Note that

σ(W1) = mpα(g) +
p∑

ν=1

σ(Vν) = 0 = mpα(g) + σ(V1) +
2p−1∑
ν=p+1

σ(Vν) = σ(W2),

and that g + V1 = gcd(W1,W2). Since g + V1 |We1 (x1 · . . . · x�)−1, it follows that
g+V1 is zero-sum free. Therefore, there exist two short minimal zero-sum subtypes
T1 and T2, T1 |W1 and T2 |W2, which are not coprime, a contradiction.

We set

W ′ =
f∏
i=1

Wei , W ′′ =
k∏

i=f+1

Wei and then W = W ′W ′′. (3.3)

Case 1. There exist distinct i, j ∈ [1, f ] such that the sequence ep−1
i ep−1

j has a
short zero-sum subsequence.

After renumbering if necessary, we may suppose that i = 1 and j = 2 . A short
zero-sum subsequence of ep−1

1 ep−1
2 over ϕ(G) ∼= Cp ⊕ Cp must be the form eε11 e

ε2
2

with ε1, ε2 ∈ [1, p− 1] and ε1 + ε2 ≤ p. Moreover, if ε1 + ε2 = p, then it follows that
ε1(e1 − e2) = 0 and hence e1 − e2 = 0, a contradiction. Thus ε1 + ε2 < p.

Let u1 ∈ N0 be maximal such that there exist types Su0+1, . . . , Su0+u1 with the
following properties.

• Su0+1 · . . . · Su0+u1 |We1We2 .
• For every ν ∈ [1, u1], ϕ(Su0+ν) = e1

ε1e2
ε2 .

• The sequence σ(S1) · . . . · σ(Su0+u1) ∈ F(Ker(ϕ)) has no short zero-sum
subsequence.

We consider the type

W0 = W (Su0+1 · . . . · Su0+u1)
−1 = S(g1 · . . . · gtSu0+1 · . . . · Su0+u1)

−1.

First, suppose that min{ve1(ϕ(W0)), ve2 (ϕ(W0))} ≥ p − 1. Then there are types
T1, T2 dividing W0 such that ϕ(T1) and ϕ(T2) are two short minimal zero-sum types
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which are not coprime. Thus Lemma 3.14 implies that S has two short minimal
zero-sum subtypes which are not coprime, a contradiction.

Thus from now on, we may suppose that min{ve1(ϕ(W0)), ve2 (ϕ(W0))} < p− 1.
We obtain that

u1 ≥ min{ve1(ϕ(W )), ve2 (ϕ(W ))} − (p− 2)
max{ε1, ε2}

≥ (6p− 6)(p− 2) + 1 − (p− 2)
p− 2

> 6p− 7.

Let u2 ∈ N0 be maximal such that there exist types Su0+u1+1, . . . , Su0+u1+u2 with
the following properties.

• Su0+u1+1 · . . . · Su0+u1+u2 |S(S1 · . . . · Su0+u1)−1.
• For every ν ∈ [1, u2], ϕ(Su0+u1+ν) is a short minimal zero-sum sequence over
ϕ(G).

• The sequence σ(S1) · . . . · σ(Su0+u1+u2) ∈ F(Ker(ϕ)) has no short zero-sum
subsequence.

Since η(Ker(ϕ)) = 3m−2, we infer that u0+u1+u2 ≤ 3m−3. Since |Su0+ν | ≤ p−1
for each ν ∈ [1, u1] and u1 ≥ 6p− 6, we obtain that

|S(g1 · . . . · gtSu0+1 · . . . · Su0+u1Su0+u1+1 · . . . · Su0+u1+u2)
−1|

≥ 3mp+ 1 − t− (3m− 3 − u0)p+ 6p− 6

≥ 3mp+ 1 − (3m− 3)p+ 6p− 6 ≥ 6p− 5.

Again by using Lemma 3.14 we infer that S has two short minimal zero-sum sub-
types which are not coprime, a contradiction.

Case 2. For every distinct i, j ∈ [1, f ] the sequence ep−1
i ep−1

j has no short zero-sum
subsequence.

We continue with the following four assertions on the structure of the types
We1 , . . . ,Wek

.

Assertion A2. Let i ∈ [1, k] with ri ≥ p+ 4. Then |supp(α(Wei ))| ≤ 4.
Assertion A3. Let i ∈ [1, k] with ri ≥ p+ 4. Then |supp(α(Wei ))| ≤ 3.
Assertion A4. Let i ∈ [1, k] with |Wei | ≥ p + 4. Then Wei = ξi,1 · . . . · ξi,wiW

′
i

where α(ξi,1) = · · · = α(ξi,wi) = ξi ∈ G and |W ′
i | ≤ 4.

Assertion A5. | supp(σ(ξp1 ) · . . . · σ(ξpf ))| ≥ 3.

Proof of Assertion A2. Assume to the contrary that | supp(α(Wei ))| ≥ 5. Let
x1, x2, x3, x4, x5 ∈ supp(Wei ) such that α(x1), . . . ,α(x5) are pairwise distinct, and
let Z be a subtype of Wei(x1x2x3x4x5)−1 with |Z| = p− 1. We set

W1 = W lcm(x1 · . . . · x5Z,We1 ,We2 )
−1 and W ′

1 = WW−1
1 .
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Let u1 ∈ N0 be maximal such that there exist types Su0+1, . . . , Su0+u1 with the
following properties.

• Su0+1 · . . . · Su0+u1 |W1.
• For every ν ∈ [1, u1], ϕ(Su0+ν) is a short minimal zero-sum sequence over ϕ(G).
• The sequence σ(S1) · . . . · σ(Su0)σ(Su0+1) · . . . · σ(Su0+u1) ∈ F(Ker(ϕ)) has no

short zero-sum subsequence.

If |W1(Su0+1 · . . . · Su0+u1)−1| ≥ 6p − 5, then S has two short minimal zero-sum
subtypes which are not coprime, a contradiction. Thus we may assume that

|W1(Su0+1 · . . . · Su0+u1)
−1| ≤ 6p− 6.

Write W ′
1 = (x1 ·. . .·x5Z)TW2, where T is a subtype ofW ′

1 with ϕ(T ) = e4p−6
1 e4p−6

2 .
Now we apply (step by step) Lemma 3.13(a) (to the group ϕ(G) and some types
UV with U |W2, V |W1(Su0+1 · . . . · Su0+u1)−1, |V | = 2p − 1 and ϕ(U) = ep1e

p
2)

and Lemma 3.14 to obtain a maximal u2 ∈ N0 such that there exist types
Su0+u1+1, . . . , Su0+u1+u2 with the following properties.

• Su0+u1+1 · . . . · Su0+u1+u2 |W2W1(Su0+1 · . . . · Su0+u1)−1.
• For every ν ∈ [1, u2], ϕ(Su0+u1+ν) is a short minimal zero-sum sequence over
ϕ(G).

• For every ν ∈ [1, u2], gcd(Su0+u1+ν ,W1(Su0+1 · . . . · Su0+u1)−1) �= 1 and
gcd(Su0+u1+ν ,W2) �= 1.

• The sequence σ(S1) · . . . · σ(Su0)σ(Su0+1) · . . . ·σ(Su0+u1+u2) ∈ F(Ker(ϕ)) has no
short zero-sum subsequence.

Let W ′′
1 (respectively, W ′′

2 ) be the remaining subsequence of W1(Su0+1 · . . . ·
Su0+u1)−1 (respectively, W2) after the construction of these Sν with ν ∈ [u0 + u1 +
1, u0 + u1 + u2]. Then,

W2W1(Su0+1 · . . . · Su0+u1)
−1 = Su0+u1+1 · . . . · Su0+u1+u2W

′′
1 W

′′
2 .

Clearly, max{ve1(ϕ(Sν)), ve2 (ϕ(Sν))} ≤ p− 2 holds for every ν ∈ [u0 + u1 + 1, u0 +
u1 + u2]. But min{ve1(ϕ(W2)), ve2 (ϕ(W2))} − (p− 1) ≥ min{ri | i ∈ [1, f ]} − (4p−
6) − (p − 1) ≥ (6p − 6)(p − 2) + 1 − (4p − 6) − (p − 1) > (4p − 4)(p − 2) ≥(
|W1(Su0+1 · . . . · Su0+u1)−1| − (2p− 2)

)
(p− 2). These show that if |W ′′

1 | ≥ 2p− 1,
then the construction of Sν in the way above could be continued, a contraction to
the maximality of u2. Hence,

|W ′′
1 | ≤ 2p− 2.

Let u3 ∈ N0 be maximal such that there exist types Su0+u1+u2+1, . . . ,

Su0+u1+u2+u3 with the following properties.

• Su0+u1+u2+1 · . . . · Su0+u1+u2+u3 |W ′′
2 .

• For every ν ∈ [1, u3], ϕ(Su0+u1+u2+ν) is a short minimal zero-sum sequence over
ϕ(G).
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• For every ν ∈ [1, u3], ϕ(Su0+u1+u2+ν) ∈ {ep1, e
p
2}.

• The sequence σ(S1) · . . . · ·σ(Su0)σ(Su0+1) · . . . ·σ(Su0+u1+u2+u3) ∈ F(Ker(ϕ)) has
no short zero-sum subsequence.

We set

W ′′′
2 = W ′′

2 (Su0+u1+u2+1 · . . . · Su0+u1+u2+u3)
−1.

If max{ve1(ϕ(W ′′′
2 )), ve2 (ϕ(W ′′′

2 ))} ≥ p + 1, then S has two short minimal zero-
sum subtypes which are not coprime, a contradiction. Thus we obtain that
max{ve1(ϕ(W ′′′

2 )), ve2(ϕ(W ′′′
2 ))} ≤ p, which implies that |W ′′′

2 | ≤ 2p. Now we have
that

u0 + u1 + u2 + u3 ≥ u0 +
|S| − t− |W ′′′

2 | − |W ′′
1 | − |T | − |x1 · . . . · x5Z|
p

≥ 2m− 1.

Since σ(S1) · . . . · σ(Su0)σ(Su0+1) · . . . · σ(Su0+u1+u2+u3) ∈ F(Ker(ϕ)) has no
short zero-sum subsequence, we infer that | supp(σ(S1) · . . . · σ(Su0)σ(Su0+1) · . . . ·
σ(Su0+u1+u2+u3))| ≥ 3, and we can choose three distinct elements α, β, γ in this
set. Since the elements α(x1 + σ(Z)), . . . ,α(x5 + σ(Z)) are pairwise distinct, we
may assume — after renumbering if necessary — that α(x1 +σ(Z)),α(x2+σ(Z)) �∈
{α, β, γ}. Since x1Z and x2Z are two short minimal zero-sum subtypes over ϕ(G) ∼=
Cp ⊕ Cp and S does not have two short minimal zero-sum subtypes, so we may
assume that the sequence σ(S1)·. . . ·σ(Su0)σ(Su0+1)· . . . ·σ(Su0+u1+u2+u3)σ(x1Z) ∈
F(Ker(ϕ)) has no short zero-sum subsequence. Now we have

| supp(σ(S1) · . . . · σ(Su0)σ(Su0+1) · . . . · σ(Su0+u1+u2+u3)σ(x1Z))| ≥ 4,

and we set Su0+u1+u2+u3+1 = x1Z.
Again we apply (step by step) Lemma 3.13 (to the group ϕ(G); note that

ep−1
1 ep−1

2 has no short zero-sum subsequence) and Lemma 3.14, to obtain a maximal
u4 ∈ N0 such that there exist types Su0+u1+u2+u3+2, . . . , Su0+u1+u2+u3+u4 with the
following properties.

• Su0+u1+u2+u3+2 · . . . · Su0+u1+u2+u3+u4 |TW ′′′
2 W

′′
1 (x2x3x4x5).

• For every ν ∈ [2, u4], ϕ(Su0+u1+u2+u3+ν) is a short minimal zero-sum sequence
over ϕ(G).

• For every ν ∈ [2, u4], gcd(Su0+u1+u2+u3+ν ,W
′′
1 (x2x3x4x5)) �= 1 and

gcd(Su0+u1+u2+u3+ν , TW
′′′
2 ) �= 1.

• The sequence σ(S1) · . . . · σ(Su0)σ(Su0+1) · . . . · σ(Su0+u1+u2+u3+u4) ∈ F(Ker(ϕ))
has no short zero-sum subsequence.

Let T ′ (respectively, W ′′′
1 ) be the remaining subtype of TW ′′′

2 (respectively,
W ′′

1 (x2x3x4x5)) after the construction of these Sν with ν ∈ [u0 + u1 + u2 + u3 +
2, u0 + u1 + u2 + u3 + u4]. Then,

TW ′′′
2 W

′′
1 (x2x3x4x5) = Su0+u1+u2+u3+2 · . . . · Su0+u1+u2+u3+u4T

′W ′′′
1 .
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Obviously, for each ν ∈ [1, u′4] we have

max{ve1(ϕ(Su0+u1+u2+u3+ν)), ve2(ϕ(Su0+u1+u2+u3+ν))} ≤ p− 2.

Note that ϕ(T ) = e4p−6
1 e4p−6

2 , ϕ(T ′) = ec1e
d
2, and similarly to the argument for W ′′

1

we may assume that |W ′′′
1 | ≤ 2p− 2. Let u5 ∈ N0 be maximal such that there exist

types Su0+u1+u2+u3+u4+1, . . . , Su0+u1+u2+u3+u4+u5 with the following properties.

• Su0+u1+u2+u3+u4+1 · . . . · Su0+u1+u2+u3+u4+u5 |T ′.
• For every ν ∈ [1, u5], ϕ(Su0+u1+u2+u3+u4+ν) is a short minimal zero-sum sequence

over ϕ(G).
• For every ν ∈ [1, u5], ϕ(Su0+u1+u2+u3+u4+ν) ∈ {ep1, e

p
2}.

• The sequence σ(S1) · . . . · σ(Su0)σ(Su0+1) · . . . · σ(Su0+u1+u2+u3+u4+u5) ∈
F(Ker(ϕ)) has no short zero-sum subsequence.

We set

T ′′ = T ′(Su0+u1+u2+u3+u4+1 · . . . · Su0+u1+u2+u3+u4+u5)
−1.

Since S does not have two short minimal zero-sum subtypes which are not coprime,
we infer that max{ve1(ϕ(T ′′)), ve1 (ϕ(T ′′))} ≤ p and hence |T ′′| ≤ 2p. Since
|W ′′′

1 T ′′| ≤ 4p− 2, it follows that

u0 + u1 + u2 + u3 + u4 + u5

≥ u0 +
|S| − t− |W ′′′

1 T
′′|

p
≥ u0 +

3mp+ 1 − t− 4p+ 2
p

= 3m− 4 +
u0p− t+ 3

p
= 3m− 4 +

tp/2 − t+ 3
p

> 3m− 4.

Now we have

| supp(σ(S1) · . . . · σ(Su0)σ(Su0+1) · . . . · σ(Su0+u1+u2+u3+u4+u5))| ≥ 4,

and

|σ(S1) · . . . · σ(Su0)σ(Su0+1) · . . . · σ(Su0+u1+u2+u3+u4+u5)| ≥ 3m− 3.

Thus Lemma 3.7 implies that the sequence

σ(S1) · . . . · σ(Su0)σ(Su0+1) · . . . · σ(Su0+u1+u2+u3+u4+u5)

has a short zero-sum subsequence, a contradiction.

Proof of Assertion A3. By Assertion A2 we have | supp(α(Wei))| ≤ 4, and
hence there exists some element y ∈ G with vy(α(Wei )) ≥ p+4

4 ≥ 3. Assume to
the contrary that | supp(α(Wei ))| = 4, and let y1, y2, y3, y4 ∈ supp(Wei ) such that
α(y1), . . . ,α(y4) are pairwise distinct, and let y′ and y′′ be two distinct elements
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of Wei(y1y2y3y4)−1 with α(y′) = α(y′′) = y. We can simply repeat the proof of
Assertion A2: we only have to replace the sequence x1 · . . . ·x5Z by y1 · . . . ·y4Z ′y′y′′,
where Z ′ is a subtype of Wei(y1 · . . . · y4y′y′′)−1 of length |Z ′| = p− 2.

Proof of Assertion A4. By Assertion A3 we have | supp(α(Wei))| ≤ 3, and
hence it suffices to prove that there exists at most one element z ∈ G• × N

with vα(z)(α(Wei) ≥ 3. Assume to the contrary that there are two elements z1
and z2 such that α(z1) and α(z2) are distinct and vα(z1)(Wei ) ≥ vα(z2)(Wei)) ≥
3. Let z′1, z

′′
1 , z

′
2, z

′′
2 be four distinct elements of Wei(z1z2)−1 with α(z′1) =

α(z′′1 ) = α(z1) and α(z′2) = α(z′′2 ) = α(z2). Since gcd(m, 6) = 1, the sums
σ(z1z′1z

′′
1 ), σ(z1z′′1 z2), σ(z1z2z′2) and σ(z2z′2z

′′
2 ) are distinct. Let z′, z′′ be two dis-

tinct elements of Wei(z1z′1z
′′
1 z2z

′
2z

′′
2 )−1 with α(z′) = α(z′′). Let Z ′′ be a sub-

type of Wei (z1z′1z
′′
1 z2z

′
2z

′′
2 z

′z′′)−1 of length |Z ′′| = p − 4. Considering the type
z1z

′
1z

′′
1 z2z

′
2z

′′
2 z

′z′′Z ′′ instead of x1 · . . . · x5Z, we can derive a contradiction as in
the proof of Assertion A2.

Proof of Assertion A5. By using Lemma 3.14 repeatedly to the type∏f
i=1

∏wi

ν=1 ξi,ν , we find a maximal w ∈ N0 such that there exist types T1, . . . , Tw
with the following properties.

• T1 · . . . · Tw |
∏f
i=1

∏wi

ν=1 ξi,ν .
• For every ν ∈ [1, w], ϕ(Tν) is a short minimal zero-sum sequence over ϕ(G).
• For every ν ∈ [1, w], α(Tν) ∈ {ξp1 , . . . , ξ

p
f}.

• The sequence σ(T1) · . . . ·σ(Tw) ∈ F(Ker(ϕ)) has no short zero-sum subsequence.

We set R =
∏f
i=1

∏wi

ν=1 ξi,ν(T1 · . . . · Tw)−1, and observe that vξi(α(R)) ≤ p for
every i ∈ [1, f ]. Therefore,

w ≥
|S| − t− |

∏k
i=f+1Wei | − |

∏f
i=1W

′
i | − fp

p

≥ 3mp+ 1 − 3m− (p2 − 1 − f)(6p− 6)(p− 2) − 4f − fp

p

≥ 2m− 1.
(

Here we need that m ≥ 33p3

4
.

)
Since σ(T1) · . . . ·σ(Tw) ∈ F(Ker(ϕ)) has no short zero-sum subsequence, we obtain
that

| supp(σ(ξp1 )σ(ξp2 ) · . . . · σ(ξpf )| ≥ 3.

Now we continue our proof by using the structural information obtained in
Assertions A2–A5. We do not use any of the notations introduced in the proofs of
Assertions A2–A5, but continue with the setting of (3.1)–(3.3).
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After renumbering if necessary, we may suppose that σ(ξp1 ), σ(ξp2 ) and σ(ξp3 ) are
distinct. Let u1 ∈ N0 be maximal such that there exist types Su0+1, . . . , Su0+u1

with the following properties.

• Su0+1 · . . . · Su0+u1 |
∏k
i=4Wei .

• For every ν ∈ [1, u1], ϕ(Su0+ν) is a short minimal zero-sum sequence over ϕ(G).
• The sequence σ(S1) · . . . · σ(Su0)σ(Su0+1) · . . . · σ(Su0+u1) ∈ F(Ker(ϕ)) has no

short zero-sum subsequence.

We set

Q =
k∏
i=4

Wei(Su0+1 · . . . · Su0+u1)
−1 and obtain that |Q| ≤ 6p− 6.

We distinguish two cases.

Case 2.1: ep−1
1 ep−1

2 ep−1
3 ∈ F(ϕ(G)) has no short zero-sum subsequence. We set

α(Q) = θ1 · . . . · θu2 with u2 = |Q| ≤ 6p − 6. Since η(Cp ⊕ Cp) = 3p − 2, for
every ν ∈ [1, u2], the sequence ep−1

1 ep−1
2 ep−1

3 θν has a short zero-sum subsequence
containing θν . Since each of r1, r2, r3 is greater than or equal to (6p− 6)(p− 2) + 1,
we find (by using Lemma 3.14 step by step) u2 types Su0+u1+1, . . . , Su0+u1+u2 with
the following properties.

• Su0+u1+1 · . . . · Su0+u1+u2 |QWe1We2We3 .
• For every ν ∈ [1, u2], ϕ(Su0+u1+ν) is a short minimal zero-sum sequence over
ϕ(G).

• For every ν ∈ [1, u2], θν |ϕ(Su0+u1+ν) | ep−1
1 ep−1

2 ep−1
3 θν .

• The sequence σ(S1) · . . . · σ(Su0)σ(Su0+1) · . . . · σ(Su0+u1)σ(Su0+u1+1) · . . . ·
σ(Su0+u1+u2) ∈ F(Ker(ϕ)) has no short zero-sum subsequence.

We set Q′ = QWe1We2We3 (Su0+u1+1 · . . . · Su0+u1+u2)−1. Let u3 ∈ N0 be max-
imal such that there exist types Su0+u1+u2+1, . . . , Su0+u1+u2+u3 with the following
properties.

• Su0+u1+u2+1 · . . . · Su0+u1+u2+u3 |Q′.
• For every ν ∈ [1, u3], ϕ(Su0+u1+u2+ν) is a short minimal zero-sum sequence over
ϕ(G).

• For every ν ∈ [1, u3], ϕ(Su0+u1+u2+ν) ∈ {ep1, e
p
2, e

p
3}.

• The sequence σ(S1) · . . . · σ(Su0)σ(Su0+1) · . . . · σ(Su0+u1)σ(Su0+u1+1) · . . . ·
σ(Su0+u1+u2+u3) ∈ F(Ker(ϕ)) has no short zero-sum subsequence.

We set Q′′ = Q′(Su0+u1+u2+1 · . . . · Su0+u1+u2+u3)−1 and observe that

max{ve1(ϕ(Q′′)), ve3 (ϕ(Q′′)), ve3 (ϕ(Q′′))} ≤ p,
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which implies that |Q′′| ≤ 3p. Therefore,

u0 + u1 + u2 + u3 ≥ u0 +
|S| − t− |Q′′|

p
≥ 3m− 2 = η(Ker(ϕ)),

a contradiction.

Case 2.2: ep−1
1 ep−1

2 ep−1
3 ∈ F(ϕ(G)) has a short zero-sum subsequence. Let e�11 e

�2
2 e

�3
3

be a short minimal zero-sum subsequence of ep−1
1 ep−1

2 ep−1
3 , where �1, �2, �3 ∈ N —

recall that ep−1
i ep−1

j has no short zero-sum subsequence for i, j ∈ [1, 3] — and
�1 + �2 + �3 ∈ [3, p]. According to Assertion A4 we have Wei = ξi,1 · . . . · ξi,wiW

′
i

where |W ′
i | ≤ 4.

Applying Lemmas 3.13 and 3.14 to the types Q and
∏w1−�1
ν=1 ξ1,ν

∏w2−�2
ν=1 ξ2,ν ,

we find (step by step) a maximal u2 ∈ N0 such that there exist types
Su0+u1+1, . . . , Su0+u1+u2 with the following properties.

• Su0+u1+1 · . . . · Su0+u1+u2 |Q
∏w1−�1
ν=1 ξ1,ν

∏w2−�2
ν=1 ξ2,ν .

• For every ν ∈ [1, u2], ϕ(Su0+u1+ν) is a short minimal zero-sum sequence over
ϕ(G).

• For every ν ∈ [1, u2], gcd(Su0+u1+ν , Q) �= 1.
• The sequence σ(S1) · . . . · σ(Su0)σ(Su0+1)σ(Su0+u1+1) · . . . · σ(Su0+u1+u2) ∈
F(Ker(ϕ)) has no short zero-sum subsequence.

After the construction of these Sν for ν ∈ [1, u2], let Q′, W ′
e1 and W ′

e2 be the
remaining subtypes of Q,

∏w1−�1
ν=1 ξ1,ν and

∏w2−�2
ν=1 ξ2,ν , respectively. Then,

Q

w1−�1∏
ν=1

ξ1,ν

w2−�2∏
ν=1

ξ2,ν
(
Su0+u1+1 · . . . · Su0+u1+u2)

−1 = Q′W ′
e1W

′
e2 .

We set

W ′
e3 =

w3−�3−1∏
ν=1

ξ3,ν .

Observe that |Q′| ≤ 2p− 2.
Applying Lemma 3.14 to W ′

e1W
′
e2W

′
e3 , we find (step by step) a maximal u3 ∈

N0 such that there exist types Su0+u1+u2+1, . . . , Su0+u1+u2+u3 with the following
properties.

• Su0+u1+u2+1 · . . . · Su0+u1+u2+u3 |W ′
e1W

′
e2W

′
e3 .

• For every ν ∈ [1, u3], ϕ(Su0+u1+u2+ν) is a short minimal zero-sum sequence over
ϕ(G).

• For every ν ∈ [1, u3], α(Su0+u1+u2+ν) ∈ {ξp1 , ξ
p
2 , ξ

p
3}.

• The sequence σ(S1) · . . . · σ(Su0)σ(Su0+1)σ(Su0+u1+1) · . . . · σ(Su0+u1+u2+u3) ∈
F(Ker(ϕ)) has no short zero-sum subsequence.
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We set

Q′′ = (W ′
e1W

′
e2W

′
e3 (Su0+u1+u2+1 · . . . · Su0+u1+u2+u−3)−1)

·
(

2∏
i=1

(
W ′
i

wi∏
ν=wi−�i+1

ξi,ν

))
W ′

3

w3∏
ν=w3−�3

ξ3,ν ,

and observe that, for i ∈ [1, 2],

vei(ϕ̄(Q′′)) ≤ p+ �i + 4 and ve3(ϕ̄(Q′′)) ≤ p+ �i + 5,

which implies that

|Q′′| ≤ 4p+ 13.

Now we have

u0 + u1 + u2 + u3 ≥ u0 +
|S| − t− |Q′| − |Q′′|

p
> 3m− 7,

and we set

u4 = 3m− 3 − (u0 + u1 + u2 + u3) ∈ [0, 3].

Using Lemmas 3.13 and 3.14, we find types Su0+u1+u2+u3+1, . . . , Su0+u1+u2+u3+u4

with the following properties.

• Su0+u1+u2+u3+1 · . . . · Su0+u1+u2+u3+u4 |Q′Q′′.
• For every ν ∈ [1, u4], ϕ(Su0+u1+u2+u3+ν) is a short minimal zero-sum sequence

over ϕ(G).
• α(Su0+u1+u2+u3+1) = ξ�11 ξ

�2
2 ξ

�3
3 .

• The sequence σ(S1)· . . . ·σ(Su0)σ(Su0+1)σ(Su0+u1+1)· . . . ·σ(Su0+u1+u2+u3+u4) ∈
F(Ker(ϕ)) has no short zero-sum subsequence.

By definition of u4, we have u0 + u1 + u2 + u3 + u4 = 3m− 3, and thus Lemma 3.7
implies that

σ(S1) · . . . · σ(Su0)σ(Su0+1)σ(Su0+u1+1) · . . . · σ(Su0+u1+u2+u3+u4)

= (pξ1)m−1(pξ2)m−1(pξ3)m−1.

It follows that σ(ξ�11 ξ
�2
2 ξ

�3
3 ) = pξε for some ε ∈ [1, 3], and we set

σ(S1) · . . . · σ(Su0)σ(Su0+1)σ(Su0+u1+1) · . . . · σ(Su0+u1+u2)

= (pξ1)s1(pξ2)s2(pξ3)s3 ,

and

σ(Su0+u1+u2+1) · . . . · σ(Su0+u1+u2+u3) = (pξ1)t1(pξ2)t2(pξ3)t3 .
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Then sε + tε ≥ m − 1 − u4 ≥ m − 4, and we set v′ = vξε(α(W ′
eε

)). Now by the
construction of the types Su0+u1+u2+1, . . . , Su0+u1+u2+u3 we deduce that

sε +
v′ − p− �ε

p
+ 1 ≥ m− 4.

In a further step, instead of constructing Su0+u1+u2+1, . . . , Su0+u1+u2+u3 , we apply
Lemma 3.14 to W ′

e1W
′
e2W

′
e3 and find a maximal w ∈ N0 such that there exist types

V1, . . . , Vw with the following properties:

• V1 · . . . · Vw |W ′
e1W

′
e2W

′
e3 .

• For every ν ∈ [1, w], ϕ(Vν) is a short minimal zero-sum sequence over ϕ(G).
• For every ν ∈ [1, w], α(Vν) is of the form ξ�11 ξ

�2
2 ξ

�3
3 .

• The sequence σ(S1) · . . . · σ(Su0)σ(Su0+1)σ(Su0+u1+1) · . . . · σ(Su0+u1+u2)σ(V1) ·
. . . · σ(Vw) ∈ F(Ker(ϕ)) has no short zero-sum subsequence.

We set Q′′′ = W ′
e1W

′
e2W

′
e3(V1 · . . . ·Vw)−1, vε = vξε(α(Q′′′)) and w′ = � vε−1

p �. Using
Lemma 3.14 again we find w′ types Vw+1, . . . , Vw+w′ with the properties.

• Vw+1 · . . . · Vw+w′ |Q′′′.
• For every ν ∈ [1, w′], ϕ(Vw+ν) is a short minimal zero-sum sequence over ϕ(G).
• For every ν ∈ [1, w′], α(Vw+ν) ∈ {ξp1 , ξ

p
2 , ξ

p
3}.

• The sequence σ(S1) · . . . · σ(Su0)σ(S′′
u0+1)σ(Su0+u1+1) · . . . · σ(Su0+u1+u2)σ(V1)

· . . . · σ(Vw)σ(Vw+1) · . . . · σ(Vw+w′) ∈ F(Ker(ϕ)) has no short zero-sum subse-
quence.

Let

τ = min
{⌊ |W ′

e1 − 1
�1

⌋
,

⌊ |W ′
e2 − �2

�2

⌋
,

⌊ |W ′
e3 − �3

�3

⌋}
.

Now we have that pξε occurs in

σ(S1) · . . . · σ(Su0)σ(Su0+1)σ(Su0+u1+1) · . . . · σ(Su0+u1+u2)

·σ(V1) · . . . · σ(Vw)σ(Vw+1) · . . . · σ(Vw+w′)

at least sε + τ + v′−�ετ−p
p ≥ m times, a contradiction.

Corollary 3.16. For every m ∈ N there exists a positive integer n ∈ mN such that
η∗(Cn ⊕ Cn) = 3n+ 1.

Proof. Let m = 2k13k25k37k4p1 · . . . · ps where s, k1, . . . , k4 ∈ N0 and p1, . . . , ps ∈
P with p1 ≤ · · · ≤ ps. We set n = m5k

′
37k

′
4 with k′3, k

′
4 ∈ N0 such that

5k3+k
′
37k4+k

′
4 ≥ 33p3

s/4 (in the case s = 0 set k′3 = k′4 = 0). Using Proposi-
tion 3.12 and Theorem 3.15(1)(a) and (1)(b), we infer that η∗(Ck ⊕ Ck) = 3k + 1
holds for k ∈ {5k3+k′37k4+k′4 , 5k3+k′37k4+k′4p1, . . . , 5k3+k

′
37k4+k

′
4p1 · . . . · ps, n =

2k13k25k3+k
′
37k4+k

′
4p1 · . . . · ps}.
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4. On N1(G) for Groups of Rank Two

The main aim of this section is to prove the following theorem.

Theorem 4.1. Let G = Cn1 ⊕ Cn2 with 1 < n1 |n2. Suppose that for every prime
divisor p of n1 we have η∗(Cp ⊕ Cp) = 3p+ 1 and that N1(Cp ⊕ Cp) = 2p.

(1) N1(Cn1 ⊕ Cn1) = 2n1.
(2) If D(C3

n1
) ≤ 3n1 − 1, then N1(G) = n1 + n2.

We analyze the above result. First, note that a main standing conjecture on the
Davenport constant states that

D(C3
n) = d∗(G) + 1 = 3n− 2 for all n ∈ N

(see [6, Conjecture 3.5]), and this holds true if n is a prime power (see [14, Theorem
5.5.9]). Let G be as in Theorem 4.1. Then

n1 + n2 ≤ N1(G) ≤ n1 + n2 − 2 + ol(G),

where the left inequality is obvious (see inequality (2.2)) and the right inequality
is the best upper bound known so far (see [14, Proposition 6.2.26]). Here ol(G)
denotes the Olson constant of the group G (for recent progress, see [1, 10, 33]). Now
Theorem 4.1 reduces the determination of the precise value of N1(G) for general
groups of rank two to the verification of the corresponding conjectures for groups
Cp ⊕ Cp where p is prime. For small primes we have η∗(Cp ⊕ Cp) = 3p + 1 by
Proposition 3.12, and furthermore it is well known — due to the first author —
that for all primes p with p ≤ 151, we have N1(Cp ⊕Cp) = 2p (see [14, Proposition
6.2.11]). This result, in combination with Theorem 3.15(1)(b), Corollary 3.16 and
with the following multiplicity result for N1(G), provides further groups for which
N1(Cn ⊕ Cn) = 2n holds, which are not covered by Theorem 4.1.

Proposition 4.2. Let G = Cmn ⊕ Cmn with m,n ≥ 2. If N1(Cm ⊕ Cm) =
2m, η∗(Cn ⊕ Cn) = 3n+ 1 and N1(Cn ⊕ Cn) = 2n, then N1(G) = 2mn.

Proof. By inequality (2.2) it suffices to prove that N1(G) ≤ 2mn. Let ϕ : G → G

denote the multiplication by m. Then Ker(ϕ) ∼= C2
m and ϕ(G) = mG ∼= C2

n. Let
S ∈ T (G•) be a squarefree type of length |S| ≥ 2mn+ 1, and without restrict we
may assume that all labels are pairwise distinct (this implies in particular, that
ϕ(S) is squarefree too). We have to show that |Z(S)| > 1. Assume to the contrary
that |Z(S)| = 1.

We set S = g1 · . . . · gl, where l ∈ N0 and g1, . . . , gl ∈ G• ×N, such that for some
t ∈ [0, l] we have ϕ(gi) = 0 for all i ∈ [1, t] and ϕ(gi) �= 0 for all i ∈ [t+1, l]. Suppose
that t ≥ 2m+1 and set g0 = (σ(g2m+2 · . . . ·gl),m0), where m0 ∈ N is chosen in such
a way that g0 � g1 · . . . · g2m+1. Then ϕ(g0) = 0 and S′ = g0 · . . . · g2m+1 ∈ T (Ker(ϕ))
is squarefree. Since |Z(S)| = 1, Lemma 3.9(2) (applied with T = S, t = 2m + 2,
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S1 = g1, . . . , S2m+1 = g2m+1 and S2m+2 = g2m+2 · . . . · gl) implies that |Z(S′)| = 1,
a contradiction to |S′| > 2m = N1(Ker(ϕ)).

So we may suppose that t ∈ [0, 2m], and we continue with the following assertion.

Assertion A. The type g1 · . . . · gt has a zero-sum free subtype T of length |T | ≥
� t2�.

Proof of Assertion A. If t = 0, then set T = 1. Suppose that t ∈ [1, 2m]. We
write g1 · . . . · gt = U0U1 · . . . ·Uf where U1, . . . , Uf are minimal zero-sum types over
Ker(ϕ) and U0 zero-sum free. Since S ∈ F(G• × N), it follows that |Ui| ≥ 2 for all
i ∈ [1, f ]. We choose an element xi ∈ supp(Ui) for every i ∈ [1, f ]. Since |Z(S)| = 1,
it follows that

g1 · . . . · gt(x1 · . . . · xf )−1 = U0(x−1
1 U1) · . . . · (x−1

f Uf )

is zero-sum free, and obviously we have |g1 · . . . · gt(x1 · . . . · xf )−1| ≥ � t2�.

By Assertion A we may suppose without restriction that g1 · . . . ·g� t
2 � is zero-sum

free, and we set Sν = gν for every ν ∈ [1, � t2�]. Let u ∈ N0 be maximal such that
there exist types S� t

2 �+1, . . . , Su with the following properties.

• S� t
2 �+1 · . . . · Su |S(S1 · . . . · S� t

2 �)
−1.

• For every ν ∈ [� t2� + 1, u], ϕ(Sν) is a short zero sum sequence over ϕ(G)).
• The sequence σ(S1) · . . . · σ(Su) ∈ F(Ker(ϕ)) is zero-sum free.

Since D(Ker(ϕ)) = 2m− 1, it follows that u ≤ 2m− 2. We set W = gcd(S(S1 · . . . ·
Su)−1, g� t

2 �+1 · . . . · gl). Then W is the largest subtype of S(S1 · . . . ·Su)−1 such that
ϕ(W ) ∈ F(G• × N). Clearly, ϕ(W ) is squarefree, has sum zero and

|ϕ(W )| ≥ |S| − |S1 · . . . · S� t
2 �| − |S� t

2 �+1 · . . . · Su| −
(
t−
⌈
t

2

⌉)
≥ (2mn+ 1) −

⌈
t

2

⌉
−
(
u−

⌈
t

2

⌉)
n−

(
t−
⌈
t

2

⌉)

≥
(

2m− u+
⌈
t

2

⌉)
n+ 1 ≥ (2m− u)n+ 1.

We distinguish two cases.

Case 1: u = 2m−2. Then |W | ≥ 2n+1. Since ϕ(W ) ∈ T (ϕ(G)•) and N1(ϕ(G)) =
2n, Lemma 2.2 implies that W has two subtypes T1 and T2 such that ϕ(T1) and
ϕ(T2) are two minimal zero-sum subtypes of ϕ(W ) which are not coprime. Let
λ ∈ [1, 2]. Since D(Ker(ϕ)) = 2m− 1 and σ(S1) · . . . · σ(Su) is zero-sum free, there
exists a subset Iλ ⊂ [1, u] such that σ(Tλ)

∏
ν∈Iλ

σ(Sν) is a zero-sum sequence, and
hence

TλVλ, where Vλ =
∏
ν∈Iλ

Sν ,
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is a zero-sum subtype of S. Since |Z(S)| = 1, Lemma 2.2(c) implies that
gcd(T1V1, T2V2) ∈ T (G). Since gcd(Ti, Vj) = 1 for all i, j ∈ [1, 2], it follows that
gcd(T1V1, T2V2) = gcd(T1, T2) gcd(V1, V2). Arguing as in the proof of Lemma 3.14,
we infer that

gcd(V1, V2) =
∏

ν∈I1∩I2
Sν and σ ◦ ϕ(gcd(V1, V2)) = 0.

Thus we get

0 = σ(gcd(T1V1, T2V2)) = ϕ ◦ σ(gcd(T1V1, T2V2))

= σ ◦ ϕ(gcd(T1V1, T2V2)) = σ ◦ ϕ(gcd(T1, T2)) = σ(gcd(ϕ(T1), ϕ(T2)).

Since ϕ(T1) and ϕ(T2) are not coprime, their greatest common divisor is not trivial.
But since it sums to zero, this is a contradiction to the minimality of ϕ(T1) and
ϕ(T2).
Case 2: u ≤ 2m − 3. Then |W | ≥ 3n + 1 = η∗(ϕ(G)). Thus W has two sub-
types T1 and T2 such that ϕ(T1) and ϕ(T2) are two short minimal zero-sum types
which are not coprime. Then Lemma 3.14 implies that S has two short minimal
zero-sum subtypes which are not coprime, and hence |Z(S)| > 1 by Lemma 2.2, a
contradiction.

Proof of Theorem 4.1. Theorem 3.15 implies that η∗(Cn1 ⊕ Cn1) = 3n1 + 1.
Thus the first statement follows from Proposition 4.2. Using the first statement
and [14, Corollary 6.2.10] we obtain the second statement.

5. On Nk(G) for Cyclic Groups and Elementary 2-Groups

In this section we establish two results. First, we show that in cyclic groups Nk(G)
coincides with N1(G) for large values of k (see Theorem 5.1). Second, we point
out that this feature of cyclic groups is in sharp contrast to the behavior of the
Narkiewicz constants in elementary 2-groups (see Theorem 5.3). Both proofs use
ideas first developed in [5]. In the present paper we have the concept of type
monoids at our disposal and, moreover, a result on the structure of long zero-sum
free sequences which was recently established by Savchev and Chen in [36].

Theorem 5.1. Let G be a cyclic group of order n ≥ 6 and let k ∈ N with k ≤
2−log2 n+

√
(log2 n)2+2n−18

2 . Then Nk(G) = n.

We start with the the result by Savchev and Chen which we cite in a form given
in [13, Theorem 5.1.8].

Lemma 5.2. Let G be a cyclic group of order n ≥ 2, and let S be a zero-sum free
sequence over G of length |S| = l ≥ n+1

2 . Then there exists an element g ∈ G with
ord(g) = n such that

S = (a1g) · . . . · (alg),
where 1 = a1 ≤ · · · ≤ al ≤ n− 1 and Σ(S) = {νg | ν ∈ [1, a1 + · · · + al]}.
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We will also need the following two elementary observations.

Lemma 5.3. Let A = a1 · . . . · a� be a sequence of positive integers such that
a1 + · · · + a� ≤ 2�− 1. Then

∑
(A) = [1, a1 + · · · + a�].

Proof. For the proof we suppose that 1 ≤ a1 ≤ · · · ≤ a� which implies that a1 = 1.
We proceed by induction on �. If � = 1, then A = 1 and Σ(A) = [1, 1]. Suppose
that � ≥ 2. If a� = 1, then A = 1� and Σ(A) = [1, �]. Suppose that a� ≥ 2, and
set A′ = a−1

� A. Then a� ≤ σ(A′) + 1, σ(A′) ≤ 2�− 3, and the induction hypothesis
implies that Σ(A′) = [1, σ(A′)]. Therefore we obtain that

Σ(A) = Σ(A′) ∪ {a�} ∪ (a� + Σ(A′))

= [1, σ(A′)] ∪ {a�} ∪ [a� + 1, a� + σ(A′)] = [1, σ(A)].

Lemma 5.4. Let n ≥ 6 and A ∈ F(N) be a sequence of positive integers of length
|A| = � ≥ (n+ 2)/2 and with σ(A) < n. Let a ∈ N denote the integer with va(A) =
max{vg(A) | g ∈ N}.

(1) va(A) > n/6.
(2) a ∈ [1, 2].
(3) If x ∈ Σ(A) with x ∈ [a + 1, σ(A) − a], then x = σ(aA′) for some subsequence

A′ of A with va(A′) ≤ va(A) − 2.

Proof. (1) If va(A) ≤ n/6, then

σ(A) ≥ v1(A) + 2v2(A) + 3(�− v1(A) − v2(A)) = 3�− 2v1(A) − v2(A)

≥ 3
(n

2

)
− 2

n

6
− n

6
= n,

a contradiction.

(2) If a ≥ 3, then

σ(A) ≥ v1(A) + 2v2(A) + 3(�− v1(A) − v2(A)) = 3�− 2v1(A) − v2(A)

= 2�+ (�− v1(A) − v2(A)) − v1(A) ≥ 2�+ va(A) − v1(A) ≥ 2� ≥ n,

a contradiction.
(3) Since n ≥ 6, we have va(A) ≥ 2, |A| = � ≥ 4 and σ(A) < n ≤ 2�− 2. Therefore,

σ(Aa−2) ≤ σ(A)−2 ≤ 2�−5 = 2(�−2)−1, and Aa−2 satisfies the assumption of
Lemma 5.3. Since x−a ∈ [1, σ(A)−2a] = Σ(Aa−2), it follows that x−a = σ(A′)
for some subsequence A′ of Aa−2.

We fix the notation which will be used in the subsequent lemmas and in the
proof of Theorem 5.1. Let k ∈ N, G be a finite abelian group with |G| > 1 and
T = g1 · . . . ·gl ∈ T (G•) be squarefree with |Z(T )| = k, where l ∈ N0 and g1, . . . , gl ∈
G• × N. For ν ∈ [1, k], let

zν = Uν,1 · . . . · Uν,rν ∈ Z(T ),
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where, for all λ ∈ [1, rν ],

Uν,λ =
∏
i∈Jν,λ

gi ∈ A(T (G•)) and [1, l] = Jν,1 � . . . � Jν,rν .

Then L(T ) = {r1, . . . , rk}, and we suppose that r1 = maxL(T ).

Lemma 5.5. Let k ∈ N≥2 and T ∈ T (G•) be squarefree with |Z(T )| = k. Then
maxL(T ) ≤ k − 1 + log2 |G|.

Proof. We assert that there exists a subset Λ ⊂ [1, r1] with |Λ| ≥ r1 − k + 1 such
that ∏

λ∈Λ

U1,λ ∈ T (G)

has unique factorization. Suppose this holds true. Then Lemma 3.9(1) implies that

2|Λ| ≤
∏
λ∈Λ

|U1,λ| ≤ |G|.

Therefore we obtain |Λ| ≤ log2 |G| and

maxL(T ) = r1 ≤ |Λ| + k − 1 ≤ k − 1 + log2 |G|.

It remains to verify the existence of the set Λ. For every i ∈ [2, k], there are αi ∈
[1, r1] and βi ∈ [1, ri] such that U1,αi �= Ui,βi . We set Λ = [1, r1]\{αi | i ∈ [2, k]}.
Then |Λ| ≥ r1 − (k − 1) and ∏

λ∈Λ

U1,λ ∈ T (G)

has unique factorization, since otherwise we would get |Z(T )| > k.

Lemma 5.6. Let k ∈ N≥2 and T ∈ T (G•) be squarefree with |Z(T )| = k. For
ν ∈ [2, k] and for λ ∈ [1, rν ], we define the set Iλ = {s ∈ [1, r1] | J1,s ∩ Jν,λ �= ∅}.
Then the family {Iλ |λ ∈ [1, rν ]} has a system of distinct representatives.

Proof. Assume to the contrary that this does not hold. Then, by Hall’s Theorem,
there is a subset Ω ⊂ [1, rν ] such that for

IΩ =
⋃
ω∈Ω

Iω we have |IΩ| < |Ω|.

By definition of the sets Iλ, we get⋃
ω∈Ω

Jν,ω ⊂
⋃
i∈IΩ

J1,i,

and we set J =
⋃
i∈IΩ J1,i\

⋃
ω∈Ω Jν,ω. Then it follows that

T =

(∏
i∈J

gi

) ∏
ω∈Ω

 ∏
i∈Jν,ω

gi

 ∏
λ∈[1,r1]\IΩ

 ∏
i∈J1,λ

gi


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is a product of at least r1 − |IΩ|+ |Ω| > r1 minimal zero-sum types, a contradiction
to r1 = maxL(T ).

Lemma 5.7. Let T ∈ T (G•) be squarefree with |Z(T )| = 2. Then |T | < maxL(T )+
D(G).

Proof. Let {Iλ |λ ∈ [1, r2]} be as in Lemma 5.6 and (sλ)λ∈[1,r2] be a system of
distinct representatives. Then for every λ ∈ [1, r2] we have J1,sλ

∩ J2,λ �= ∅, and
for every i ∈ [1, r1] there is an ui ∈ J1,i such that usλ

∈ J1,sλ
∩ J2,λ. Now we set

Λ = [1, l]\{u1, . . . , ur1}. By construction, no non-empty subset Λ′ ⊂ Λ is a union
of sets J1,λ with λ ∈ [1, r1], or of sets J2,λ with λ ∈ [1, r2]. Since |Z(T )| = 2, this
implies that

∏
λ∈Λ gλ is zero-sum free and hence |Λ| < D(G). Thus we obtain that

|T | = l = |Λ| + r1 < D(G) + maxL(T ).

Proof of Theorem 5.1. Assume to the contrary that Nk(G) �= n. Since n =
N1(G) ≤ · · · ≤ Nk(G), we may set Nk(G) = n + 1 + t with t ∈ N0. We choose
a squarefree T ∈ T (G•) with |Z(T )| ≤ k and |T | = Nk(G). Since N1(G) = n, it
follows that |Z(T )| = k′ ∈ [2, k]. Then Nk′ (G) = Nk(G), and thus, after replacing k
by k′ if necessary, we may suppose that |Z(T )| = k.

For λ ∈ [1, r2], we set Iλ = {sλ ∈ [1, r1] | J1,sλ
∩J2,λ �= ∅}, and by Lemma 5.6 we

may choose a system of distinct representatives (sλ)λ∈[1,r2]. Then for every i ∈ [1, r1]
there is an ui ∈ J1,i such that usλ

∈ J1,sλ
∩J2,λ. Therefore there is a subset I ⊂ [1, l]

with |I| = r1 + r3 + · · ·+ rk such that I ∩Jν,j �= ∅ for all ν ∈ [1, k] and all j ∈ [1, rν ].
Now we set Λ = [1, l]\I. Since |Z(T )| = k, the type U =

∏
λ∈Λ gλ is zero-sum free.

Using Lemma 5.5 we obtain that

n− |U | = n− |Λ| = n− (n+ 1 + t− |I|) ≤ |I| − 1 = r1 + r3 + · · · + rk − 1

≤ (k − 1)r1 − 1 ≤ (k − 1)(k − 1 + log2 |G|) − 1

≤ (by our assumption on k)
n− 11

2
.

Let R be a zero-sum free subsequence of α(T ) having maximal length. Then |R| ≥
|U | ≥ n+11

2 , and we set r = |R| and s = |T | − r = n+ 1 + t− r. By Lemma 5.2 we
may write

α(T ) = (a1g) · . . . · (arg)(b1g) · . . . · (bsg),

where g ∈ G with ord(g) = n, ai, bj ∈ [1, n − 1] and Σ(A) = [1, σ(A)] ⊂ [1, n − 1]
with A = a1 · . . . · ar ∈ F(N). Let a ∈ N with va(A) = max{vai(A) | i ∈ [1, r]}. By
Lemma 5.4, we obtain that

a ∈ [1, 2] and va(A) ≥ n

6
> k.
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Assume to the contrary that n− bj ∈ [a+ 1, σ(A) − 2a]. Then Lemma 5.4 implies
that n− bj = a+ σ(A′) for some subsequence A′ of A with va(A′) ≤ va(A)− 2, and
thus

bj + (va(A′) + 1)a+ σ(A′a−va(A′)) = n. (5.1)

Since 2 ≤ va(A′)+1 ≤ va(A)− 1, we can choose the (va(A′)+1)a’s in the left-hand
side of (5.1) in at least

( va(A)
va(A′)+1

)
≥ va(A) ≥ n/6 > k ways, a contradiction to

|Z(T )| = k. Therefore,

bj ∈ [n− a, n− 1] ∪ [1, n− σ(A) + 2a].

If bj1 , bj2 ∈ [1, n− σ(A) + 2a] for j1 �= j2, then 2 ≤ bj1 + bj2 ≤ 2(n− σ(A) + 2a) ≤
n − 3 < n − a. Arguing as above we can infer that bj1 + bj2 ∈ [2, n − σ(A) + 2a].
Repeating this argument we finally obtain∑

j∈[1,s],bj≤n−σ(A)+2a

bj ≤ n− σ(A) + 2a,

and hence
r∑
i=1

ai +
∑

j∈[1,s],bj≤n−σ(A)+2a

bj ≤ n+ 2a. (5.2)

Now we distinguish two cases.

Case 1: a = 1. If bj = n−1 for some j ∈ [1, s], then T has at least v1(A) ≥ n/6 > k

distinct factorizations, a contradiction. Therefore, bj ≤ n−σ(A)+2 holds for every
j ∈ [1, s], and (5.2) implies that

∑r
i=1 ai +

∑s
j=1 bj ≤ n+ 2. Since r + s ≥ n+ 1, it

follows that
∑r
i=1 ai +

∑s
j=1 bj ∈ [n+ 1, n+ 2], a contradiction to σ(T ) = 0.

Case 2: a = 2. If bj = n−2 for some j ∈ [1, s], then T has at least v2(A) ≥ n/6 > k

distinct factorizations, a contradiction. If bj = bi = n−1 for some i �= j ∈ [1, s], then
T has at least v2(A) ≥ n/6 > k distinct factorizations, a contradiction. Thus after
renumbering if necessary, we may suppose that bj ≤ n−σ(A)+4 holds for every j ∈
[1, s−1]. It follows from (5.2) that

∑r
i=1 ai+

∑s−1
j=1 bj ≤ n+4. If bs ≤ n−σ(A)+ 4,

then, as in Case 1, we derive a contradiction to σ(T ) = 0. Therefore, we get that
bs = n− 1. But from r + s− 1 ≥ n and

∑r
i=1 ai +

∑s−1
j=1 bj ≤ n+ 4 we obtain that

1 occurs with multiplicity at least n− 8 > k times in a1 · . . . · arb1 · . . . · bs−1. Since
bs + 1 = n, T has at least as many factorizations as the above multiplicity of 1, a
contradiction to |Z(T )| = k.

We end this section with a result on elementary 2-groups which is in contrast
to Theorem 5.1.

Theorem 5.8. Let G be an elementary 2-group of rank r ∈ N and let k ∈ N. Then
Nk(G) = 2r if and only if k ∈ [1, 2].

Proof. By inequality (2.2), we have 2r ≤ N1(G) ≤ N2(G). First, we show that
N2(G) ≤ 2r. Let T ∈ T (G•) be squarefree with |Z(T )| = 2 and maxL(T ) = r1.
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Then Lemma 5.7 implies that D(G)+r1−1 ≥ |T | ≥ 2r1. This implies r1 ≤ D(G)−1
and thus |T | ≤ 2D(G) − 2 = 2r.

Second, we verify that N3(G) > 2r. Let (e1, . . . , er) be a basis of G and B =
e41e

2
2 · . . . · e2r. Then

τ(B) = (e1, 1)(e1, 2)(e1, 3)(e1, 4)
r∏
i=2

(ei, 1)(ei, 2) and Z(τ(B)) = {z1, z2, z3},

where

z1 = ((e1, 1)(e1, 2))((e1, 3)(e1, 4))
r∏
i=2

((ei, 1)(ei, 2)),

z2 = ((e1, 1)(e1, 3))((e1, 2)(e1, 4))
r∏
i=2

((ei, 1)(ei, 2)),

z3 = ((e1, 1)(e1, 4))((e1, 2)(e1, 3))
r∏
i=2

((ei, 1)(ei, 2)).

This shows that N3(G) ≥ |τ(B)| = 2r + 2.
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Note Added in Proof. W. Gao, Y. Li and J. Peng proved that N1(Cp⊕Cp) = 2p
for all primes p (their paper “A quantitative aspect of non-unique factorizations:
The Narkiewicz constants II” has been accepted for publication in Colloq. Math.).
Thus one of the two assumptions in Theorem 4.1 has been verified.
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