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Abstract. For a finite abelian group G and a positive integer d, let sqn(G)
denote the smallest integer ¢ € Ny such that every sequence S over G of length
|S| = ¢ has a nonempty zero-sum subsequence T of length || =0 mod d. We
determine sqn(G) for all d = 1 when G has rank at most two and, under mild con-
ditions on d, also obtain precise values in the case of p-groups. In the same spirit,
we obtain new upper bounds for the Erdés—Ginzburg—Ziv constant provided that,
for the p-subgroups G, of G, the Davenport constant D(G,,) is bounded above by
2exp (Gp) — 1. This generalizes former results for groups of rank two.

1. Introduction

Let G be an additive finite abelian group. A direct zero-sum problem,
associated to a given Property P, asks for the extremal conditions which
guarantee that every sequence S over G satisfying these conditions has a
zero-sum subsequence with Property P. Most of the properties studied so
far deal with the length of the zero-sum subsequence; others consider the
cross number (see, e.g., [14]) or versions of this problem involving weights
(see, e.g., [1]). In the case of lengths, a direct zero-sum problem asks for the
smallest integer ¢ € Ny such that every sequence S over G of length |S| = ¢
has a zero-sum subsequence of some prescribed length. This leads to the
definition of the following zero-sum constant:

For a subset L C N, let s;(G) denote the smallest ¢ € Ny U {co} such
that every sequence S over G of length |S| = ¢ has a zero-sum subsequence
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T of length |T'| € L. Note that s;(G) = oo if and only if L Nexp (G)N = 0.
The following sets lead to classical zero-sum invariants (the reader may want
to consult one of the surveys [8,15] or the monograph [18]):

e sy(G) = D(G) is the Davenport constant,

® S{exp (G)}(G) = s(G) is the Erdés—Ginzburg—Ziv constant,

o s{|G|}(G) = ZS(G) is the zero-sum constant, and

® S[1exp (G)](G) = 1n(G) is the n-invariant.

Moreover, sz,(G) has been investigated for various other sets, including:
[1,k] for k = exp (G) (see, e.g., [2,4,6]), {kexp(G)} for k € N (see, e.g.,
[13,26]), N\ kN for k { exp (G) and other unions of arithmetic progressions
(see [7,21,29]), and exp (G)N (see, e.g., [3]). And, for recent closely related
results, see, e.g., [9,11,12,22,23,31].

In the present paper, we investigate syy(G), first proving upper and lower
bounds in terms of a Davenport constant and its canonical lower bound. This
allows us to determine sgn(G) for cyclic groups and, under mild conditions
on d, for p-groups (Theorem 3.1). Then we suppose that d = exp (G)) and
that, for the p-subgroups G), of G, the Davenport constant D(G)) is bounded
above by 2exp (Gp) — 1 (note that every group of rank at most two satis-
fies this condition). In this setting, we obtain canonical upper bounds for
san(G) and, among others, for the Erdés—Ginzburg-Ziv constant s(G) (The-
orem 4.1, and see Theorem 4.2 for a result in a similar vein). Next, using a
more involved argument, we determine sgy(G) for rank 2 groups G, show-
ing that s;n(G) attains the value that would easily follow from our bounds
if the conjectured value of D(G) for rank 3 groups were true. In the final
section, we apply these results to a problem from the theory of non-unique
factorizations which motivated the present investigations.

Throughout this paper, let G be a finite abelian group.

2. Preliminaries

Our notation and terminology are consistent with [10] and [18]. We
briefly gather some key notions and fix the notation concerning sequences
over abelian groups. Let N denote the set of positive integers, let P C N be
the set of prime numbers and let Ny = NU {0}. For real numbers a,b € R,
we set [a,b] ={x €Z|a <2z <b}. For ne N and p € P, let C, denote a
cyclic group with n elements and v,(n) € Ny the p-adic valuation of n with
vp(p) = 1. Throughout, all abelian groups will be written additively.

For a subset Gy C G, let (Gp) denote the subgroup generated by Gy.
For a prime p € P, we denote by G, = {g € G | ord (g) is a power of p} the
p-primary component of G. Suppose that G = C,,, & ... ® C,, with r € Ny
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ZERO-SUM PROBLEMS WITH CONGRUENCE CONDITIONS 325

and 1 < nq|...|n,. Then r = r(G) will be called the rank of G, and we set

G)=1+ i(nl -
i=1

Note that r(G) = 0 and D*(G) =1 for G trivial.

Let F(G) be the free abelian monoid with basis G. The elements of
F(G) are called sequences over G. We write sequences S € F(G) in the
form

S = H g% with vg(S) € Ng forall geG.
geG

We call vy(S) the multiplicity of g in S, and we say that S contains g if
vg(S) > 0. A sequence S is called a subsequence of S if S; | S in F(G)
(equivalently, v4(S1) = vg(S) for all g € G). If a sequence S € F(G) is writ-
ten in the form S =g¢;-...- g;, we tacitly assume that [ € Ny and g1, ...,
g € G.

For a sequence

S=gi-....q=[] ¢ € F(G),

geCG
we call
S| =1="> v4(S5) €Ny the length of S,
geCG
supp (S) ={g € G |vy(S) >0} CG the support of S
and

Zgz—z (S)ge G the sum of S.

geG

The sequence S is called

e a zero-sum sequence if o(S5) =0,

e zero-sum free if there is no nonempty zero-sum subsequence,

e a minimal zero-sum sequence if S is a nonempty zero-sum sequence
and every S’|S with 1 < |S’| < |S] is zero-sum free.

Every map of abelian groups ¢: G — H extends to a homomorphism
v: F(GQ) — F(H) where ¢(S) = ¢(g1) - ... - p(gq1). If ¢ is a homomorphism,
then () is a zero-sum sequence if and only if o(S) € Ker (). We let A(G)
denote the set of all minimal zero-sum sequences over G.
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3. Basic bounds and results for cyclic and p-groups

In this section, we establish some of our results on s;y(G). In particular,
we obtain the following result.

THEOREM 3.1. Let d € N and let n = exp (G).
(1) Suppose G is cyclic. Then

san(G) = D*(G & Cy) = lem (n, d) + ged (n, d) — 1.

(2) Suppose G is a p-group.
(a) san(G) = D*(G® Cy) =D*(G) +d — 1 for d = p* with o € Ny.
(b) san(G) =D*(G @ Cy) = D*(G) +d — 1 for each d € N with D*(G)
< Vp(d)
(¢c) san(G) = D*(G @ Cy) = D*(G) —n+1em (n,d) + ged (n,d) — 1 for
each d € N with p*»(4 < 2n — D*(G).

The strategy to prove this result is to bound sgy(G), for generic d and G,
in terms of the invariants D*(-) and D(-), and then to make these ‘abstract
bounds’ explicit invoking results on the Davenport constant. We remark
that Theorem 3.1.2(a) for a = 1 can also be derived as a special case of [21,
Theorem 2.3], proved via the Combinatorial Nullstellensatz. The first part
is carried out in Proposition 3.3. However, since the lower bound given there
is in terms of D*(G @ Cy), we begin first with the following lemma showing
how to calculate D*(G @ Cy) explicitly.

LEMMA 3.2. Letde NandletG=C,, @---BCy, withl <mny |- | n,.
Setng=1andny41 =0. Then GBCq = Chpy @+ B Cppy, with1 Smg | - -+ |
my, so that

r

D*(G & Cy) =D (m;—1)+1,
=0

where

ged (nit1, d)

m; = n; acd (nr. d) = ged (nig1, lem (ng, d)) = lem (ng, ged (nis1, d))

forie[0,r].

PRrOOF. To prove this result, we first use the composition of the groups
in cyclic components of prime power order, where the relation between the
compositions of G and G @ Cy is transparent, and reconstruct the desired
description of G & C,. Due to its central nature for the remainder of the
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paper, we provide full details of the routine argument. Letting p1,...,pg be
the distinct prime divisors p; of n,, we have

k r
=B
i=1 j=1
where 0 < s;1 < ... < s;, for all i € [1,k] and pi™ -... - p*? =n; for all

j€[l,r]. Let

i

k
Ca=Cnd@PC .,
i=1 P

where v, (d) = s, 2 0and d = mpi/1 . -ng‘. Recall ng =1, n, 41 = 0 and write

(3.1) GeCy=Cn,®...0Ch,
with 1 <mg | --- | m,. Then

vp, (1) = $ij, if vp, (d) = vy, (n)),
(32)  vp.(my) = qvp(d) = s, if vy, (n;) =

( ) g (nj+1)7

pi(d),

V
Vp, (nj11) = sijr1, i vp,(njy1) =

for j € [0,7] and 7 € [1, k].
We claim that
ged ()41, d)

(3.3) mj =n; acd (1, d)

for j € [0,7]. Indeed, since m, = exp (G & Cy) = HTW‘LJ)’ this is clear for

j =r. To see this also holds for j < r, it suffices to see vy, (nj%)

agrees with (3.2) for each i € [1, k]. However,

(e, d)
PEATY ged (nj,d)

= Vp (n]) + min {Vp'i (d)7 Vp; (nj-i-l)} — min {Vpi (d)7 Vpi (n])} )

which is easily seen to agree with (3.2) in all three cases, completing the
claim. Thus from (3.1) we conclude that

T

D*(G® Cq) => (m;— 1)+ 1.
1=0
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Moreover, in view of (3.3), one sees that the expression for the m; can be
rewritten as

m; = ged (ni41,lem (ng, d)) = lem (ng, ged (nip1,d))  for i € [0,r],

which completes the proof. [J

Now, we establish our ‘abstract bounds’. A main point is the inequality
D*(G @& Cy) < san(G), which can be a considerably better bound than the
more direct lower bound of D(G) +d — 1.

ProPOSITION 3.3. Let d € N. Then
D*(G)+d—1<D*(G®Cy) <san(G) < D(G @ Cy)

and
D(G)+d—1 < sgn(G).
In particular, if D*(G & Cy) = D(G @ Cy), then sqn(G) = D*(G @ Cy).

ProOOF. Write G =2 C,,, @ ... ® C,,, where 1 <ny |- |n,, let ng =1
and n,41 =0, and let eq,...,e, € G be such that G = &]_, (e;) with ord (e;)

=n;. We begin by showing D*(G) +d — 1 < D*(G @ Cy), which is a fairly
direct consequence of Lemma 3.2. By Lemma 3.2, we know

r

(3.4) D*(G @ Cyq) =D (m;—1)+1,

i=0
where

'ng (niJrlv d)

zm = ged (ni+1,1Cm (ni, d)) = lcm (ni,gcd (Nit1, d))

m; =mn

for i € [0,7].
From (3.4), we have

T T

D*(GeCy) = Zmi —r = dei -,
i=0 i=0
where
d 7 7d .
(3.5) ;= god (ni+1, d) for ie]0,r].

ged (ng, d)

Observing that dy - - - d, = d with d; € [1,d] for all i, and noting that dony =
do = ged (n1,d) | nj for all j, so that dong < nj, it is easily verified that the
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above expression is minimized when dg = d and d; = 1 for ¢ = 1, in which
case D'(G® Cy) 2d+>i_1n; —r=D"(G) +d— 1, as desired.

Next, we show D(G) 4+ d — 1 < sgn(G). By definition of D(G), there ex-
ists a zero-sum free sequence S € F(G) with |S| = D(G) — 1. We consider
the sequence 0971S. Clearly, the only nonempty zero-sum subsequences
of 09715 are the sequences 0F with k € [1,d — 1]. Thus sgn(G) > | 09715
= D(G) + d — 2, establishing our claim.

We proceed to show the remaining lower bound D*(G @ Cy) < san(G).
We give an example of a sequence of length D*(G @ Cy) — 1 without a
zero-sum subsequence of the desired length. This example is suggested
by the description of G & Cy as given in Lemma 3.2. Let ey =0 and let
S =TT\_pe™ ' From (3.4), we have |S| = D*(G ® Cy) — 1. Consider T'| S
with o(T') = 0 and d | |T'|. We will show that |T'| = 0, establishing the lower
bound. Let v; = v, (T) for i € [0,7]. We note that n; = ord (e;) | v; for each 4,
and we set x; = v;/n;. By the very definition, we have

T
=0

Note that v; = z;n; < m; (as v, (S) < m; with T'| S), and thus z; € [0,d; — 1]
for each i. We have to show that x; = 0 for each 7. Assume not, and let
J € [0, r] be minimal with z; # 0. Since

r r
|T’ = Z(L‘an = Z(L‘an
i=1 i=j

is divisible by d, we get that (for j = r, the right-hand side below is 0)

T
g
Tjnj = —Nj41 Z i (mod d),
i=j1 Il
) - ged (n41,d) T;n;
and thus ged (nj41,d) | z;n;. Consequently, acd i) |ng L whence

(3.5) implies
nj

dj |z, —2—.
i1 (n;.d)

Noting from (3.5) that

T
d{dj,——~2— =1
gC <j’gcd(n]7d)> )

it follows that d; | z;, which in view of x; € [0,d; — 1] implies x; = 0. This
contradicts the definition of z; and completes the argument.
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It remains to show sgn(G) < D(G @ Cy), which we achieve by a standard
imbedding argument. Let S € F(G) with |S| =2 D(G @ Cy4). We have to show
that S has a nonempty zero-sum subsequence of length congruent to 0 mod-
ulo d. Let e € G® Cy be such that G Cy =G d (e), and let 1: G — Gd Cy
denote the map defined via ¢(g) = g +e. Since [¢(S)| =|S| =2 D(G & Cy),
applying the definition of D(G @ Cy) to ¢(.5) yields a nonempty subsequence
T | S with 0=0c((T)) = o(T)+ |T|e. Hence T is a zero-sum subsequence
with length |T'| divisible by ord (e) = n, as desired. O

Now we prove Theorem 3.1. We need the following well-known results
on the Davenport constant, which will be used later in the paper as well.
Namely, D(G) = D*(G) if G satisfies any one of the following conditions
(see [15], specifically Theorems 2.2.6 and 4.2.10 and Corollary 4.2.13):

e (G has rank at most two.

e (G is a p-group.

e GG @ C, where G’ is a p-group with D*(G’) < 2exp (G') — 1 and
pin.

PROOF OF THEOREM 3.1. The proof is a combination of the bounds
obtained in Proposition 3.3 and known results for the Davenport constant.
1. As G is cyclic, it follows from Lemma 3.2 that

Goly= C(gcd (n,d) D Clcm (n,d)-

Thus, by the above mentioned results, we know that D(Cgcd (n,d) D Clem (md))

= D*(Cgcd (n,d) D Clem (n,d)) = ged (n,d) + lem (n, d) — 1, whence Proposition
3.3 completes the proof of part 1.

2. Let H be a group such that G =2 H ® C),. As G is a p-group, it follows
from Lemma 3.2 that

GoCy=H® C'gcd (n,d) & Ciem (n,d)

with lem (n, d) the exponent of G @ Cy. Consequently, since G is a p-group,
it follows that D*(G @ Cy) = D*(H) + ged (n,d) + lem (n,d) — 2. Observe
that this quantity is equal to the value we claim for sgy(G) in each of the
points (a), (b), and (c), with this being the case in (b) since p*»(9) > D*(G)
= n with n being a power of p (as G is a p-group) implies lem (n,d) = d
and gcd (n,d) = n. Thus, again, by Proposition 3.3 it suffices to show that
D(G® Cyq) =D*"(GoCy). For (a), GdCy is a p-group and the claim is
immediate by the above mentioned result for p-groups. For (b) and (c), let
a1 € Ny be such that ged (n,d) = p** and let as = v, ( lem (n,d)) .

Suppose the hypotheses of (b) hold. Then n < D*(G) < p'»(9) so that
p® = p"»(@ and p™ = n. Hence, using the hypothesis n < D*(G) < p¥»(d)
= p“* once more, we find that

D(H @ Cpal @ Cpaz) == D*(H @ Cpoq @ Cpaz)
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= D*(G) —I—pa2 —1 § pvp(d) +pa2 1= 2pa2 —1.

Thus the p-group H @ Cper @ Cpe- fulfils the conditions imposed in the last
of the above mentioned results, completing the proof of (b).

Suppose the hypotheses of (c) hold. If p® = p»(9) then n < p¥r(d),
whence the hypothesis of (¢) implies D*(G) < n. As aresult, since n < D*(G)
with equality if and only if G is cyclic, we conclude that G is cyclic. Con-
sequently, G & C, has rank at most 2, so that D*(G & Cy) = D(G & Cy) by
the first of the above mentioned results, and now the result follows from
Proposition 3.3. Therefore it remains to consider the case when p** = n and
p® = p*»(d_ In this case, the hypothesis of (¢) instead implies

D(H D Cpal S5) Cpaz) - D*(H@ Cpal ) Cpa2)
=D"(G)+p—1<2n—1=2p" — 1.

Thus the p-group H @ Cper @ Cpe» fulfils the conditions imposed in the last
of the above mentioned results, completing the proof of (¢). O

Several results on the Davenport constant, in addition to those already
recalled, are known (see, e.g., [8] for an overview). Essentially, each of them
allows one to obtain some additional insight on sgy(G) via Proposition 3.3.
For example, it is conjectured that D*(G) = D(G) for groups of rank three
(see [8, Conjecture 3.5]; and [2] and [28] for recent results, confirming this
conjecture in special cases). If this were the case, then, for groups of rank
two, sqn(G) = D*(G @ Cy) would immediately follow from Proposition 3.3
for all d € N. In Section 5, we will show this equality holds without the
use of the conjectured value of D(G) for rank three groups, which could be
construed as giving weak evidence for the supposed value.

Of course, the two invariants D(-) and D*(-) are not equal for all finite
abelian groups, and there are examples of pairs (d, G) for which the bounds
in Proposition 3.3 do not coincide, i.e.,

max { D(G) +d —1,D*(G & Cy)} < D(G @ Cy);

see [19,20] for more information on the phenomenon of inequality of D(-)
and D*(-). However, it is conjectured that the difference between D(G) and
D*(G) is fairly small for any G (in a relative sense)—indeed, there is a con-
jecture that asserts that this difference is at most r(G) — 1 (see [8, Conjecture
3.7])—and thus the combination of the bounds of Proposition 3.3 would in
general yield a good approximation for s;y(G).

4. Results when D(Gp) = 2exp (Gp) — 1

We use the inductive method to obtain upper bounds on D(G), s(G),
n(G) and sgn(G), imposing conditions on the p-subgroups of G. These con-
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ditions are fulfilled, in particular, for groups of rank at most two. Recall
that the question of whether or not s(C, & C)p) = 4p — 3 holds for all primes
p € P was open for more than 20 years (the Kemnitz Conjecture), and finally
solved by C. Reiher [27]. His result was then generalized to arbitrary groups
of rank two [18, Theorem 5.8.3], and to p-groups G with D(G) < 2exp (G) —1
[30, Theorem 1.2]. We refer to [15, Section 4] for a survey on the Erdés—
Ginzburg—Ziv constant, and to [24,25] for some recent connections. The
upper bound for s,n(G) for groups of rank two was first given in [8, The-
orem 6.7]. Note that the upper bound n(G) < 3n — 2 is precisely what is
needed in various applications (see for example [18]).

THEOREM 4.1. Let exp (G) = n. Suppose that, for each p € P, we have
D(Gp) = 2exp(G,) — 1.
1. The following inequalities hold:
(a) D(G) < 2n — 1.
(b) spn(G) < 3n — 2.
2. If exp (G) is odd, then the following inequalities hold:
() 7(G) < 3n 2.
(b) s(G) < 4n — 3.

In some cases, we are even able to establish the exact value of these
constants, though we have to impose more restrictive conditions. We do not
include D(G) in the result below since, in this case, an assertion of this form
is well-known (see the result mentioned before the proof of Theorem 3.1).
The relevance of these assumptions is discussed in some detail in Remark 4.3.

THEOREM 4.2. Let exp (G) =n. Suppose there exists some odd q € P
such that D(Gy) —exp (Gq) + 1 |exp(Gy) and G, is cyclic for each p €

IP’\{q}

1(G) =2(D(G,) — exp (Gq)) +
. s(G) =2(D(Gyq) — exp (Gy)) —|—2n— 1.
san(G) = D(G )—exp(G )+ ged (n,d) +lem (n,d) — 1 for each d € N

with( (Gq) —exp (Gy) + 1) | d.

For both of the proofs below, we use [18, Proposition 5.7.11], which states
that if K < G and exp (G) = exp (K) exp (G/K), then

(4.1) 1(G) = exp (G/K)(n(K) — 1) +n(G/K)
and
(4.2) s(G) < exp (G/K)(s(K) — 1) +s(G/K);

these inequalities are also obtained using the inductive method.

PrROOF OF THEOREM 4.1. Let pi,...,ps be the distinct primes such
that G = G, @ ... D G, is the decomposition of G into non-trivial p-groups.

Acta Mathematica Hungarica 181, 2011



ZERO-SUM PROBLEMS WITH CONGRUENCE CONDITIONS 333

First, we establish the claims on n(G) and s(G). Thus, we (temporarily)
assume that each p; is odd. We induct on s. For s = 0, the claim is trivial,
and for s =1, it is an immediate consequence of [30, Theorem 1.2], which
asserts that, for H a p-group with p an odd prime and D(H) < 2exp (H) — 1,
one has n(H) S D(H) +exp(H) — 1 and s(H) < D(H) + 2exp (H) — 2.

Suppose s = 2 and the claims hold true for s —1. Since exp (G) =
exp (G/G)p,) exp (Gp, ), we can invoke (4.1) and (4.2) to conclude

(4.3) n(G) = exp (G/Gp,)(n(Gyp.) — 1) +1(G/Gp,)
and
(4.4) s(G) = exp (G/Gy,)(s(Gp.) — 1) +5(G/Gy,).

By induction hypothesis, we have
n(G/Gp,) = 3exp(G)/exp (Gp,) =2, n(Gp,) = 3exp (Gp,) — 2,
s(G/Gp,) S 4exp (G)/exp (Gp,) —3, and s(Gp,) < 4dexp(Gp,) — 3.

Combining these inequalities with (4.3) and (4.4) yields the desired bounds.
Next, we prove the result on s,n(G) and D(G). However, the upper
bound on D(G) follows from Proposition 3.3 and part 1(b), so it suffices to
show 1(b). To do so, we drop the assumption that each p; is odd. Of course,
at most one of the p;’s is even, and thus we may assume that pi,...,ps_1
are odd. Again, we induct on s. The case s =0 is trivial. If s =1, then
G = Gy, is a pi-group, so that D(G) = D*(G) by the previously mentioned
results on the Davenport constant, in which case Proposition 3.3 and our
hypotheses, keeping in mind that n = exp (G) = exp (Gy, ), imply

sen(G) =D (G @& Cy,) = D*(Gp, & Cy)
=D"(Gp,)+n—1=2exp(Gp,) —14+n—1=3n-2,

as desired. This completes the base of the induction.

Suppose s = 2 and the claim holds true for s — 1. Let ¢: G — G/G,,
= Gp, & ... 8 G)p, , denote the canonical epimorphism. Let S € F(G) with
|S| = 3n — 2. Let m = exp (G,,). Since

S| 2 3n—2=3m—4)n/m+4n/m — 2
and since s(G/G)p,) < 4n/m — 3 holds by Theorem 4.1.2(b), it follows that S
admits a product decomposition S = S - ... Ss;,,-35" such that each ¢(S;)

has sum zero and length |S;| = n/m, where Si,...,S3,-3,5 € F(G) (see
[18, Lemma 5.7.10]).
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In view of |S’| 2 3n—2 — (3m — 3) X = 3 — 2 and the induction hypoth-
esis, S’ has a subsequence Ss,,,_o such that n/m | [Ssm—2| and o (p(Szm—2))
= 0. Now, for some generating element e € Cy,, let 1: G — G & C,, denote
the map defined via «(g) =g +e. Then o((T)) =o(T)+ |T|e for each
T € F(G); in particular, o (¢(S;)) € Gp, @ {(n/m)e) for each i € [1,3m —2].
Since

D(Gp, & ((n/m)e)) =D(Gp,) + m—1 < 3m —2,

it follows that the sequence [[?" 2 o(1(S;)) has a nonempty zero-sum sub-
sequence; let O # I C [1,3m — 2] be such that >;c;0(¢(S;)) = 0. Thus

o1 -+ (115) 11

icl el i€l

e =0,

whence [];c; S is a nonempty zero-sum subsequence of S of length divisible
by ord (e) =n. O

Parts of the proof of Theorem 4.2 are similar to that of Theorem 4.1.

PRrROOF OF THEOREM 4.2. We state some direct consequences of the
assumptions in an explicit form. Let m = D(G,) —exp (G4) +1. Our as-
sumptions on G imply that there exist some ¢ € P and ¢-group H such that
G = H @ C),, with exp (H) | n. Moreover, we know that D(H) = m divides
exp (Gyq), and thus n as well; let n = mk. Let K = C} be a subgroup of G
such that G/K = H & C,,. Let ¢: G — G/K denote the canonical epimor-
phism. Since m divides exp (G,), which is a power of the prime ¢, it follows
that m itself is a power of q. Consequently, since exp (H) < D*(H) < D(H)
= m with exp (H) also a power of the prime ¢, it follows that

(4.5) exp (H) | m.

Since H and G, are both g-groups, so that D(H) = D*(H) and D(G,) =
D*(Gg) (as remarked earlier in the paper), it follows that

(4.6) D(G,) — exp (Gq) = D(H) — 1.

We start by establishing the result on 7(G) and s(G). On the one hand,
by [5, Lemma 3.2] and (4.6), we know

n(G) 2 2(D(H) — 1) +n=2(D(Gq) —exp (Gy)) +n
and
s(G) 22(D(H) — 1) +2n—1=2(D(Gy) — exp (Gy)) +2n — 1.
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For the upper bound, first observe that (4.5) implies that exp (H ® C,,) = m.
In consequence, we have exp (H @ Cy,) exp (C) = mk = n = exp (G). Thus
(4.1) and (4.2) imply that

) {n(G) <m(n(K)-1) +n(H @ Cp) and
S(G) S m(s(K) —1) +s(H @& Cp,).
Since K = C}, is cyclic, we know (see [18, Theorem 5.8.3])
(4.8) n(K)=k and s(K)=2k—1.
Noting that H @& Cy, is a g-group with ¢ an odd prime so that (4.5) implies
DIH&Cp)=DH)+m—-1=2m—1=2exp(H®C),,) — 1,
we see that we can apply Theorem 4.1 to conclude
(4.9) nH&Cp)<3m—2 and s(H®Cy) < 4m — 3.
Combining (4.7), (4.8) and (4.9) yields
n(G) <2m—-2+mk=2(D(H)—1) +n
and
s(G)<£2m —2+2mk—-1=2(D(H)-1) +2n -1,

as desired.

It remains to determine sgy(G). We continue to use the notation already
introduced. By hypothesis, we have m | d; as shown above, we also have
G = H ® C,, with exp(H) | m and m | n. Thus it follows, in view of (4.6)
and D(H) = D*(H) (as H is a g-group), that

D*(G & Cq) = D*(H) + ged (n,d) + lem (n, d) — 2
= D(Gy) — exp (G4) + ged (n, d) +lem (n, d) — 1.

By Proposition 3.3, we know the above quantity is a lower bound for sgy(G).
It remains to show it is also an upper bound as well.

Let S € F(G) be of the above length D*(G & Cy) = D*(H) + ged (n, d)
+lem (n,d) — 2. As used in the proof for the bounds n(G) and s(G), we
know that exp (H & C),) = m and

(4.10) s(H & Cp,) < 4m — 3

by Theorem 4.1. We set j = ged (n,d)/m +lem (n,d)/m — 2. Then, recalling
that D*(H) = D(H) = m, we find that

(4.11)  |S|=D(H) + ged (n,d) +lem (n,d) —2 =m(j — 1) + 4m — 2.

Acta Mathematica Hungarica 181, 2011



336 A. GEROLDINGER, D. J. GRYNKIEWICZ and W. A. SCHMID

As a result, repeating applying, in view of (4.10), the definition of s(H @ C),)
to ¢(S) and recalling that exp (H @ Cy,) = m in view of (4.5), it follows that
S admits a product decomposition S = Si -...-S;5" such that each ¢(.S;) has
sum zero and length |S;| = m, where S1,...,5;,5 € F(GQ) (see [18, Lemma
5.7.10]). Since (4.11) implies

18" = |S| —jm=m(j — 1) +4m — 2 — jm = 3m — 2

and since s;,,n(H @ Cy,) < 3m — 2 by Theorem 4.1, which we can invoke
as explained before (4.9), it follows that S’ has a subsequence Sji; with
m ’ ‘Sj_;,_l‘ and U(Sj_H) c K.

We consider ¢: G — G @ Cy defined via (g) = g + e for some generating
element e of Cy. Observe that o(c(S;)) € K ® (me) for each i € [1,7 + 1].
Since m | d and n = mk, it follows that

Ko <mel> = Cn/m ® C1d/m = ged (n,d) /m ® Clem (n,d)/m-

This is a rank 2 group, so the Davenport constant of this group is j + 1; cf.
the results mentioned before the proof of Theorem 3.1. Hence the sequence
[/ 0(u(Si)) € F(K @ (me;)) has a nonempty zero-sum subsequence. Let
() #£ I C[1,5+ 1] denote index-set corresponding to this sequence. It follows
that [[;c; ¢(S;i) € F(G & Cy) is a zero-sum sequence, whence [[;c; S; € F(G)
is a zero-sum subsequence of S with length divisible by d (by the same ar-
guments used at the end of the proof of Theorem 4.1). [

We end this section by discussing the relevance of the assumptions in
our results.

REMARK 4.3. 1. It is conceivable that the assumption D(G,) —exp (Gy)
+ 1| exp(Gy) in Theorem 4.2 can actually be replaced by the assumption
D(G,) —exp (G4) +1 < exp (G,) of Theorem 4.1. We could relax the assump-
tion in this way if [30, Conjecture 4.1] were true; this conjecture concerns
the exact value of n(G,) and s(G,) under this weaker assumption.

2. The restriction that exp (G) and ¢ are odd, which is imposed in the
second part of our result, is due to the fact that [30, Theorem 1.2] is only
applicable in this case, yet it is well possible that the statement holds for 2-
groups as well, in which case these assumptions could be dropped (cf. again
[30, Conjecture 4.1]).

3. The restriction in Theorem 4.2 that G /G, is cyclic is very likely not
technical. It seems quite unlikely that there is a uniform argument of this
form to determine the precise value of the constants under the assumptions
of Theorem 4.1. For example, note that in this more general setting, D*(G)
depends on the precise structure of each of the p-subgroups of G (see also the
results in [5]). Yet, imposing the assumption that G is a group of rank 2,
and thus each p-subgroup has at most rank 2, the values of D(G), n(G),
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and s(G) are known, and we additionally determine s;y(G) for any d (see
Section 5).

5. On san(G) for groups of rank two

In this section, we determine syy(G) for rank 2 groups G. To this end, we
again use the inductive method. However, in contrast to essentially all ear-
lier applications of the inductive method to direct zero-sum problems, there
is an additional complication. Typically, once, for an appropriately chosen
subgroup, the ‘relative’ problems in the subgroup and the factor group are
solved, the final step of recombining these subsequences from the ‘relative’
problems to yield the desired subsequence in the original group is straight-
forward (cf. the proof of Theorem 4.1 for an example). Yet, for this problem,
this is not so, and an additional argument is needed.

For the proof, we make use of the facts that

(5.1) s(Crn®Cy) =2n+2m — 3
and that
(5.2) D(Cr,®Cr)=m+n—1

when 1 < m | n (see [18, Theorem 5.8.3]). In addition we need the following
lemma, which makes use of the fact that the gap between s,n(G) and s(G),
for G a group of rank two, is not too large.

LEMMA 5.1. Let G=C,, ® Cy, with 1 < m | n, and let t e N. If S €
F(G) is a sequence with

IS| = (t — )n+s,n(G),

then S has a decomposition S = Sy -...-Sp.S" with each S; zero-sum, |S;| =n
fori e [1,t —1], and |S¢| € {n,2n}, where Sy,...,5,,5" € F(G).

PROOF. In view of Theorem 4.1.1(b), we know that |S”| = s,n(G) im-
plies that S” € F(G) contains a zero-sum sequence of length n or 2n. From
Proposition 3.3 and Lemma 3.2, we know

(5.3) syn(G) 2D (G C,) =n+D"(G)—1=2n+m —2.
From (5.1), we know
(5.4) s(G) = 2n+2m — 3.

In view of (5.3) and (5.4), we have n +s,n(G) = 3n+m —2 2 s(G).
Thus, in view of |S| = (t — 1)n 4 s,n(G), we can repeatedly apply the def-
inition of s(G) to S to find ¢t — 1 zero-sum subsequences Si,...,S;_1 with

Acta Mathematica Hungarica 181, 2011



338 A. GEROLDINGER, D. J. GRYNKIEWICZ and W. A. SCHMID

Si-...-S;_1|S and |S;| =n for all i. Let S” =S(Sy-...-S;_1)"". Then
|S”| = |S| — (t — 1)n = s,n(G). Hence, as remarked at the beginning of the
proof, S” must have a zero-sum subsequence S; with [S;| = n or |S| = 2n,
completing the proof. [J

THEOREM 5.2. Let d € N and let G = C, ® Cy, with 1 < m | n. Then

san(G) = D*(G @ Cy) = lem (n, d) + ged (n, lem (m, d)) + ged (m, d) — 2.

PrROOF. When m = 1, this follows from Theorem 3.1.1. Therefore we
assume m > 1. Since G has rank two, it follows that each p-component
G)p has rank at most two, and thus D(G,) = D*(G,) < 2exp (Gp) — 1 for all
primes dividing n. Note that Lemma 3.2 implies that

(5.5)  D*(G @ Cy) =lem (n,d) + ged (n,lem (m, d)) + ged (m, d) — 2,

while Proposition 3.3 shows that this is a lower bound for sgn(G). It remains
to show it is also an upper bound. We begin by considering two particular
cases, whose proof is similar to existing arguments. The main novelty comes
in the final arguments that assemble the information found in these special
cases, which are also auxiliary results.

Case 1: d =n. If m = n, then (5.5) becomes D*(G @& Cy) = 3n — 2, and
the result follows from Theorem 4.1.1(b). Therefore we assume m < n. We
proceed by a minor modification of the argument used for Theorem 4.1.1(b).
Since m < n, let n = km with k 2 2. Let K < G be a subgroup such that

K=Cr and G/K=C,®Cy,

and let ¢ : G — G/K = C,,, ® Cy, denote the natural homomorphism. Note,
under the assumption d = n, that (5.5) becomes

D*(G& Cy) =2n+m —2.

Let S € F(G) with |S| = 2n + m — 2. By the previously handled case (d =
m = n), it follows that s,,n(G/K) = D*(G/K & Cy,) = 3m — 2. Thus

|o(S)] =S| = (2k — 2)m + 3m — 2 = (2k — 2)m + s,n(G/K).

Applying Lemma 5.1 to ¢(S), we find a product decomposition S =
Sp ... S9_15" with each S; being zero-sum modulo K and of length
|Si| € {m,2m}. Let v : G — G& (e) = G® C,,, where ord (e) = n, be the map
defined by letting ¢(g) = g + e. Then, since each S; is zero-sum modulo K
with length a multiple of m, it follows that o (+(S;)) € K & (me) = Cj, ® Cy,
for each i € [1,2k — 1]. Since D(Cy, @ Cy) = 2k — 1 by (5.2), applying the
definition of D(Cj @ Cy) to the sequence 27! o (1(S;)) € F(K @ (me))
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yields a nonempty zero-sum sequence, say indexed by I C [1,2k — 1]. Thus
0= O'(Hiel L(Si)) = O'(HZ-GI Si) + | [Licr Si|e, whence [[;c; Si € F(G) is a
nonempty zero-sum subsequence of S whose length is divisible by ord (e)
= n, as desired. This completes the case d = n.

Case 2: d|n. Let u= lcm(dm’d) = gy 2nd v = Note

uvd = n. Let K < G be a subgroup such that

K=C,®Cy and G/K = Cyeqma) ®Ca

and let ¢ : G — G/K = Cyeq (m,q) D Ca denote the natural homomorphism.
Note, under the assumption d | n, that (5.5) becomes

(5.6) D*(G & Cy) = n + lem (m,d) + ged (m, d) — 2.
Let S € F(G) be a sequence with
|S| = n +lem (m,d) 4+ ged (m,d) — 2 = (uv + u — 2)d + 2d + ged (m, d) — 2.

In view of Case 1 and (5.5), we have s;n(G/K)=D*"(G/K @ Cy) = 2d
+ ged (m, d) — 2. Thus, applying Lemma 5.1 to ¢(.S), we find a product de-
composition S = S1 ... Sypru_15" with each S; zero-sum modulo K and of
length divisible by d. But now, in view of (5.2), the sequence [[** ! o(S;)
€ F(K) has length wv +u —1 = D(C, ® Cy,) = D(K). Hence, applying the
definition of D(K) to H;‘;’f“fl o(S;), we find a non-empty zero-sum subse-
quence, say indexed by I C [1,uv + u — 1]. Thus a( [Licr Si) = 0. Moreover,
since d | |S;| for each 1, it follows that d | | [Licr Si|, as desired. This com-
pletes the case d | n.
We now proceed to show

(5.7) san(G) < lem (0, d) — 0+ Sgeq (md)N(G).

Once (5.7) is established, then, applying Case 2 to Syq (n,q)n(G) and using
(5.6), we will know

san(@) = lem (n,d) = n +D*(G @ Cyed (n,a))
=lem (n,d) —n+ (n +lem (m, ged (n, d)) + ged (m, ged (n, d)) — 2)

=lem (n,d) + lem (m, ged (n,d)) + ged (m, d) — 2,
which is equal to D*(G & Cy) by Lemma 3.2. In consequence, once (5.7) is
established, the proof will be complete. We continue with the proof of (5.7).
As (5.7) holds trivially when d | n, we assume d { n.
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Let an = lem (n,d). Then, since d { n, we have o = 2. Let S € F(G) be
a sequence with

(5.8) |S] = lem (n,d) — 1 + Sged (n,a)n(G) = (@ = 1)n + Sged (n,ayn(G)-
By Case 2 and (5.5), we have
(5.9) Sged (n,d)n(G) = n + lem (m, ged (n,d))
+ ged (m, ged (n,d)) —2=n+m—1.
Thus it follows from (5.1) that
21 + Sged (n,ayn(G) Z 3n+m — 1 2 s(G).

Consequently, in view of (5.8) and « = 2, it follows, by repeatedly apply-
ing the definition of s(G) to S, that we can find a — 2 zero-sum subse-
quences Si,...,S—2 € F(G) such that Sy-...-Sa—2|S and |S;| =n for
all i € [1,a—2]. Let ' =S(S1-...-Sq_2)"'. Then, in view of (5.9) and
Case 1, we have

18" =|S| - (o —2)n=n+ Sgcd(n,d)N(G) Z2n+m—1 2 s,n(G).

Hence, since s,n(G) < 3n, applying the definition of s,n(G) to S’ yields a
zero-sum subsequence S,—1 | S" with [Sa—1] =n or [Sa—1] = 2n. If |Sa—1] =
2n, then S; -...-S,—1 is a zero-sum subsequence of S with length (o —2)n +
2n = an = lem (n, d), which is a multiple of d, and thus of the desired length.
Therefore we may instead assume |S,—1| =n. Let S” = S(Sy-...- Sa,l)*l.
Then [S”| = [S| — (& — 1)n = Sgcq (n,ayn(G), so applying the definition of
Sged (n,a)n(G) to S” yields a zero-sum sequence Sp | S” with length [Sp
= ko ged (n, d) for some kg € N.

Since an = lem (n, d), it follows that d = aged (n,d). Let n = n’ ged (n, d).
Then, since d = aged (n,d), we see that ged (a,n’) = 1. If kg =0 mod «,
then

|So| = koged (n,d) = aged (n,d) =0 mod aged (n,d),

in which case, since a ged (n, d) = d, we see that Sp is a zero-sum subsequence
of length divisible by d, as desired. Therefore we may assume kg = 0 mod «a.
Observe that

1Sy ... S| =jn=jn"ged (n,d) forjel,a—1].

Thus, since ged (o, n') = 1, we conclude that

1 1 1
{gcd(n,d)‘sll’ ged (n,d)’5152”""m,51 -...-Sa_l‘}
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is a full set of nonzero residue classes modulo «. Consequently, since
ko # 0 mod «, we can find k € [1,« — 1] such that T ) nd |S1 - ... Skl + ko

=0 mod «, in which case
|S0S1 ... Skl =151-...- Sk| + koged (n,d) =0 mod aged(n,d).

Since a ged (n,d) = d, this means that SpS - ... - Sk is a subsequence of S
with length divisible by d. Moreover, since each S; is zero-sum, it follows
that the subsequence S5y57 - ... S is also zero-sum, whence we have found
a zero-sum sequence of the desired length, completing the proof of (5.7),
which completes the proof as remarked earlier. [

6. Upper bounds for the lengths of zero-sum subsequences

Let H be a Krull monoid with class group G and suppose that every
class contains a prime divisor. The investigation of sets of lengths of the
form L(uv), where u,v € H are irreducible elements, is a frequently studied
topic in the theory of non-unique factorizations (see for example [18, Section
6.6]). Only recently, a close connection of this topic with the catenary degree
c(H) of H was found—see the invariant 1(H) introduced in [17]. As is well-
known, the study of sets L(uv) translates into a zero-sum problem as follows:
pick two minimal zero-sum sequences U and V over GG and find product
decompositions of the form UV = Wy -... - W, with Wq,..., W) minimal
zero-sum sequences over (. To control the number k of atoms in such a
factorization, it is desirable to be able to find zero-sum subsequences of the
(long) zero-sum sequence UV with bounded lengths (see Condition (b) in
Lemma 6.1).

Thus, in zero-sum terminology, we have to study conditions which imply
that, for a given d € [1,D(G) — 1], every zero-sum sequence A € F(G) of
length |A| 2 D(G) + 1 has a zero-sum subsequence T' of length |T'| € [1,d].
Since, by definition, D(G) is the maximal length of a minimal zero-sum se-
quence, it makes no sense to consider the above question for sequences A of
length less than D(G) + 1. We start with a simple characterization of this
property which allows us to obtain a natural restriction for d; the optimality
of this condition is discussed in the remark below.

LEMMA 6.1. Let d € N with D(G) £ 2d — 1. Then the following state-
ments are equivalent:

(a) For all U,V € A(G) with |UV| 2 2d, there exists a zero-sum subse-
quence T of UV of length |T| € [1,d].

(b) For all U,V € A(G), there exists a zero-sum subsequence T of UV
of length |T'| € [1,d].

(c) Every zero-sum sequence A € F(QG) of length |A| =2 D(G) + 1 has a
zero-sum subsequence T of length |T| € [1,d].
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ProOF. (a) = (b). Let U,V € A(G) be given, say |U| = |V|]. If [UV|
= 2d, then the assertion follows from (a). If |[UV| < 2d, then we set T = U
and get 2|T| < |UV] < 2d.

(b) = (¢). Let A € F(G) be zero-sum. Then there are Uy,...,U; € A(G)
such that A =Uj -... - U. Since |A| 2 D(G) + 1, it follows that k£ = 2. Thus
there exists a zero-sum sequence T with T | U;Us, and hence with 7' | A also,
such that |T| € [1,d].

(c) = (a). Obvious. O

REMARK 6.2. Let d € N. In general, none of the statements in the previ-
ous lemma can hold without the assumption D(G) < 2d — 1. This can be seen
from the following example. Take G = H & H such that D(G) = 2D(H) — 1
(note that this holds true if H is cyclic or a p-group). Then there are U,V
€ A(G) such that (supp (U)) N (supp(V)) = {0} and |U|=|V|= D(H).
Thus the only nonempty zero-sum subsequences of UV are U and V', which
have length

D(G) +1
e

We give the main result of this section; see below for groups fulfilling the
assumptions.

THEOREM 6.3. Let d € N with D(G) < 2d — 1 and suppose that sqn(G)
< 3d—1.

1. Every sequence S € F(G) of length |S| = sqn(G) has a zero-sum sub-
sequence T of length |T'| € [1,d].

2. Every zero-sum sequence A € F(G) of length |A] 2 D(G) 4+ 1 has a
zero-sum subsequence T of length |T| € [1,d].

Ul =V|=

PrOOF. 1. Let S € F(G) be a sequence of length |S| = sgy(G). Since
san(G) = 3d — 1, S has a zero-sum subsequence 7" of length |T'| € {d,2d}. If
|T| = d, then we are done. If |T'| = 2d, then 2d = D(G) + 1 implies that T
has a product decomposition T' = T1T> with 77 and 75 nonempty zero-sum
sequences. Clearly, we have min {|T1|, |T>|} € [1,d].

2. Let A € F(G) be zero-sum with |A| =2 D(G) + 1. Then A is a product
of two nonempty zero-sum subsequences, and if |A| < 2d, then the asser-
tion is clear as before. Suppose that [A| = 2d + 1. If |A] = sgn(G), then the
assertion follows from 1. Therefore we have

(6.1) 2d+ 1= |A] < sgn(G) = 3d — 1.
Now the sequence
S=0%A, where k=sq(G)—|Al €[l,d—2],
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has a zero-sum subsequence T' = 0¥ A" of length |T| € {d, 2d}, where k' €
[0,k] and A’ | A. If |T'| = d, then A’ is a zero-sum subsequence of A of length
|A'| € [1,d], as desired. If |T'| = 2d, then A’ is a zero-sum subsequence of
length

1A = 2d — k = 2d + |A| — san(G).

Hence, A’ A is a zero-sum subsequence (as both A and A’ are zero-sum
sequences) with length (in view of (6.1))

| AT A = A - A £ |A] — (2d + |A] - san(G))
=sqn(G) —2d<3d—1—-2d=d— 1.

Moreover, since (6.1) implies |A| = 2d 4+ 1 while A’ | T implies |A'| £ |T'| =
2d, we see that A’ 14 is also a nonempty zero-sum subsequence, and the
proof is complete in this case as well. [

Results of the two preceding sections yield various classes of groups ful-
filling the conditions of Theorem 6.3. The groups covered by the assumptions
of Theorem 4.1.1, thus in particular groups of rank two, fulfil the conditions
of Corollary 6.4. In the special case of groups of rank two, the result was
first achieved in [16, Lemma 3.6].

COROLLARY 6.4. Let exp (G) = n and suppose that D(G) < 2n — 1 and
sun(G) < 3n — 1. Then every zero-sum sequence A € F(G) of length |A] 2
D(G) + 1 has a nonempty zero-sum subsequence of length at most exp (G).

Proor. This is a special case of Theorem 6.3.2. [J

COROLLARY 6.5. Let G be a p-group. Suppose there exists some i €
[1,D(G)] such that (D*(G)+1)/2 is a power of p. Then every zero-sum
sequence A € F(G) of length |A| =2 D(G) + 1 has a zero-sum subsequence T
of length |T| € [1, (D*(G) +1) /2].

PROOF. We set d = (D*(G) +14) /2. Then 2d = D*(G) +i = D(G) + 1,
and thus Theorem 3.1.2(a) implies that syn(G) < D*(G) +d —1 < D(G) +
d —1 < 3d — 2. Therefore the assertion follows from Theorem 6.3. O

Note, if (D*(G)+1)/2 is a power of p, then the above result is best
possible, as can be seen from the example discussed in Remark 6.2.
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