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a b s t r a c t

Let H be an atomic monoid (e.g., the multiplicative monoid of a noetherian domain). For an
element b ∈ H , let ω(H, b) be the smallest N ∈ N0 ∪ {∞} having the following property:
if n ∈ N and a1, . . . , an ∈ H are such that b divides a1 · . . . · an, then b already divides
a subproduct of a1 · . . . · an consisting of at most N factors. The monoid H is called tame
if sup{ω(H, u) | u is an atom of H} < ∞. This is a well-studied property in factorization
theory, and for various classes of domains there are explicit criteria for being tame. In the
present paper, we show that, for a large class of Krullmonoids (including all Krull domains),
the monoid is tame if and only if the associated Davenport constant is finite. Furthermore,
we show that tame monoids satisfy the Structure Theorem for Sets of Lengths. That is, we
prove that in a tamemonoid there is a constantM such that the set of lengths of any element
is an almost arithmetical multiprogression with boundM .

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

By an atomic monoid we mean a commutative cancellative semigroup with unit element such that every non-unit may
be written as a finite product of atoms (irreducible elements). The main examples we have in mind are the multiplicative
monoids consisting of the nonzero elements from a noetherian domain. Let H be an atomic monoid and b ∈ H . We denote
by ω(H, b) the smallest N ∈ N0 ∪ {∞} having the following property: if n ∈ N and a1, . . . , an ∈ H are such that b
divides a1 · . . . · an, then b already divides a subproduct of a1 · . . . · an consisting of at most N factors. Thus, by definition, b is
a prime element of H if and only if ω(H, b) = 1. The ω(H, ·)-invariants have been studied in factorization theory for many
years, but only recently was it shown that in a v-noetherian monoid we have ω(H, a) <∞ for all a ∈ H (see [24]).
The monoid H is said to be tame if the invariant ω(H) = sup{ω(H, u) | u is an atom of H} is finite. Indeed, this is not

the original definition but a new characterization achieved in the present paper (see Proposition 3.5). Tameness implies
a variety of further arithmetical finiteness properties (such as the finiteness of the catenary degree and of the elasticity),
and local tameness is a central finiteness property in factorization theory (we refer to the monograph [22] and some recent
publications [9,8,27]). Finitely generated monoids and Krull monoids with finite class group are simple examples of tame
monoids. A non-principal order o in an algebraic number field is locally tame, and it is tame if and only if for every prime
ideal p containing the conductor there is precisely one prime ideal p in the principal order o such that p ∩ o = p. More
examples (including various classes of Mori domains) are discussed in Sections 3 and 4 (see Example 3.2 and Theorem 4.2).
Krull monoids and Krull domains have been in the center of interest of factorization theory since its very beginning. Their

arithmetic is completely determined by the class group and the distribution of prime divisors in the classes. If the class group
is finite, then themain invariants of factorization theory are finite too (this is relatively simple to show, but to obtain precise
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values for the invariants is open in most cases; see [18]). Suppose the class group is infinite. If every class contains a prime
divisor, then the main invariants of factorization theory are infinite, and in particular, every finite nonempty set L ⊂ N
occurs as a set of lengths (see [32,22] and [24, Theorem 4.4]). If there are classes without prime divisors, then the knowledge
on the arithmetic is still very limited. Chapman et al. studied the arithmetic of a Krull monoid with infinite cyclic class group
(see [6,7]; for more on the arithmetic in the case of infinite class groups see [28,19,21]). In Theorem 4.2 of the present paper,
we prove that, for a large class of Krull monoids (including all Krull monoids with torsion class group and all Krull domains)
the monoid is tame if and only if the associated Davenport constant is finite.
If an element a ∈ H has a factorization of the form a = u1 · . . . · uk, where k ∈ N and u1, . . . , uk ∈ H are atoms,

then k is called the length of the factorization, and the set L(a) of all possible lengths is called the set of lengths of a. Sets
of lengths (and all invariants derived from them, as the elasticity or the set of distances) are among the most investigated
invariants in factorization theory. If H is v-noetherian, then all sets of lengths are finite, and it is easy to observe that either
all sets of lengths are singletons or that for every N ∈ N there is an element a ∈ H such that |L(a)| ≥ N . The Structure
Theorem for Sets of Lengths states that all sets of lengths in a given monoid are almost arithmetical multiprogressions with
universal bounds for all parameters (roughly speaking, these are finite unions of arithmetical progressions having the same
difference). This Structure Theoremholds true for a great variety ofmonoids (among them are tame and non-tamemonoids)
which satisfy suitable finiteness conditions; see Remark 5.2. Recently, Schmid established a realization theorem showing
that this structural description of sets of lengths is sharp (see [37]). In Theorem 5.1 of the present paper, we show that every
tame monoid satisfies the Structure Theorem. The proof uses the general machinery (as presented in [22, Section 4.3]) and
crucial new ideas introduced in [20].

2. Preliminaries

Our notation and terminology are consistent with [22]. We briefly gather some key notions. Let N denote the set of
positive integers, and put N0 = N ∪ {0}. For integers a, b ∈ Zwe set [a, b] = {x ∈ Z | a ≤ x ≤ b}. For a real number x ∈ R,
bxc denotes the largest integer that is less than or equal to x, and dxe denotes the smallest integer that is greater than or
equal to x. By a monoid we mean a commutative semigroup with unit element which satisfies the cancellation laws.
Let G be an additive abelian group and G0 ⊂ G a subset. Then [G0] ⊂ G denotes the submonoid generated by G0 and

〈G0〉 ⊂ G denotes the subgroup generated by G0. A family (ei)i∈I of elements of G is said to be independent if ei 6= 0 for all
i ∈ I and, for every family (mi)i∈I ∈ Z(I),∑

i∈I

miei = 0 implies miei = 0 for all i ∈ I.

The subset G0 ⊂ G is called independent if the family (g)g∈G0 is independent, and it is called a basis if it is independent and
〈G0〉 = G. The total rank of G is the maximum of the cardinalities of maximal independent subsets, and the torsion free rank
of G is the cardinality of a maximal independent subset consisting of elements of infinite order.
Let A, B ⊂ G be nonempty subsets. Then A + B = {a + b | a ∈ A, b ∈ B} denotes their sumset and, for k ∈ N,

kA = A + · · · + A denotes the k-fold sumset of A. Now suppose that A ⊂ Z. We denote by ∆(A) the set of distances of A,
that is the set of all d ∈ N for which there exists l ∈ A such that A ∩ [l, l+ d] = {l, l+ d}. Two distinct elements k, l ∈ A are
called adjacent if either A ∩ [k, l] = {k, l} or A ∩ [l, k] = {k, l}. In particular,∆(∅) = ∅, and if A = {a1, . . . , at} is finite, with
t ∈ N and a1 < · · · < at , then ∆(A) = {aν+1 − aν | ν ∈ [1, t − 1]}). Clearly, ∆(A) ⊂ {d} if and only if A is an arithmetical
progression with difference d. If A ⊂ N, we call

ρ(A) = sup
{m
n

∣∣∣ m, n ∈ A} = sup A
min A

∈ Q≥1 ∪ {∞}

the elasticity of A, and we set ρ({0}) = 1.

Throughout this paper, let H be a monoid.

We denote by A(H) the set of atoms (irreducible elements) of H , by q(H) a quotient group of H , by H× the group of
invertible elements and byHred = {aH× | a ∈ H} the associated reducedmonoid ofH . We say thatH is reduced ifH× = {1}.
For a set P we denote by F (P) the free (abelian)monoid with basis P . Then every a ∈ F (P) has a unique representation

in the form

a =
∏
p∈P

pvp(a) with vp(a) ∈ N0 and vp(a) = 0 for almost all p ∈ P,

and we call suppP(a) = supp(a) = {p ∈ P | vp(a) > 0} ⊂ P the support of a. For a subset P0 ⊂ P , we set

vP0(a) =
∑
p∈P0

vp(a), and we call |a|F = |a| = vP(a) the length of a.

The free monoid Z(H) = F
(
A(Hred)

)
is called the factorization monoid of H , and the unique homomorphism

π : Z(H)→ Hred satisfying π(u) = u for all u ∈ A(Hred)
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is called the factorization homomorphism of H . For a ∈ H , the set

Z(a) = π−1(aH×) ⊂ Z(H) is the set of factorizations of a,

L(a) =
{
|z|

∣∣ z ∈ Z(a)
}
⊂ N0 is the set of lengths of a and

L(H) =
{
L(a)

∣∣ a ∈ H} denotes the system of sets of lengths of H.

By definition, we have Z(a) = {1} for all a ∈ H×. The monoid H is called

• atomic if Z(a) 6= ∅ for all a ∈ H;
• factorial if |Z(a)| = 1 for all a ∈ H (equivalently, H is atomic and every atom is a prime);
• half-factorial if |L(a)| = 1 for all a ∈ H;
• a BF-monoid (a bounded factorization monoid) if L(a) is finite and nonempty for all a ∈ H .

Let z, z ′ ∈ Z(H). Then we can write
z = u1 · . . . · ulv1 · . . . · vm and z ′ = u1 · . . . · ulw1 · . . . · wn,

where l, m, n ∈ N0, u1, . . . , ul, v1, . . . , vm, w1, . . . , wn ∈ A(Hred) are such that
{v1, . . . , vm} ∩ {w1, . . . , wn} = ∅.

We call
d(z, z ′) = max{m, n} = max{|z gcd(z, z ′)−1|, |z ′ gcd(z, z ′)−1|} ∈ N0

the distance of z and z ′. If π(z) = π(z ′) and z 6= z ′, then
2+

∣∣|z| − |z ′|∣∣ ≤ d(z, z ′) (2.1)
by [22, 1.6.2]. For subsets X, Y ⊂ Z(H), we set

d(X, Y ) = min{d(x, y) | x ∈ X, y ∈ Y },
and thus X ∩ Y 6= ∅ if and only if d(X, Y ) = 0.

3. Tame monoids: examples and first properties

Definition 3.1. Suppose that H is atomic.
1. For b ∈ H , let ω(H, b) denote the smallest N ∈ N0 ∪ {∞} with the following property:

For all n ∈ N and a1, . . . , an ∈ H , if b | a1 · . . . · an, then there exists a subsetΩ ⊂ [1, n] such that |Ω| ≤ N and
b
∣∣∣ ∏
ν∈Ω

aν .

Furthermore, we set
ω(H) = sup{ω(H, u) | u ∈ A(H)} ∈ N0 ∪ {∞}.

2. For a ∈ H and x ∈ Z(H), let t(a, x) ∈ N0 ∪ {∞} denote the smallest N ∈ N0 ∪ {∞}with the following property:
If Z(a) ∩ xZ(H) 6= ∅ and z ∈ Z(a), then there exists z ′ ∈ Z(a) ∩ xZ(H) such that d(z, z ′) ≤ N .

For subsets H ′ ⊂ H and X ⊂ Z(H), we define
t(H ′, X) = sup

{
t(a, x)

∣∣ a ∈ H ′, x ∈ X} ∈ N0 ∪ {∞}.
H is called locally tame if t(H, u) <∞ for all u ∈ A(Hred), and

t(H) = t
(
H,A(Hred)

)
= sup{t(H, u) | u ∈ A(Hred)} ∈ N0 ∪ {∞}

denotes the tame degree of H . The monoid H is said to be tame if t(H) <∞.
Let H be atomic, and for simplicity of notation, suppose that it is reduced. Pick an atom u ∈ A(H). Then u is a prime if

and only if ω(H, u) = 1. Thus H is factorial if and only if ω(H) = 1. Let a ∈ H . If u - a, then t(a, u) = 0 by definition.
Suppose that u | a. Then t(a, u) is the smallest N ∈ N0 ∪ {∞} with the following property: if z = a1 · . . . · an is any
factorization of a where a1, . . . , an are atoms, then there exist a subset Ω ⊂ [1, n], say Ω = [1, k], and a factorization
z ′ = uu2 · . . . ulak+1 · . . . · an ∈ Z(a), with atoms u2, . . . , ul, such that max{k, l} ≤ N . Thus t(a, u)measures how far away
from any given factorization z of a there is a factorization z ′ of a which contains u. Suppose that u is a prime. Then every
factorization of a contains u; we can choose z ′ = z in the above definition, obtain that d(z, z ′) = d(z, z) = 0 and hence
t(H, u) = 0. Thus H is factorial if and only if t(H) = 0. If u is not a prime, then ω(H, u) ≤ t(H, u), and hence if H is not
factorial, then ω(H) ≤ t(H).
The ω(H, ·)-invariants (introduced in [17]) and the tame degrees are well-established invariants in the theory of non-

unique factorizations which found much interest in recent literature (for example, see [4] for investigations in the context
of integral domains, or [5] for investigations in numerical monoids). Whereas in v-noetherian monoids (these are monoids
satisfying the ascending chain condition for v-ideals) we have ω(H, u) <∞ for all atoms u ∈ A(H), this does not hold for
the t(H, u) values (see [25, Corollary 3.6], [24, Theorems 4.2 and 4.4], [23, Theorems 5.3 and 6.7]).
We continue with a list of examples, where tameness is characterized in various classes of monoids and domains. Krull

monoids will receive special attention and will be discussed in Section 4 (see in particular Theorem 4.2).
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Examples 3.2. Let R be an integral domain. Then R• = R \ {0} denotes its multiplicative monoid, X(R) the set of minimal
nonzero prime ideals, R̂ its complete integral closure and Cv(R) its v-class group. Clearly, R is a Mori domain if and only if
R• is v-noetherian.
1. Finitely generated monoids. If Hred is finitely generated, then H is tame (see [22, Theorem 3.1.4]). The domain R is called

a (generalized) Cohen–Kaplansky domain if R has only finitely many nonassociated atoms (if almost all atoms are prime) (see
[2,1,3]). Thus generalized Cohen–Kaplansky domains are tame.
2. Finitely primary monoids. Let H be finitely primary of rank s ∈ N. Then H is tame if and only if s = 1. Thus a one-

dimensional local Mori domain R with (R : R̂) 6= {0} is tame if and only if |X(R)| = 1 (see [22, Proposition 2.10.7 and
Theorem 3.1.5]).
3. Weakly Krull domains. Let R be a v-noetherian weakly Krull domain with nonzero conductor f = (R : R̂) and finite

v-class group Cv(R). Note that, in particular, orders in algebraic number fields fulfill all these properties.
Then R is tame if and only if for every nonzero minimal prime ideal p ∈ X(R) with p ⊃ f there is precisely one p̂ ∈ X(̂R)

such that p̂ ∩ R = p (see [22, Theorem 3.7.1]).
4.Mori domains. Let R be a Mori domain with nonzero conductor f = (R : R̂) and let

S = Reg(R•) = {a ∈ R• | if z ∈ R̂• and za ∈ R•, then z ∈ R•}

denote the monoid of regular elements of R• (see [22, Section 2.3]). Suppose that R satisfies the following three finiteness
conditions:

• The v-class groups Cv(R) and Cv (̂R) are both finite.
• S−1̂R is semilocal and the Jacobson radical of S−1̂R/S−1f is nilpotent.
• The Jacobson radical of S−1R/S−1f is nilpotent.

Then R is tame if and only if the natural map spec(̂R) → spec(R) is one to one (see [31]). We point out two special cases
where the above three finiteness conditions are satisfied. First, if R is weakly Krull andCv(R) is finite, then all three finiteness
conditions are satisfied (so weakly Krull domains are a special case of the situation discussed here). Second, if the factor
ring R/f and the class group Cv (̂R) are both finite, then R• is a C-monoid (see [22, Theorem 2.11.9]) and the above three
finiteness conditions are satisfied. Higher-dimensional finitely generated algebras over Z, whose multiplicative monoids
are C-monoids, are discussed in [29,33] and [22, Section 2.11].

We start with two technical lemmas. The first one gathers some simple observations (a proof can be found in [24, Lemma
3.3]).

Lemma 3.3. Let H be atomic.

1. If b1, b2 ∈ H, then ω(H, b1) ≤ ω(H, b1b2) ≤ ω(H, b1)+ ω(H, b2).
2. For all b ∈ H, we have sup L(b) ≤ ω(H, b). In particular, if ω(H, u) <∞ for all u ∈ A(H), then H is a BF-monoid.

Lemma 3.4. Let H be atomic and reduced.

1. If b ∈ H, z ∈ Z(H) such that b |π(z), then there exists z ′ ∈ Z(H) such that b |π(z ′), z ′ | z and |z ′| ≤ ω(H)min L(b).
2. If u ∈ Z(H) and v ∈ A(H) such that v |π(u), then there exists u′ ∈ Z(π(u)) such that v | u′ and ||u| − |u′|| ≤
max{0, t(H)− 2}.

3. If a, b ∈ H with b | a, thenmin L(ab−1) ≤ min L(a)+ (2t(H)− 1)min L(b).

Proof. 1. Let b = u1 · . . . · uk with k = min L(b) and u1, . . . , uk ∈ A(H). Then Lemma 3.3.1 shows that ω(H, b) ≤
ω(H)min L(b), which implies the assertion.
2. If v | u, then we set u′ = u. Suppose that v - u. This implies that H is not factorial and t(H) ≥ 2. Further, there exists

some u′ ∈ Z(π(u)) such that v | u′ and d(u, u′) ≤ t(π(u), v) ≤ t(H). Since v - u, we have u 6= u′ and by Eq. (2.1) we obtain
||u| − |u′|| ≤ d(u, u′)− 2 ≤ t(H)− 2.
3. We note first

min L(a) ≥ max L(b)+min L(ab−1)− t(a, Z(b))

by [22, 4.3.4.1]. Moreover, by [22, 1.6.5.7] we have t(a, Z(b)) ≤ 2min L(b)t(H). Hence we obtain

min L(ab−1) ≤ min L(a)−max L(b)+ t(a, Z(b)) ≤ min L(a)−min L(b)+ 2t(H)min L(b)
= min L(a)+ (2t(H)− 1)min L(b). �

We continue with a characterization of tameness, which is based on a precise recent description of local tameness
achieved in [24]. In Example 4.12, we present a monoid H , for which the bound t(H) ≤ ω(H)2 is almost sharp. On the
other hand, suppose that H is atomic but not factorial. Then by definition we have ω(H) ≤ t(H). If H is half-factorial, then it
can be checked from the definitions that equality holds. In [34, Theorem 3.10], there is a class of non-half-factorial numerical
monoids for which ω(H) = t(H) holds.

Proposition 3.5. Let H be atomic. Then t(H) ≤ ω(H)2. In particular, H is tame if and only if ω(H) <∞.
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Proof. We may assume that H is reduced, and we have to show that t(H, u) ≤ ω(H)2 for all u ∈ A(H). Let u ∈ A(H) be
given. If u is prime, then t(H, u) = 0, and the assertion is clear. Suppose that u is not prime. Then [24, Theorem 3.6] implies
that

t(H, u) = max{ω(H, u), 1+ τ(H, u)},

where

τ(H, u) = sup
{
min L(u−1a)

∣∣ a = u1 · . . . · uj ∈ uH with j ∈ N, u1, . . . , uj ∈ A(H),

and u - u−1i a for all i ∈ [1, j]
}
∈ N0 ∪ {∞}.

Clearly, ω(H, u) ≤ ω(H)2, and thus we may assume that t(H, u) = 1+ τ(H, u). Let θ ∈ N with θ ≤ τ(H, u). By definition,
there exist a = v1 · . . . · vs ∈ uH , where s ∈ N, v1, . . . , vs ∈ A(H) and u - v−1i a for all i ∈ [1, s], such that min L(u

−1a) ≥ θ .
Thus s ≤ ω(H, u). We set u−1a = u2 · . . . · ut with t ∈ N and u2, . . . , ut ∈ A(H) such that t − 1 = min L(u−1a) ≥ θ . Then
a = v1 · . . . · vs = uu2 · . . . · ut , and clearly a divides uu2 · . . . · ut but does not divide any proper subproduct. Thus

θ + 1 ≤ t ≤ ω(H, a) = ω(H, v1 · . . . · vs) ≤ ω(H, v1)+ · · · + ω(H, vs) ≤ sω(H) ≤ ω(H)2,

and hence

t(H, u) = 1+ τ(H, u) ≤ ω(H)2. �

It is well known that tame monoids are BF-monoids with finite elasticity and finite catenary degree. Here we provide
new proofs showing that the elasticity and the catenary degree are not only bounded by the tame degree t(H), but they are
in fact bounded byω(H). This new upper bound is sharp for large classes of Krull monoids (see Example 4.12). We recall the
definition of the elasticity and of the catenary degree.
Let H be atomic and a ∈ H . Then ρ(a) = ρ

(
L(a)

)
is called the elasticity of a, and the elasticity of H is defined as

ρ(H) = sup{ρ(L) | L ∈ L(H)} ∈ R≥1 ∪ {∞}.

For k ∈ N, we set ρk(H) = k if H = H×, and

ρk(H) = sup{sup L | L ∈ L(H), k ∈ L} ∈ N ∪ {∞}, if H 6= H×.

The catenary degree c(a) is the smallest N ∈ N0 ∪ {∞} such that, for any two factorizations z, z ′ of a, there exists a finite
sequence z = z0, z1, . . . , zk = z ′ of factorizations of a satisfying that d(zi−1, zi) ≤ N for all i ∈ [1, k]. Globally, we
define

c(H) = sup{c(a) | a ∈ H} ∈ N0 ∪ {∞},

andwe call c(H) the catenary degree ofH . By Proposition 3.6.3, every tamemonoid has finite catenary degree. But there are
monoids with finite catenary degree which are not tame (see [22, Section 3.7]). In Remark 5.2, we discuss the first example
of a Krull monoid with this property.

Proposition 3.6. Let H be atomic.

1. Then ρ(a) ≤ min{ω(H, a), ω(H)} for all a ∈ H, and thus ρ(H) ≤ ω(H).
2. For all k ≥ 2, we have ρk(H)− ρk−1(H) ≤ max{1, ω(H)− 1}.
3. c(H) ≤ ω(H).

Proof. Without restriction we may suppose that H is reduced.
1. By definition, we have ρ(1) = 1. Pick an element a ∈ H \ {1}. If a = u1 · . . . · uk = v1 · . . . · vl with

u1, . . . , uk, v1, . . . , vl ∈ A(H), then, by [24, Lemma 3.3], we get

k ≤ ω(H, u1 · . . . · uk) = ω(H, v1 · . . . · vl) ≤ ω(H, v1)+ · · · + ω(H, vl) ≤ lmin{ω(H), ω(H, a)},

and hence

ρ(a) = sup
{ r
s

∣∣∣ r, s ∈ L(a)
}
≤ min{ω(H, a), ω(H)}.

2. Ifω(H) = ∞, then nothing has to be done. Suppose thatω(H) <∞. ThenH is a BF-monoid by Lemma 3.3. Let k ∈ N≥2.
If ρk(H) = k, then ρk−1(H) = k− 1, and the assertion follows. Suppose that ρk(H) > k. Then H is not factorial, ω(H) > 1,
and we pick an a ∈ H with k ∈ L(a) and ` = max L(a) > k. We have to show that ` ≤ ω(H)− 1+ ρk−1(H). Let

a = u1 · . . . · uk = v1 · . . . · v`,

where u1, . . . , uk, v1, . . . , v` ∈ A(H). There is a subsetΩ ⊂ [1, `], sayΩ = [1, j], such that j ≤ ω(H) and u1 | v1 · . . . · vj.
Since ω(H) > 1 and l > k ≥ 1, we may suppose that j ≥ 2. Then u2 · . . . · uk = (u−11 v1 · . . . · vj)vj+1 · . . . · v`,

1+ (`− j) ≤ max L(u−11 v1 · . . . · vj)+max L(vj+1 · . . . · v`) ≤ max L(u2 · . . . · uk) ≤ ρk−1(H),

and thus ` ≤ ω(H)− 1+ ρk−1(H).
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3. As in 2, wemay suppose thatω(H) <∞, and we have to show that c(a) ≤ ω(H) for all a ∈ H . To do so, we proceed by
induction onmax L(a). If max L(a) ≤ 1, then a ∈ A(H)∪{1} and c(a) = 0. Suppose thatmax L(a) > 1 and that c(b) ≤ ω(H)
for all b ∈ H with max L(b) < max L(a). Let z ∈ Z(a). It is sufficient to find an ω(H)-chain of factorizations from z to every
z ′ ∈ Z(a)with |z ′| = max L(a). Let z ′ = v1 · . . . · vl ∈ Z(a)with v1, . . . , vl ∈ A(H) and |z ′| = l = max L(a). Pick a u ∈ A(H)
such that z ∈ uZ(H). After renumbering if necessary, there is a k ∈ [1, l]with k ≤ ω(H, u) ≤ ω(H) such that u | v1 · . . . · vk.
Consider a factorization v1 · . . . · vk = uu2 · . . . · um with u2, . . . , um ∈ A(H). Since |z ′| = max L(a), it follows that m ≤ k,
and thus

d(z ′, uu2 · . . . · umvk+1 · . . . · vl) = d(v1 · . . . · vk, uu2 · . . . · um) ≤ max{k,m} ≤ ω(H).

Since max L(u−1a) < max L(a), there exists an ω(H)-chain from u−1z ∈ Z(u−1a) to u2 · . . . · umvk+1 · . . . · vl ∈ Z(u−1a), and
thus there is an ω(H)-chain from z to uu2 · . . . · umvk+1 · . . . · vl and to z ′. �

4. Tame Krull monoids

Themain aim of this section is to derive a characterization for being tame, which is valid for a large class of Krull monoids
(see Theorem 4.2). Krull monoids can be characterized by ideal theoretic or by divisor theoretic tools. We briefly gather the
necessary terminology. For details we refer to one of the monographs [26,22].
Let D be a monoid. A homomorphism ϕ : H → D is called

• cofinal if for every a ∈ D there exists some u ∈ H such that a |ϕ(u);
• a divisor homomorphism if ϕ(u) |ϕ(v) implies u | v for all u, v ∈ H;
• a divisor theory (for H) if D = F (P) for some set P , ϕ is a divisor homomorphism and, for every p ∈ P (equivalently for
every a ∈ F ), there exists a finite subset ∅ 6= X ⊂ H satisfying p = gcd

(
ϕ(X)

)
.

Note that, by definition, every divisor theory is cofinal. Now suppose that H ⊂ D and q(H) ⊂ q(D). Then H ⊂ D is called
saturated (resp. cofinal) if the inclusion H ↪→ D is a divisor homomorphism (resp. cofinal). For a ∈ q(D), we denote by
[a] = [a]D/H = a q(H) ∈ q(D)/q(H) the class containing a, and we set D/H = {[a] | a ∈ D} ⊂ q(D)/q(H). The quotient
group q(D)/q(H) is called the class group of Dmodulo H , and H ⊂ D is cofinal if and only if D/H = q(D)/q(H) (see [22,
Corollary 2.4.3]). Class groups will be written additively whence [1] is the zero element of D/H . If H ⊂ D is saturated and
a, b ∈ D with [a] = [b], then a ∈ H if and only if b ∈ H . The monoid H is called a Krull monoid if it satisfies one of the
following equivalent conditions (see [22, Theorem 2.4.8]):

• H is v-noetherian and completely integrally closed.
• H has a divisor theory.
• Hred is a saturated submonoid of a free monoid.

In particular, H is a Krull monoid if and only if Hred is a Krull monoid. Let H be a Krull monoid and F = F (P) a free monoid.
Then F is called a monoid of divisors and P a set of prime divisors for H if Hred ⊂ F is a submonoid, and the inclusion
Hred ↪→ F is a divisor theory. The monoid of divisors and the set of prime divisors are uniquely determined (up to canonical
isomorphism). Hence the class group of Hred ⊂ F ,

C(H) = F/Hred and the subset GP = {[p] ∈ C(H) | p ∈ P}

of all classes containing prime divisors, are uniquely determined by H . Clearly, we have [GP ] = C(H), and conversely, there
is the following realization result (see [22, Theorems 2.5.4 and 3.7.8]).

Lemma 4.1. Let G be an abelian group, (mg)g∈G a family of cardinal numbers, G0 = {g ∈ G | mg 6= 0} and G1 = {g ∈ G | mg =
1}. Then the following statements are equivalent:

(a) There exists a Krull monoid H and a group isomorphism Φ : G→ C(H) such that
card(P ∩ Φ(g)) = mg for every g ∈ G.

(b) G = [G0], and G = [G0 \ {g}] for every g ∈ G1.

Let H be a Krull monoid and F = F (P) a monoid of divisors for H . Then we say that H has the approximation property if
it satisfies the following condition (see [22, Proposition 2.5.2]):

• For all n ∈ N, distinct p1, . . . , pn ∈ P and e1, . . . , en ∈ N0, there exists some a ∈ H such that vpi(a) = ei for all i ∈ [1, n].

Let R be an integral domain. Then R is a Krull domain if and only if its multiplicative monoid R• = R \ {0} is a Krull monoid,
and if this holds, then R• has the approximation property.
Next we discuss a Krull monoid of crucial importance, the monoid of zero-sum sequences over a subset of an abelian

group. Let G be an additive abelian group and G0 ⊂ G a subset. According to the tradition of combinatorial number theory,
the elements of F (G0) are called sequences over G0. Thus a sequence S ∈ F (G0)will be written in the form

S = g1 · . . . · gl =
∏
g∈G0

gvg (S),
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and we use all notions (such as length and support) as in general free monoids. Furthermore, we denote by σ(S) =
g1 + · · · + gl the sum of S and by

Σ(S) =
{∑
i∈I

gi | ∅ 6= I ⊂ [1, l]
}
⊂ G the set of subsums of S.

The monoid

B(G0) = {S ∈ F (G0) | σ(S) = 0}

is called themonoid of zero-sum sequences over G0.
Clearly,B(G0) is reduced,B(G0) ⊂ F (G0) is saturated, and henceB(G0) is a reduced Krull monoid. Moreover, F (G0) is

a monoid of divisors forB(G0) if and only if 〈G0〉 = [G0 \ {g}] for every g ∈ G0 (see [22, Proposition 2.5.6]).
For every arithmetical invariant ∗(H) defined for a monoid H , we write ∗(G0) instead of ∗

(
B(G0)

)
. In particular, we set

A(G0) = A
(
B(G0)

)
, ω(G0) = ω

(
B(G0)

)
, t(G0) = t

(
B(G0)

)
, and so on. We define the Davenport constant of G0 by

D(G0) = sup
{
|U|

∣∣ U ∈ A(G0)
}
∈ N0 ∪ {∞},

which is a central invariant in zero-sum theory (see [15,18] for its relevance in factorization theory). We will use without
further mention that for a finite set G0 we have D(G0) <∞ (see [22, Theorem 3.4.2]).
Let H be a reduced Krull monoid, H ⊂ F = F (P) a divisor theory and GP = {[p] | p ∈ P} ⊂ F/Hred the set of classes

containing prime divisors. The homomorphism β̃ : F (P) → F (GP), mapping an element p ∈ P onto its class [p] ∈ GP ,
induces a transfer homomorphism β = β̃ | H : H → B(GP). In particular, β

(
A(H)

)
= A(GP) and

D(H) = sup{|u| | u ∈ A(H)} = D(GP)

(for details see [22, Section 3.4 and Theorem 5.1.5]).
Recall that, for a constantm ∈ N,mG0 denotes them-fold sumset. Clearly, the condition−G0 ⊂ m(G0∪{0}) is equivalent

to the condition that for every g ∈ G0 there exists a zero-sum sequence Ug ∈ B(G0) such that g |Ug and |Ug | ≤ m+ 1.
Now we can formulate the main result of this section.

Theorem 4.2. Let H be a Krull monoid, F = F (P) a monoid of divisors and GP = {[p] | p ∈ P} ⊂ F/Hred = G the set of classes
containing prime divisors. Suppose that one of the following conditions hold:

(a) H has the approximation property.
(b) Every g ∈ GP contains at least two prime divisors.
(c) There is an m ∈ N such that−GP ⊂ m(GP ∪ {0}).
(d) The torsion free rank of G is finite.

Then H is tame if and only if D(GP) <∞. Moreover, we have:

1. If (a) or (b) or
(
(c) with m = 1

)
holds, then ω(H) = D(GP).

2. Suppose that either the total rank of G is finite or that there is an m ∈ N such that G = m(GP ∪ {0}). Then H is tame if and
only if GP is finite.

We will see that the finiteness of the Davenport constant implies (almost trivially) that the monoid is tame. But
the converse needs some additional assumption. Indeed, in Example 4.13 we will point out a tame Krull monoid with
D(GP) = ∞. But before that we start with the proof of Theorem 4.2, which will be done in a series of lemmas. We fix
our notations for the rest of this section.
Let H be a reduced Krull monoid, H ⊂ F = F (P) a monoid of divisors and GP = {[p] | p ∈ P} ⊂ F/H = G the set of

classes containing prime divisors. We define subsets Ps, Pm, Pt and Pf of P by

Ps = {p ∈ P | P ∩ [p] = {p}}, Pm = P \ Ps, Pt = {p ∈ P | ord([p]) <∞} and Pf = P \ Pt .

For a ∈ {s,m}, b ∈ {f , t}, we set Pa,b = Pa ∩ Pb. In order to get lower bounds on ω(H, ·), we make the following definition.
Let P0, P1 ⊂ P be finite subsets. We call (P0, P1) independent of order (αp)p∈P0 ∈ NP0 if the following two conditions hold:

1. For any p ∈ P0 there exists ap ∈ H such that vp(ap) = αp and vq(ap) = 0 for all q ∈ P0 \ {p}.
2. There exists some b ∈ H such that P1 ⊂ supp(b) ⊂ P \ P0.

The first lemma is well known. Since it is the starting point of our investigations, we present its short and simple proof.

Lemma 4.3.

1. For every a ∈ H, we have ω(H, a) ≤ |a|.
2. ω(H) ≤ D(GP). In particular, if D(GP) <∞, then H is tame.
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Proof. 1. Let a ∈ H and a1, . . . , an ∈ H such that a | a1 · . . . · an. Suppose that a = p1 · . . . · pl with |a| = l ∈ N and
p1, . . . , pl ∈ P . Clearly, there is a subsetΩ ⊂ [1, n] such that |Ω| ≤ l and

a = p1 · . . . · pl divides
∏
ν∈Ω

aν in F , and hence in H.

2. Obviously, 1 implies that

ω(H) = sup{ω(H, u) | u ∈ A(H)} ≤ sup{|u| | u ∈ A(H)} = D(GP).

Thus, if D(GP) <∞, then ω(H) <∞, and hence H is tame by Proposition 3.5. �

Lemma 4.4.

1. Suppose there exists a constant m ∈ N such that −GP ⊂ m(GP ∪ {0}). Then ω(H, a) ≥ |a|/(m + 1) for all a ∈ H, and if
m = 1 and a ∈ A(H), then ω(H, a) ≥ |a|. Thus H is tame if and only if D(GP) <∞.

2. Suppose there exists a constant m ∈ N such that G = m(GP ∪ {0}). Then H is tame if and only GP is finite.

Proof. 1. Let a = p1 · . . . · pl ∈ H with l ∈ N and p1, . . . , pl ∈ P . For every i ∈ [1, l], there is an ai ∈ H with pi | ai and
|ai| ≤ m + 1. Then a | a1 · . . . · al, and there is a subset Ω ⊂ [1, l], say Ω = [1, λ], such that a divides a1 · . . . · aλ but no
proper subproduct. Then we obtain

|a| ≤ |a1 · . . . · aλ| ≤ λ(m+ 1) and hence ω(H, a) ≥ λ ≥
|a|
m+ 1

.

Now suppose thatm = 1 and a ∈ A(H). For l = 1, the assertion is clear. Suppose that l = 2. Since H ⊂ F is a divisor theory,
there are a1, a2 ∈ H such that p1 | a1, p2 - a1, p2 | a2 and p1 - a2. Thus a | a1a2, but a - a1, a - a2, and hence ω(H, a) ≥ 2.
Suppose that l ≥ 3. For i ∈ [1, l], let qi ∈ −[pi] ∩ P and ai = piqi ∈ H . Clearly, a | a1 · . . . · al, and we assert that a does
not divide a proper subproduct, which implies that ω(H, a) ≥ |a|. Assume to the contrary that there is anΩ ( [1, l] such
that a divides

∏
µ∈Ω aµ. Then

∏
λ∈[1,l]\Ω pλ divides

∏
µ∈Ω qµ in F , and hence there is a λ ∈ [1, l] \Ω and a µ ∈ Ω such that

pλ = qµ. But this implies that [pλpµ] = [pλ] − [qµ] = 0, and hence pλpµ ∈ H , a contradiction to l ≥ 3 and a ∈ A(H).
Using Lemma 4.3, we infer that ω(H) < ∞ if and only if D(GP) < ∞, and thus Proposition 3.6 shows that H is tame if

and only if D(GP) <∞.
2. If GP is infinite, then G is infinite, ∆(H) is infinite by [28], and hence H is not tame by Proposition 3.6.3. If GP is finite,

then D(GP) <∞, and H is tame by Lemma 4.3. �

Remark 4.5.
1. By definition, a group is called bounded if there is anN ∈ N such thatNg = 0 for all g ∈ G. Note that a bounded group is

a direct sum of finite cyclic groupswith a bound on their orders; see e.g. [22, Corollary A.4]. Now suppose that G is a bounded
group, and let G0 ⊂ G be a subset with 0 ∈ G0. Then, for every g ∈ G0, there is an n ∈ [1,N] such that−g = (n− 1)g , and
thus−G0 ⊂ NG0.
2. Let R be a Krull domain with class group G and GP ⊂ G the set of classes containing prime divisors. If R is either a

finitely generated Z-algebra or a finitely generated k-algebra over some infinite perfect field k, then there is anm ∈ N such
that G = m(GP ∪ {0}) (see [33, Propositions 4.2 and 4.4]).

Lemma 4.6. Let a ∈ H, P0, P1 ⊂ P be such that supp(a) = P0 ∪ P1 and (P0, P1) is independent of order (αp)p∈P0 ∈ NP0 . Then

ω(H, a) ≥
∑
p∈P0

⌈vp(a)
αp

⌉
.

Proof. For all p ∈ P0, let ap ∈ H and let b ∈ H be as in the definition of independence.We set, for all p ∈ P0, ep = dvp(a)/αpe,
M = max{vp(a) | p ∈ P1} and

u =
∏
p∈P0

aepp bM .

Then u ∈ H , vp(a) ≤ vp(u) for all p ∈ P , and hence a | u. Thus there exist (βp)p∈P0 ∈ NP00 andM
′
∈ [0,M] such that βp ≤ ep

for all p ∈ P0,
∑
p∈P0

βp +M ′ ≤ ω(H, a) and

a divides u′ =
∏
p∈P0

aβpp bM
′

.

Then, for any p ∈ P0, we have vp(a) ≤ vp(u′) = αpβp. Hence βp ≥ dvp(a)/αpe = ep, and therefore βp = ep for all p ∈ P0.
This implies that

ω(H, a) ≥
∑
p∈P0

βp +M ′ ≥
∑
p∈P0

⌈vp(a)
αp

⌉
. �
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Lemma 4.7. Let P0, P ′0, P1 ⊂ P be finite subsets and p ∈ P \ P1.

1. If H has the approximation property, then (P0,∅) is independent of order (1)p∈P0 .
2. ({p}, P1) is independent of order 1.
3. Suppose that P0, P ′0, P1 have the following properties:
(a) P0 ⊂ Pm.
(b) P ′0 ⊂ Ps,t .
(c) P1 ⊂ P \ (P0 ∪ P ′0).
(d) [p] 6= [q], if p, q ∈ P0 are different or if p ∈ P0 and q ∈ P ′0.
For p ∈ P0 ∪ P1, set

αp =

{
1 p ∈ P0
ord([p]) p ∈ P ′0.

Then (P0 ∪ P ′0, P1) is independent of order (αp)p∈P0∪P ′0 .

Proof. 1. This follows immediately from the definition of independence and the approximation property (for b in the
definition of independence take b = 1).
2. Since H ⊂ F is a divisor theory, there are a, b ∈ H such that vp(a) = 1,

∏
p∈P1
p | b and p - b. Then a and b satisfy all

conditions for independence of order 1 of ({p}, P1).
3. First note that P0 ∩ P ′0 = P0 ∩ P1 = P

′

0 ∩ P1 = ∅. Since P0 ⊂ Pm, we can choose for any p ∈ P0 some p
′
∈ P \ {p}

such that [p′] = [p]. Then, by construction and condition (3d), we have {p′ | p ∈ P0} ∩ (P0 ∪ P ′0) = ∅. We continue with the
following assertion.

A. If u ∈ H and Q ⊂ supp(u) ∩ Pt , then there exists u′ ∈ H such that supp(u′) = supp(u) \ Q .

Proof of A. Let u and Q be as above, and set u = u1u2, where u1, u2 ∈ F (P) are uniquely determined by supp(u1) =
supp(u) \ Q and supp(u2) = Q . Set N = lcm{ord([p]) | p ∈ Q }. Then uN2 ∈ H , and from u

N
= uN1 u

N
2 we obtain u

N
1 ∈ H . Since

supp(uN1 ) = supp(u1) = supp(u) \ Q , the claim follows. �

In order to show that (P0 ∪ P ′0, P1) is independent of order (αp)p∈P0∪P ′0 , we verify the two conditions in the definition of
independence.
First, we show that there exists b ∈ H such that P1 ⊂ supp(b) ⊂ P \ (P0 ∪ P ′0). Since H ⊂ F is a divisor theory, we may

choose b1 ∈ H such that P1 ⊂ supp(b1). Using A with Q = supp(b1) ∩ P ′0 and using P
′

0 ∩ P1 = ∅, we see that there exists
b2 ∈ H such that P1 ⊂ supp(b2) ⊂ P \ P ′0. Set S = supp(b2). Then b2 = c1c2, where

c1 =
∏
p∈S\P0

pvp(b1), c2 =
∏
p∈S∩P0

pvp(b2).

Now set

c ′2 =
∏
p∈S∩P0

p′vp(c2)

and b = c1c ′2. From [c
′

2] = [c2], it follows that b ∈ H . By construction, we have P1 ⊂ supp(b) ⊂ P \ (P0 ∪ P
′

0).
Second, we pick p ∈ P0 ∪ P ′0 and show that there exists some a ∈ H such that vp(a) = αp and vq(a) = 0 for all

q ∈ (P0 ∪ P ′0) \ {p}.
If p ∈ P ′0, then αp[p] = 0, and hence a = p

αp ∈ H has the required property. Suppose that p ∈ P0. Choose a1 ∈ H
with P0 ⊂ supp(a1). Then, using P0 ∩ P ′0 = ∅ and A with Q = supp(a1) ∩ P ′0, we obtain an element a2 ∈ H such that
P0 ⊂ supp(a2) ⊂ P \ P ′0. Now set

a = pp′vp(a2)−1 ·
∏

q∈(supp(a2)\{p})∩P0

q′vp(a2) ·
∏

q∈supp(a2)\P0

qvq(a2).

Since [a2] = [a], it follows that a ∈ H . From {q′ | q ∈ P0} ∩ (P0 ∪ P ′0) = ∅ we obtain vp(a) = 1 = αp and vq(a) = 0 for all
q ∈ (P0 ∪ P ′0) \ {p}. �

Corollary 4.8. Let a ∈ H.

1. Suppose that [p] 6= [q] for all distinct p, q ∈ supp(a) ∩ Pm. Then

ω(H, a) ≥ vPm(a)+
∑
p∈Ps,t

⌈ vp(a)
ord([p])

⌉
.

2. If H has the approximation property, then ω(H, a) = |a|, and if P = Pm, then there is an a′ ∈ β−1
(
β(a)

)
such that

ω(H, a′) = |a′| = |a|.
3. ω(H, a) ≥ max{vp(a) | p ∈ P}.
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Proof. 1. We set P0 = supp(a) ∩ Pm, P ′0 = supp(a) ∩ Ps,t and P1 = supp(a) ∩ Ps,f . Then supp(a) = (P0 ∪ P ′0) ∪ P1. For
p ∈ P0 ∪ P ′0, set

αp =

{
1 p ∈ P0
ord([p]) p ∈ P ′0.

By Lemma 4.7.3, (P0 ∪ P ′0, P1) is independent of order (αp)p∈P0∪P ′0 . By Lemma 4.6, we obtain

ω(H, a) ≥
∑
p∈P0∪P ′0

⌈vp(a)
αp

⌉
= vPm(a)+

∑
p∈Ps,t

⌈ vp(a)
ord([p])

⌉
.

2. By Lemma 4.3.1, it suffices to show that ω(H, a) ≥ |a| and ω(H, a′) ≥ |a′| = |a|, respectively.
Suppose that H has the approximation property and set P0 = supp(a), P ′0 = P1 = ∅ and α = (1)p∈P0 . Then, by

Lemma 4.7.1, (P0, P1) is independent of order α, and thus Lemma 4.6 implies that ω(H, a) ≥ |a|.
Suppose that P = Pm and set β(a) = g

k1
1 · . . . · g

ks
s with k1, . . . , ks ∈ N and g1, . . . , gs ∈ G pairwise distinct. For i ∈ [1, s],

we pick pi ∈ P ∩ gi and define a′ = p
k1
1 · . . . · p

ks
s . Now we set P0 = supp(a

′), P ′0 = P1 = ∅ and α = (1)p∈P0 . Then, by
Lemma 4.7.3, (P0, P1) is independent of order α, and thus Lemma 4.6 implies that ω(H, a′) ≥ |a′| = |a|.
3. Let p ∈ supp(a). By Lemma 4.7.2 ({p}, supp(a) \ {p}) is independent of order 1. Hence ω(H, a) ≥ vp(a) by 4.6. �

Corollary 4.9. Let a ∈ H and suppose that [p] 6= [q] for all distinct p, q ∈ supp(a) ∩ Pm. Then

|supp(a)| ≤ ω(H, a) ω(H)+ |supp(a) ∩ Ps,f |.

Proof. By 4.8.1, we have

ω(H, a) ≥ vPm(a)+
∑
p∈Ps,t

⌈ vp(a)
ord([p])

⌉
≥ |supp(a) ∩ Pm| +

∑
p∈supp(a)∩Ps,t

1
ord([p])

.

Set A = max{ord([p]) | p ∈ supp(a) ∩ Ps,t}. Then we obtain

ω(H, a) ≥ |supp(a) ∩ Pm| +
1
A
|supp(a) ∩ Ps,t | ≥

1
A
(|supp(a)| − |supp(a) ∩ Ps,f |).

It remains to show that A ≤ ω(H). So let p ∈ Ps,t ∩ supp(a). Then u = pord([p]) is an atom of H and by 4.8.3 we obtain
ord([p]) = vp(u) ≤ ω(H, u) ≤ ω(H). �

Lemma 4.10. Let A be an abelian group, G0 ⊂ A be a subset such that [G0] = A and M = sup{vg(U) | g ∈ G0, U ∈ A(G0)} <
∞, and set G0,f = {g ∈ G0 | ord(g) = ∞}. If the torsion free rank of A is finite, then the set {M!g | g ∈ G0,f } is finite. If the total
rank of A is finite, then G0 is finite.

Proof. First suppose that the torsion free rank of A is finite. Let E ⊂ G0,f be a maximal independent set. Then E is finite by
assumption. Since [G0] = A, there exists, for each h ∈ E, some Sh ∈ F (G0) such that hSh ∈ B(G0). Then the set

E1 = E ∪
⋃
h∈E

supp(Sh)

is finite, and we claim that for any g ∈ G0,f there exists some C ∈ A({g} ∪ E1) such that g | C . Let g ∈ G0,f . Clearly, it is
sufficient to find some B ∈ B({g} ∪ E1) such that g | B. If g ∈ E, then gSg does the job. So suppose that g /∈ E. Since E ∪ {g}
is not independent, there are α ∈ Z and, for every h ∈ E, an element βh ∈ Z such that αg +

∑
h∈E βhh = 0 and αg 6= 0 or

βhh 6= 0 for some h ∈ E. Since E is independent, we get α 6= 0, and suppose without restriction that α > 0. Then, clearly
we have

B = gα
∏
h∈E
βh≥0

hβh
∏
h∈E
βh<0

S−βhh ∈ B({g} ∪ E1) and g | B.

Since the set

E2 =
{
−

∑
g∈E1

βgg | βg ∈ [0,M ·M!] for all g ∈ E1
}

is finite, it suffices to show that for every g ∈ G0,f we have M!g ∈ E2. Pick g ∈ G0,f and a C ∈ A({g} ∪ E1) such that g | C ,
say C = gα

∏
g∈E1
gβg . Then α ∈ [1,M] and βg ∈ [0,M] for all g ∈ E1. Since αg +

∑
g∈E1

βgg = 0, it follows thatM!g ∈ E2.
Now suppose that the total rank of A is finite, and for a prime p ∈ P let

Z(p∞) =
{
m
pk
+ Z | m ∈ Z, k ∈ N

}
⊂ Q/Z
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denote the Prüfer group of type p∞. Then, by [14, Sections 23 and 24],

A ⊂ Qs ⊕
t⊕
i=1

Z(p∞i ), (∗)

where s, t ∈ N0, s + t is the total rank of A and p1, . . . , pt ∈ P. Obviously, (∗) implies that for every n ∈ N the subgroup
{g ∈ A | Ng = 0} is finite. This and the finiteness of {M!g | g ∈ G0,f } imply that G0,f is finite. Let G0,t = G0 \ G0,f . If g ∈ G0,t ,
then gord(g) ∈ A(G0), and hence ord(g) ≤ M . As before, this implies that G0,t is finite, and hence G0 is finite. �

Proposition 4.11. Suppose that the torsion free rank of G is finite and that ω(H) <∞.
Then D(GP) <∞.

Proof. Since ω(H) <∞, Corollary 4.8.3 implies thatM = sup{vp(u) | u ∈ A(H), p ∈ P} <∞. Thus by Lemma 4.10 the set
{M![p] = [pM!] | p ∈ Ps,f } is finite, andhence there exists a finite subset P ′ ⊂ Ps,f such that {[pM!] | p ∈ Ps,f } = {[pM!] | p ∈ P ′}.
We pick an u ∈ A(H) and claim that |u| ≤ ω(H)3 + |P ′|ω(H). We start with the following assertion.

A. There exists a ∈ H such that:
• min L(a) ≤ M!;
• |uM!| = |a|;
• [p] 6= [q] for distinct p, q ∈ supp(a) ∩ Pm;
• supp(a) ∩ Ps,f ⊂ P ′.

Proof of A. Let β : H → B(GP) be the block homomorphism and let β(u) = gk11 · . . . · g
kr
r with pairwise distinct

g1, . . . , gr ∈ GP . For each i ∈ [1, r], let pi ∈ P be such that [pi] = gi. Then u′ = p
k1
1 · . . . · p

kr
r ∈ A(H) and |u| = |u′|.

Thus, after replacing u by u′ if necessary, we can suppose that [p] 6= [q] for distinct p, q ∈ supp(u). By definition of P ′ there
is a map θ : Ps,f → P ′ such that [pM!] = [θ(p)M!] for all p ∈ Ps,f . We now set

a =
∏

p∈supp(u)∩(Pm∪Ps,t )

pM!vp(u)
∏
p∈Ps,f

θ(p)M!vp(u).

Then [a] = [uM!], and hence a ∈ H . From β(a) = β(uM!), we obtain min L(a) = min L(β(a)) ≤ M! and |a| = |uM!|. Thus a
fulfills all our requirements. �

Now let a = v1 · . . . · vn be a factorization of a such that n = min L(a) ≤ M!. Choose some i ∈ [1, n]. Then clearly
supp(vi) ∩ Ps,f ⊂ P ′ and [p] 6= [q] for distinct p, q ∈ supp(vi) ∩ Pm. By Corollary 4.9, we obtain

|supp(vi)| ≤ ω(H, vi)ω(H)+ |supp(vi) ∩ Ps,f | ≤ ω(H)2 + |P ′|.

Using 4.8.3, we obtain

|vi| =
∑

p∈supp(vi)

vp(vi) ≤
∑

p∈supp(vi)

ω(H, vi) ≤ ω(H)3 + |P ′|ω(H),

and hence

|u| =
1
M!
|a| =

1
M!

n∑
i=1

|vi| ≤
n
M!
(ω(H)3 + |P ′|ω(H)) ≤ ω(H)3 + |P ′|ω(H). �

Proof of Theorem 4.2. If D(GP) <∞, then H is tame by Lemma 4.3. Conversely, suppose that H is tame. If Condition (a) or
(b) of Theorem 4.2 holds, then all assertions follow from Corollary 4.8.2. If Condition (c) holds, then Lemma 4.4.1 does the
job. If the torsion free rank of G is finite, then D(GP) <∞ by Proposition 4.11. Suppose that the total rank of G is finite. Since
H is tame, the invariant M occurring in Lemma 4.10 is finite, and clearly we have [GP ] = G. Thus Lemma 4.10 implies that
GP is finite. If G = m(GP ∪ {0}) for somem ∈ N, then the assertion follows from Lemma 4.4. �

We end this section with two examples. The first example shows that several bounds obtained in Section 3 are sharp for
Krull monoids. Example 4.13 reveals a tame Krull monoid H with D(GP) = ∞.

Example 4.12. Let H be a Krull monoid with finite class group G such that every class contains a prime divisor. In order to
avoid trivial cases we suppose that |G| ≥ 3. Then ω(H) = D(G) by Theorem 4.2.(c).

1. Suppose that G is isomorphic to C r2 for some even r ∈ N. Then, by [22, Corollary 6.5.6], we have

D(C r2) = r + 1 = ω(H) and t(H) = 1+
r2

2
.

This shows that the bound given in Proposition 3.5 has the right order of magnitude.
2. Suppose that G is either cyclic or an elementary 2-group. Then c(H) = D(G) by [22, Theorem 6.4.7], and thus equality
holds in Proposition 3.6.3.
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3. Let k ∈ N. Then ρk(H)− ρk−1(H) ≤ D(G)/2, and equality holds for a variety of groups (see [22, Section 6.3]. If G is cyclic,
then ρ2k(H)− ρ2k−1(H) = ω(H)− 1 by [18, Corollary 5.3.2], and thus equality holds in Proposition 3.6.2.

Example 4.13. We construct a Krull monoid H with t(H) = 2 and D(H) = ∞. To do so we proceed in two steps.
1. Let n ∈ N≥2, Fn = ⊕ni=0〈ei〉 ∼= Zn+1 be an additive free abelian group of rank n+ 1 with basis {e0, . . . , en} and Pn the

power set of [1, n]. For I ∈ Pn, let ϕI : Fn → Z be defined by

ϕI

(
n∑
i=0

xiei

)
= x0 +

∑
i∈I

xi,

and hence for i ∈ [1, n]we have

ϕI(ei) =
{
1 i ∈ I
0 i /∈ I,

ϕI(e0 − ei) =
{
0 i ∈ I
1 i /∈ I.

(4.1)

We define

Hn = {x ∈ Fn | ϕI(x) ≥ 0 for all I ∈ Pn}.

Then ϕ =
(
ϕI | Hn : Hn → N0

)
I∈Pn
is a defining family for Hn; hence

ϕn : Hn → NPn0 , x 7→
(
ϕI(x)

)
I∈Pn

is a cofinal divisor homomorphism (see [22, Proposition 2.6.2]), and therefore H is a Krull monoid.
1(a) We assert that

Hn = [e1, . . . , en, e0 − e1, . . . , e0 − en].

The inclusion⊃ follows from Eqs. (4.1). Conversely, let
∑n
i=0 xiei ∈ Hn. Then, for every I ∈ Pn, we have

x0 +
∑
i∈I

xi ≥ 0. (4.2)

For i ∈ [1, n− 1], set bi = max{0,−xi} ∈ N0. Taking I1 = {i ∈ [1, n− 1] | xi < 0} in (4.2), we obtain

x0 −
n−1∑
i=1

bi = x0 +
∑
i∈I1

xi ≥ 0.

We define bn = x0 −
∑n−1
i=1 bi ∈ N0. Taking I2 = I1 ∪ {n} in (4.2), we obtain

bn + xn = x0 +
∑
i∈I2

xi ≥ 0.

It follows that ai = xi + bi ∈ N0 for all i ∈ [1, n]. Now we have
n∑
i=0

xiei =

(
n∑
i=1

bi

)
e0 +

n∑
i=1

(ai − bi)ei =
n∑
i=1

aiei +
n∑
i=1

bi(e0 − ei) ∈ [e1, . . . , en, e0 − e1, . . . , e0 − en].

1(b) We assert that ϕn is a divisor theory. For I, J ∈ Pn, we set Hn,I = {ei | i ∈ I} ∪ {e0 − ei | i ∈ [1, n] \ I} ⊂ Hn, and claim
that

minϕJ(Hn,I) =
{
1 J = I
0 J 6= I.

Then every element of NPn0 is a greatest common divisor of a finite subset of elements of ϕn(Hn). If J = I , then ϕI(a) = 1 for
all a ∈ Hn,I , by (4.1). Now let J 6= I . If I 6⊂ J , take i ∈ I \ J . Then ei ∈ Hn,I and ϕJ(ei) = 0. If I ⊂ J , then J \ I 6= ∅, and we take
i ∈ J \ I . Then e0 − ei ∈ Hn,I and ϕJ(e0 − ei) = 0.
1(c) Since the family (e0, . . . , en) is independent, it follows immediately that

A(Hn) = {e1, . . . , en, e0 − e1, . . . , e0 − en},

and hence

D(Hn) = max
{∑
I∈Pn

ϕI(u) | u ∈ A(Hn)
}
= 2n−1.

1(d) Finally, we show that t(Hn) = 2. Pick some u ∈ A(Hn) and consider the automorphism f : Fn → Fn defined by
f (e0) = e0 and f (ei) = e0 − ei for every i ∈ [1, n]. Then f (Hn) = Hn, and hence we may assume that u = ej for some
j ∈ [1, n].
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Pick some i ∈ [1, n] \ {j}. Then the equation ei + (e0 − ei) = e0 = ej + (e0 − ej) shows that ej is not prime, and hence
t(Hn, ej) ≥ 2. To show the reverse inequality, take an element h ∈ ej + Hn and a z =

∑n
i=1 aiei +

∑n
i=1 bi(e0 − ei) ∈ Z(h).

We show that there is some z ′ ∈ Z(h) such that ej | z ′ (in Z(Hn)) and d(z, z ′) ≤ 2.
To see this, we set J = {i ∈ [1, n] | ai > 0} and K = {i ∈ [1, n] | bi > 0}. If J ∩ K 6= ∅, then, for some k ∈ J ∩ K , we set

z ′ =
∑

i∈[1,n]\{k}

(aiei + bi(e0 − ei))+ (ak − 1)ek + (bk − 1)(e0 − ek)+ ej + (e0 − ej).

Then z ′ ∈ Z(h), ej | z ′ and d(z, z ′) ≤ 2. Suppose that J ∩ K = ∅. Assume to the contrary that j /∈ J . Then, taking

x = h− ej =

(∑
i∈K

bi

)
e0 +

∑
i∈J

aiei − ej +
∑
i∈K

(−bi)ei

and I = K ∪ {j} in (4.2), we obtain

0 ≤
∑
i∈K

bi + (−1)+
∑
i∈K

(−bi) = −1,

a contradiction. Thus we have j ∈ J and hence ej | z.
2. Let

H =
∐
n≥2

Hn

be the coproduct of all Hn. Then H is Krull monoid, the coproduct of the divisor theories ϕn is a divisor theory of H ,

A(H) =
⋃
n≥2

A(Hn), hence D(H) = sup{D(Hn) | n ≥ 2} = ∞

and, by [22, Proposition 1.6.8],

t(H) = sup{t(Hn) | n ≥ 2} = 2.

5. Sets of lengths in tame monoids

Let H be a tame monoid. By Lemma 3.3, all sets of lengths in H are finite. Suppose there is an a ∈ H such that |L(a)| > 1,
say a = u1 · . . . · uk = v1 · . . . · vl with k < l and u1, . . . , uk, v1, . . . , vl ∈ A(H). Then, for every N ∈ N, we have

aN = (u1 · . . . · uk)ν(v1 · . . . · vl)N−ν for all ν ∈ [0,N],

whence {νk+ l(N − ν) | ν ∈ [0,N]} ⊂ L(aN) and |L(aN)| ≥ N + 1. This shows that sets of lengths get arbitrarily large, but
by the following Theorem 5.1 they have a well-defined structure. Indeed, sets of lengths are AAMPs (almost arithmetical
multiprogressions) with universal bounds for all parameters. We recall the definitions involved.
To begin with, let

∆(H) =
⋃
L∈L(H)

∆(L) ⊂ N

denote the set of distances of H . A simple calculation (based on Eq. (2.1)) shows that 2 + sup∆(H) ≤ c(H), and hence by
Proposition 3.5 it follows that in a tame monoid the set of distances is finite.
Let d ∈ N, M ∈ N0 and {0, d} ⊂ D ⊂ [0, d]. A subset L ⊂ Z is called an almost arithmetical multiprogression (AAMP for

short) with difference d, period D , and bound M , if

L = y+ (L′ ∪ L∗ ∪ L′′) ⊂ y+D + dZ,

where

• L∗ is finite nonempty with min L∗ = 0 and L∗ = (D + dZ) ∩ [0,max L∗];
• L′ ⊂ [−M,−1] and L′′ ⊂ max L∗ + [1,M];
• y ∈ Z.

If a ∈ H and k ∈ Z, then Zk(a) = {z ∈ Z(a) | |z| = k} ⊂ Z(a) denotes the set of factorizations of a having length k. Now we
can formulate the main result of this section.

Theorem 5.1. Let H be a tame monoid. Then there exists a constant M ∈ N0 such that for all a ∈ H the following two properties
hold:

(a) The set of lengths L(a) is an AAMP with difference d ∈ ∆(H) and bound M.
(b) For each two adjacent lengths k, l ∈ L(a) ∩ [min L(a)+M, max L(a)−M] we have d

(
Zk(a), Zl(a)

)
≤ M.
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In the following remark we discuss Statement (a) of Theorem 5.1. Its proof will require the rest of this section. More on
Statement (b) can be found in Remark 5.5.

Remark 5.2. We say that the Structure Theorem for Sets of Lengths holds for the monoid H if H is atomic and there exist some
M∗ ∈ N0 and a finite nonempty set∆∗ ⊂ N such that every L ∈ L(H) is an AAMP with some difference d ∈ ∆∗ and bound
M∗.
1. An overview of further classes of monoids and domains satisfying the Structure Theorem can be found in [22, Section

4.7]. But the structure of sets of lengths was open for general tame monoids, and in particular for the tame Mori domains
discussed in Example 3.2.4. Let H be a tame monoid. By [16, Theorems 3.5 and 4.2] and Proposition 3.6.2, all sufficiently
large unions of sets of lengths are even AAMPs with period {0,min∆(H)}.
By a recent Realization Theorem (due to Schmid, [37]) the Structure Theorem is sharp for Krull monoids with finite class

group.
2. Suppose that H is a Krull monoid with finite class group G. Then H satisfies the Structure Theorem with the set

∆∗ = ∆∗(G) = {min∆(G0) | G0 ⊂ Gwith∆(G0) 6= ∅} ⊂ ∆(H).

The set ∆∗(G) has been investigated in detail (see [35,10,36]), and in general it is a proper subset of ∆(H). Theorem 5.1
shows that for tame monoids the Structure Theorem holds with ∆∗ = ∆(H), and by [22, Example 4.8.10] this cannot be
improved in general.
3. There is a Dedekind domain R (in particular, R• is a Krull monoid with approximation property) with finite catenary

degree (hence with a finite set of distances) which does not satisfy the Structure Theorem for Sets of Lengths. In particular,
R not tame, and if GP ⊂ C(R) denotes the set of classes containing prime ideals, then D(GP) = ∞.

Proof. By [22, Theorem 4.8.4], there is a Krull monoid H with finite catenary degree which does not satisfy the Structure
Theorem for Sets of Lengths. We may suppose that H is reduced and consider a divisor theory H ⊂ F = F (P) with class
group G = F/H and G0 ⊂ G being the set of classes containing primes. Then c(G0) ≤ c(H) < ∞. By Claborn’s Realization
Theorem there is a Dedekind domain R and an isomorphism ψ : G → C(R)mapping G0 onto the set of classes GP ⊂ C(R)
containing prime ideals. Then L(H) = L(G0) = L(GP) = L(R), and hence R does not satisfy the Structure Theorem for
Sets of Lengths. By Theorem 5.1, R is not tame, and by Theorem 4.2.(a) it follows that D(GP) = ∞. Let β : R→ B(GP) denote
the block homomorphism. Then [22, Theorem 3.4.10] implies that

c(R) ≤ max{c(GP), 2} = max{c(G0), 2} <∞,

and hence R has finite catenary degree. �

In order to prove Theorem 5.1, we apply the machinery presented in [22, Section 4.3]. In order to do so, we need one
more concept, that of tamely generated pattern ideals.

Definition 5.3. Let H be atomic, a ⊂ H and A ⊂ Z be a finite nonempty subset.

1. We say that a subset L ⊂ Z contains the pattern A if there exists some y ∈ Z such that y + A ⊂ L. We denote by
Φ(A) = ΦH(A) the set of all a ∈ H for which L(a) contains the pattern A.

2. a is called a pattern ideal if a = Φ(B) for some finite, nonempty subset B ⊂ Z.
3. A subset E ⊂ H is called a tame generating set of a if E ⊂ a and there exists some N ∈ Nwith the following property:

for every a ∈ a, there exists some e ∈ E such that

e | a, sup L(e) ≤ N and t(a, Z(e)) ≤ N.

In this case, we call E a tame generating set with bound N , and we say that a is called tamely generated.
4. If a is tamely generated, then we denote by ϕ(a) the smallest N ∈ N0 such that a has a tame generating set with bound
N . Otherwise, we define ϕ(a) = ∞, and we set ϕ(A) = ϕ

(
Φ(A)

)
.

The significance of tamely generated pattern ideals stems from the following result.

Proposition 5.4. Let H be a BF-monoid with finite nonempty set of distances∆(H), and suppose that all pattern ideals of H are
tamely generated. Then there exists a constant M ∈ N0 such that for all a ∈ H the following properties are satisfied:

(a) The set of lengths L(a) is an AAMP with difference d ∈ ∆(H) and bound M.
(b) For each two adjacent lengths k, l ∈ L(a) ∩ [min L(a)+M, max L(a)−M] we have d

(
Zk(a), Zl(a)

)
≤ M.

Proof. We use Theorem 4.3.11 of [22]. Then (a) follows immediately.
The proof of (b) uses the same ideas used in the proof of (a) in [22]. For that we will need some further notations. For a

finite subset L ⊂ Z and θ ∈ N, we set

κθ (L) = max
{
|L ∩ [y+ 1, y+ θ ]| | y ∈ L

}
∈ [0, θ].

Note that for finite L1 ⊂ L2 ⊂ Z and m ∈ Z we have κθ (L1) ≤ κθ (L2) and κθ (m + L1) = κθ (L1). If y ∈ L is such that
κθ (L) = |[y+ 1, y+ θ ] ∩ L|, and if we setD =

(
[y, y+ θ ] ∩ L

)
− y, then κθ (L) = κθ (D), 0 ∈ D ⊂ [0, θ] and L contains the

patternD .
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If A ⊂ B are subsets of Z, then we say that A is an interval of B, if ∅ 6= A = B ∩ [a, b] for some a, b ∈ Z. Note if B ⊂ C and
A is an interval of C , then A is an interval of B, too.
We choose θ ∈ N such that θ ≥ 2max∆(H)+ 1. We set

M = 2max
{
ϕ(A) | A ⊂ [0, θ]

}
.

Now, suppose that a ∈ H such that L(a) 6⊂ min L(a) + [0,M]. We chooseD ⊂ Z such that 0 ∈ D ⊂ [0, θ], κθ (D) =
κθ (L(a)) and a ∈ Φ(D). SinceΦ(D) is tamely generated, there exists a∗ ∈ Φ(D) such that a∗ | a, max L(a∗) ≤ ϕ(D) ≤ M
and t(a, Z(a∗)) ≤ ϕ(D) ≤ M/2. Letm ∈ Z be such thatm+D ⊂ L(a∗).
Let b ∈ H be such that a = a∗b. Then L(a) 6⊂ min L(a) + [0, 2t(a, Z(a∗))], and by Proposition 4.3.4.2 of [22] we obtain

that L(b) contains at least two elements. So we can choose x ∈ Z and d ∈ ∆(L(b)) such that {x, x+ d} ⊂ L(b).
Now we set L1 = m+D ⊂ L(a∗), L2 = L(b), L∗ = L1 + L2, L = L(a) ∩ [min L∗,max L∗],D ′ = D ∩ [0, d]. Then L∗ ⊂ L, L

is an interval of L(a) and

κθ (D) = κθ (L1) = κθ (L1 + x) ≤ κθ (L∗) ≤ κθ (L) ≤ κθ (L(a)) = κθ (D).

Hence equality holds, and by Theorem 4.2.20 of [22] we obtain L∗ = L, L1 is an interval of min L1 + D ′ + dZ and L∗ is an
interval of min L∗+D ′+ dZ (i.e. L1 and L∗ are AMPs with periodD ′ and difference d). From L1 = m+D andm = min(L1),
we obtainD ⊂ D ′ + dZ, and henceD + dZ = D ′ + dZ.
Next we apply Proposition 4.2.19.1 and assertion A. of the proof of Proposition 4.2.19.3 of [22] to L1 − min L1 and L2.

We obtain ∆(L2) ⊂ L1 − min L1 = D and that for any y ∈ L2 the set y + L1 is an interval of min L2 + L1 + dZ. Hence
max∆(L(b)) = max∆(L2) ≤ maxD , and we claim that for any y ∈ L2 the set y + L1 is an interval of L∗. To see this it is
enough to show that L∗ ⊂ min L2 + L1 + dZ. This follows from

L∗ ⊂ min L∗ +D + dZ = min L1 +min L2 +D + dZ = min L2 + L1 + dZ.

Using Proposition 4.3.4.1 of [22], we see that

max L(a) ≤ max L∗ − t(a, Z(a∗)), min L(a) ≥ min L∗ − t(a, Z(a∗)),

and hence

L(a) ∩ [min L(a)+M,max L(a)−M] ⊂ L∗.

Now we setD = {0 = δ0, . . . , δµ} and L(b) = {ε1, . . . , εs} with 0 = δ0 < δ1 < · · · < δµ and ε1 < · · · < εs. We show
first that, if x ∈ L∗ with x < max L∗, then x = m + δi + εj with i ∈ [0, µ − 1] and j ∈ [1, s]. Indeed, since L∗ = L1 + L(b),
there are i ∈ [0, µ] and j ∈ [1, s] such that x = m+ δi+ εj. Suppose that i = µ. Since x < max L∗, it follows that j < s. Since

εj+1 − εj ≤ max∆(L(b)) ≤ maxD = δµ − δ0,

we infer that

m+ δ0 + εj+1 ≤ m+ δµ + εj < m+ δµ + εj+1.

Since εj+1+L1 is an interval of L∗, it follows that x = m+δµ+εj ∈ εj+1+m+D . From εj < εj+1, we obtain x = m+δi0+εj+1
for some i0 ∈ [0, µ−1]. Now let k, l ∈ L(a)∩[min L(a)+M, max L(a)−M] ⊂ L∗ be two adjacent lengths with k < l. Then
k < max L∗ and by the above there are i ∈ [0, µ−1] and j ∈ [1, s] such that k = m+ δi+ εj. Since εj+ L1 is an interval of L∗,
it follows that l = m+δi+1+εj. Now choose factorizations xi, xi+1 ∈ Z(a∗)with |xi| = m+δi, |xi+1| = m+δi+1 and y ∈ Z(b)
with |y| = εj. Then z = xiy, z ′ = xi+1y ∈ Z(a)with |z| = k, |z ′| = l and d(z, z ′) = d(xi, xi+1) ≤ max L(a∗) ≤ ϕ(D) ≤ M . �

Remark 5.5. In [13, Theorem3.1], it is proved that C-monoids satisfy Property (b) of Theorem5.4. Note that there are finitely
primarymonoids – they have finite catenary degree and their pattern ideals are tamely generated –where Property (b) does
not hold for all adjacent lengths k, l ∈ L(a). We do not know whether in tame monoids there is an M ∈ N such that for all
a ∈ H and all adjacent lengths k, l ∈ L(a)we have d

(
Zk(a), Zl(a)

)
≤ M .

Several conditions, stronger than Property (b) above, have been studied in the literature. The interested reader is referred
to [11–13,30]. We only want to recall that also in tame monoids the successive distance δ(H) and the monotone catenary
degree might be infinite (see [11, Example 4.5]). We do not know if this might happen in tame Krull monoids.

In tamemonoids there is a simple characterization for tamely generated ideals. We formulate a variant which is suitable
for our purposes.

Lemma 5.6. Let H be a tame monoid and a ⊂ H an s-ideal. Then the following statements are equivalent:

(a) a is tamely generated.
(b) There is a constant ψ ∈ N such that {a′ ∈ a | min L(a′) ≤ ψ}H = a.

If (b) holds, then ϕ(a) ≤ 2ψ t(H).
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Proof. The implication (a) ⇒ (b) follows from the definition. Conversely, suppose that (b) holds. We set E = {e ∈ a |

min L(e) ≤ ψ} and have to verify that E is a tame generating set of a. Let a ∈ a. Then there is an e ∈ E such that e | a and
min L(e) ≤ ψ . By Proposition 3.6.1, we have max L(e) ≤ ρ(H)min L(e) ≤ ψ t(H). By [22, Lemma 1.6.5.7], it follows that

t(a, Z(e)) ≤ 2min L(e)t(H) ≤ 2ψ t(H).

Thus E is a tame generating set of awith bound 2ψ t(H). �

Now we start with the more specific preparations for the proof of Theorem 5.1. The constructions follow the ideas
developed in the setting of Krull monoids (see [20]).
Let H be a tamemonoid with t(H) ≥ 3, N = t(H)−2 and a ∈ H . We denote by∆cat(a) the set of all integers d ∈ [−N,N]

for which there exists a divisor b of a and z, z ′ ∈ Z(b) such that min L(b) ≤ ω(H) and d = |z| − |z ′|. Then, by definition, we
have∆cat(a) = −∆cat(a) and∆cat(a) ⊂ ∆cat(a′) for every a′ ∈ aH .
Let b ∈ H with b | a andw,w′ ∈ Z(a). We call a triple ((wj)j∈[0,`], T , t) adapted to (a, b, w,w′) if the following properties

hold:

P1: (wj)j∈[0,`] is a finite sequence in Z(a)withw0 = w andw` = w′, T ∈ Z(H) is a divisor ofw and t ∈ [0, `].
P2: t ≤ ω(H)min L(b).
P3: For every j ∈ [1, `]we have

∣∣|wj−1| − |wj|∣∣ ≤ N , and for every j ∈ [t + 1, `]we have |wj−1| − |wj| ∈ ∆cat(ab−1).
P4: wT−1 divideswt .
P5: |T | ≤ 2ω(H)2min L(b) and b | π(T ).

We show the existence of adapted triples in three steps.

Lemma 5.7. Let a, b ∈ H with b | a and w, w′ ∈ Z(a). Then there exists a finite sequence (wj)j∈[0,`] in Z(a) and some t ∈ [0, `]
such that the following properties hold:

1. w0 = w andw′ = w`.
2. t ≤ ω(H)min L(b).
3. For every j ∈ [1, `] we have |wj−1 gcd(wj−1, wj)−1| ≤ ω(H) and

∣∣|wj−1| − |wj|∣∣ ≤ N.
4. b | π(gcd(wt , w′)).
5. For every j ∈ [1, `], gcd(wj−1, w′) divides gcd(wj, w′).

Proof. Since b | a = π(w′), there is, by Lemma 3.4.1, a divisor w̃ ofw′ such that |w̃| ≤ ω(H)min L(b) and b | π(w̃).
Let z ∈ Z(a)\{w′}. Call a factorization z̄ ∈ Z(a) an elementary transformation of z if it can be constructed in the following

way. Let

v ∈ A(H) be such that
{
v | w̃ gcd(z, w̃)−1 if w̃ - z
v | w′ gcd(z, w′)−1 if w̃ | z.

Note that z 6= w′ implies that z - w′ because π(z) = π(w′). Since w̃ gcd(z, w̃)−1 | w′ gcd(z, w′)−1, it follows that
v | w′ gcd(z, w′)−1, and hence v | π(w′ gcd(z, w′)−1) = π(z gcd(z, w′)−1). Again, by Lemma 3.4.1, there is a u ∈ Z(H) such
that u | z gcd(z, w′)−1, v | π(u) and |u| ≤ ω(H). By Lemma 3.4.2, there is a u′ ∈ Z(π(u)) such that v | u′ and

∣∣|u|−|u′|∣∣ ≤ N .
Now set z̄ = zu−1u′, and observe that

z gcd(z, z̄)−1 = u gcd(u, u′)−1 and z̄ gcd(z, z̄)−1 = u′ gcd(u, u′)−1.

Now let z̄ ∈ Z(a) be an elementary transformation of z ∈ Z(a) \ {w′}, and let v, u, u′ be as in the above construction. Then
we have

(a) Since v |w′ gcd(z, w′)−1, it follows that v gcd(z, w′) |w′, and by construction we have

gcd(z, w′)v
∣∣∣ z
u
v

∣∣∣ z
u
u′.

Thus gcd(z, w′) is a proper divisor of gcd(z̄, w′).
(b) |z gcd(z, z̄)−1| ≤ ω(H).
(c)

∣∣|z| − |z̄|∣∣= ∣∣|u| − |u′|∣∣≤ N .
Now choose for any z ∈ Z(a) \ {w′} an elementary transformation z̄ of z, and set w′ = w′. Define the sequence (wj)j≥0

inductively by w0 = w and wj = w̄j−1 for j ≥ 1. Whenever wj 6= w′, we have by (a) that gcd(wj, w′) is a proper divisor of
gcd(wj+1, w′). Hence there is some ` ≤ |w′| such thatw` = w′. Similarly, there is some t ≤ |w̃| ≤ ω(H)min L(b) such that
w̃ | wt , and hence b | π(w̃) | π(gcd(wt , w′)). Hence the sequence (wj)j∈[0,`] and t fulfill all our properties 1–5. �

Lemma 5.8. Let a, b ∈ H with b | a, w, w′ ∈ Z(a), (wj)j∈[0,`] be a sequence in Z(a) and t ∈ [0, `] such that Properties 1–5 of
Lemma 5.7 are satisfied. Set

T ′ = w gcd(w,wt)−1 ∈ Z(H).

Then we have
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1. |T ′| ≤ ω(H)2min L(b).
2. b | π(T ′)π(gcd(w,w′)).
3. T ′ | w gcd(w,w′)−1.
4. w gcd(w,w′)−1T ′−1 | wt gcd(w,w′)−1 (note by 5.7.5 that gcd(w,w′) divideswt ).

Proof. We introduce some abbreviations:

uj = wj−1 gcd(wj−1, wj)−1 for all j ∈ [1, t]

x0 = gcd(w,w′)

xt = gcd(wt , w′)
x̄t = gcd(w,wt).

By definition, we havewj−1 | wjuj for every j ∈ [1, t]. Hence we obtainw = w0 | wtu1 · . . . ·ut . We obtain T ′ | u1 · . . . ·ut ,
and by Lemma 5.8 |T ′| ≤ |u1| + · · · + |ut | ≤ tω(H) ≤ ω(H)2min L(b), so that 1 holds.
3. follows from gcd(w,w′) | gcd(w,wt) (Lemma 5.7.5) and 4 follows from the definition of T ′.
From 4, we obtain w | wtT ′, and hence wx̄−1t | T ′. To prove 2, it is therefore enough to show that b | π(wx̄

−1
t x0) =

π(wt x̄−1t x0).
Since x0 | wt , we have x0 = gcd(w,w′) = gcd(w,wt , w′) = gcd(gcd(w,wt), gcd(wt , w′)) = gcd(x̄t , xt). Hence

xt x̄tx−10 = lcm(x̄t , xt) | wt and therefore xt | wt x̄
−1
t x0. Since, by 5.7.4, b | π(xt), we obtain b | π(wt x̄

−1
t x0). �

Lemma 5.9. Let a, b ∈ H with b | a andw,w′ ∈ Z(a). Then there exists a triple adapted to (a, b, w,w′).

Proof. Let (wj)j∈[0,`] and t ∈ [0, `] be as in Lemma 5.7 and define T ′ as in Lemma 5.8. Thenwe have b | π(T ′)π(gcd(w,w′)).
Using Lemma 3.4.1, we obtain a divisor u of gcd(w,w′) such that b | π(T ′u) and |u| ≤ ω(H)min L(b). We set T = T ′u and
show that ((wj)j∈[0,`], T , t) is an adapted triple for (a, b, w,w′).

P1: It remains to show that T | w. Lemma 5.8.3 shows that T ′ gcd(w,w′) | w. Since u | gcd(w,w′), we obtain that
T = T ′u dividesw.

P2: This is Lemma 5.7.2.
P3: Let j ∈ [1, `]. By Lemma 5.7.3, we have

∣∣|wj−1|−|wj|∣∣ ≤ N . Now suppose that j ≥ t+1. Set y = wj−1 gcd(wj−1, wj)−1,
y′ = wj gcd(wj−1, wj)−1 and c = π(y) = π(y′). Then

∣∣|wj−1| − |wj|∣∣ = ∣∣|y| − |y′|∣∣, and from Lemma 5.7.3 we obtain
min L(c) ≤ |y| ≤ ω(H). Hence we only have to show that c | ab−1 or equivalently b | ac−1 = π(gcd(wj−1, wj)). But, by
5.7.4, we have b | π(gcd(wt , w′)). Since t < j, Lemma 5.7.5 implies that

gcd(wt , w′) | gcd(wt+1, w′) | . . . | gcd(wj−1, w′) | gcd(wj, w′),

and hence gcd(wt , w′) | gcd(wj−1, w′) | gcd(wj−1, wj).
P4: This follows from u | gcd(w,w′) and Lemma 5.8.4.
P5: By construction, we have b | π(T ), and by Lemma 5.8.1, we get |T | = |T ′|+|u| ≤ ω(H)2min L(b)+ω(H)min L(b) ≤

2ω(H)2min L(b). �

Lemma 5.10. Let B ⊂ Z \ {0} by a finite nonempty subset with−B = B, d = gcd(B), N ′ = max(B)/d and M ′ ∈ N. Then there
exists an S ∈ F (B) such that |S| ≤ 2M ′ + 3N ′ − 3 and dZ ∩ [−dM ′, dM ′] ⊂ Σ(S).

Proof. Since 2b(M ′ + 1)/N ′c + 3N ′ − 5 ≤ 2M ′ + 3N ′ − 3, this follows from [20, Lemma 5.1]. �

Proof of Theorem 5.1. Let H be tame. By Lemma 3.3 and Proposition 3.6.3, H is a BF-monoid with finite catenary degree
and with finite set of distances ∆(H). If ∆(H) = ∅, then all sets of lengths are singletons, and the assertion is clear.
Suppose that ∆(H) is nonempty. Then, by Proposition 5.4, it suffices to show that every pattern ideal is tamely generated.
Let A = {d0, . . . , ds} ⊂ Z be a finite nonempty subset. If |A| = 1, then Φ(A) = H , and {1} is a tame generating set of H .
Suppose that |A| ≥ 2. By Lemma 5.6, we have to show that there is a constant ψ ∈ N such that for every a ∈ Φ(A) there is
an a′ ∈ Φ(A)with a′ | a and min L(a′) ≤ ψ .
We need one more definition. For c ∈ H and θ ∈ N, we say that d ∈ [−N,N] is θ-deficient in c if there exists some

divisor c ′ of c such that min L(c ′) ≤ θ and d /∈ ∆cat(cc ′−1). Since −∆cat = ∆cat, d is θ-deficient in c if and only if −d is
θ-deficient in c. If θ ≤ θ ′ and d is θ-deficient in c then d is θ ′-deficient in c , too.
Now setM = max(A)−min(A) and N = t(H)− 2. ThenM ≥ 1,

t(H) ≥ ω(H) ≥ c(H) ≥ 2+max∆(H) ≥ 3,

and hence N = t(H)− 2 ≥ 1. We define a sequence (sj)j∈[−1,N] of nonnegative integers by

s−1 = 0,
sk = (2sω(H)2 + 2ω(H)2N + 2N + 4)sk−1 + (2M + 3N − 4)ω(H) for k ∈ [0,N − 1] and
sN = 2sω(H)2sN−1.

We assert that ψ = sN has the required property, and we pick an a ∈ Φ(A).
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Clearly, (sj)j∈[−1,N] is increasing and sN−1 ≥ s0 = (2M + 3N − 4)ω(H) ≥ 1. Using this and s ≥ 1, ω(H) ≥ 1, we obtain
for all k ∈ [0,N − 1] that

ψ = 2sω(H)2sN−1 ≥ ω(H)2sN−1 + ω(H)2sN−1 ≥ sN−1 + ω(H) ≥ sk + ω(H). (5.1)

Setting k = 0, B′ = ∅, b = 1, we see that there exist k ∈ [0,N], B′ ⊂ [1,N] and a divisor b of a such that

|B′| = k, min L(b) ≤ sk−1 and B′ ∩∆cat(ab−1) = ∅. (5.2)

We take k to be maximal in [1,N] such that there exist B′ ⊂ [1,N] and a divisor b of a such that (5.2) holds and we choose
such B′ and b. We claim that

no d ∈ [1,N] \ B′ is (sk − sk−1)-deficient in b−1a. (5.3)

Indeed, suppose that d ∈ [1,N] \ B′ is (sk − sk−1)-deficient in b−1c . Then B′ 6= [1,N], and hence k ≤ N − 1. We choose
a divisor c of b−1a such that min L(c) ≤ sk − sk−1 and d /∈ ∆cat(ab−1c−1) and set B′′ = B′ ∪ {d}. Then |B′′| = k + 1,
min L(bc) ≤ min L(b)+min L(c) ≤ sk−1+sk−sk−1 = sk and B′′∩∆cat(ab−1c−1) = B′∩∆cat(ab−1c−1) ⊂ B′∩∆cat(ab−1) = ∅.
But this contradicts the maximality of k.
For every i ∈ [0, s], we pick a factorizationwi ∈ Z(a)with length |wi| = di. By Lemma 5.9, there exists for every i ∈ [1, s]

a triple ((wi,j)j∈[0,`i], ti, Ti) adapted to (a, b, w0, wi). Define T = lcm(T1, . . . , Ts) and a0 = π(T ). Then, from the definitions,
we obtain

min L(a0) ≤ |T | ≤ |T1| + · · · + |Ts| ≤ 2sω(H)2min L(b) ≤ 2sω(H)2sk−1, (5.4)
T | w0 and hence a0 | a, (5.5)
b | π(T ) = a0 and (5.6)
w0T−1 | wi,ti for every i ∈ [1, s]. (5.7)

Finally, we set B = −
(
[1,N] \ B′

)
∪
(
[1,N] \ B′

)
. Since∆cat(ab−1) ∩ B′ = ∅, we obtain∆cat(ab−1) ⊂ B ∪ {0}. Applying

P3, we obtain

|wi,j| − |wi,j−1| ∈ B ∪ {0} for all j ∈ [ti + 1, `i] and all i ∈ [1, s]. (5.8)

For the construction of the required element a′ ∈ Φ(A)we distinguish two cases.
Case 1: k ≤ N − 1.
Then ∅ 6= B ⊂ [−N,N] \ {0} and−B = B. We set d = gcd(B), N ′ = max(B)/d ≤ N andM ′ = M +ω(H)sk−1N . Applying

Lemma 5.10, we obtain a sequence S = r1 · . . . · rm ∈ F (B) such that

m ≤ 2M ′ + 3N ′ − 3 ≤ 2M + 2ω(H)sk−1N + 3N − 3 and dZ ∩ [−dM ′, dM ′] ⊂ Σ(r1 · . . . · rm). (5.9)

We choosem′ ∈ [0,m]maximal, a1, . . . , am′ ∈ H and, for all ν ∈ [1,m′], zν , z ′ν ∈ Z(aν) such that

min L(aν) ≤ ω(H), rν = |z ′ν | − |zν | and a1 · . . . · am′ | aa−10 . (5.10)

We claim that m′ = m. Indeed, suppose that m′ ≤ m − 1. Then rm′+1 /∈ ∆cat(aa−10 a
−1
1 · . . . · a

−1
m′ ) = ∆cat

(
(ab−1)

(a0b−1a1 · . . . · am′)−1
)
(note (5.6)). Hence rm′+1 is min L(a0 · . . . · am′b−1)-deficient in ab−1. By (5.3), we obtain min L(a0 ·

. . . · am′b−1) > sk − sk−1. But we have

min L(a0 · . . . · am′b−1) ≤ (Lemma 3.4.3)
≤ min L(a0)+min L(a1)+ · · · +min L(am′)+ (2N + 3)min L(b) ≤ ((5.4), (5.10), (5.2))
≤ 2sω(H)2sk−1 + (m− 1)ω(H)+ (2N + 3)sk−1 ≤ (5.9)
≤ (2sω(H)2 + 2N + 3)sk−1 + (2M + 2ω(H)sk−1N + 3N − 4)ω(H)
= (2sω(H)2 + 2ω(H)2N + 2N + 3)sk−1 + (2M + 3N − 4)ω(H)
= (2sω(H)2 + 2ω(H)2N + 2N + 4)sk−1 + (2M + 3N − 4)ω(H)− sk−1
= sk − sk−1,

a contradiction.
We set a′ = a0 · . . . · am. Then, by construction, a′ | a and

min L(a′) ≤ min L(a0)+min L(a1)+ . . .+min L(am) ≤ ((5.4), (5.10))
≤ 2sω(H)2sk−1 +mω(H) ≤ (5.9)
≤ 2sω(H)2sk−1 + (2M + 2ω(H)sk−1N + 3N − 3)ω(H)
= (2sω(H)2 + 2ω(H)2N)sk−1 + (2M + 3N − 3)ω(H)
≤ (2sω(H)2 + 2ω(H)2N + 2N + 4)sk−1 + (2M + 3N − 4)ω(H)+ ω(H)
= sk + ω(H) ≤ (5.1) ψ.
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It remains to show that a′ ∈ Φ(A). For that we setw′ = Tz1 · . . . · zm ∈ Z(a′) and, for I ⊂ [1,m] and i ∈ [1, s], we define

w′I,i = T
−1w′

(∏
ν∈I

zν

)−1∏
ν∈I

z ′ν (Tw
−1
0 wi,ti) ∈ Z(a′) (note (5.7)).

We have

|w′I,i| = |w
′
| + |wi,ti | − |w0| +

∑
ν∈I

(|z ′ν | − |zν |)

= |w′| + |wi| − |w0| − (|wi| − |wi,ti |)+
∑
ν∈I

rν

= |w′| + di − d0 − (|wi| − |wi,ti |)+
∑
ν∈I

rν . (5.11)

We claim that |wi| − |wi,ti | ∈ Σ(r1 · . . . · rm). Indeed, in view of (5.9), we have to show that |wi| − |wi,ti | ∈ dZ and∣∣|wi| − |wi,ti |∣∣ ≤ M ′. The first assertion follows from dZ = 〈B ∪ {0}〉, (5.8) and
|wi| − |wi,ti | =

`i∑
j=ti+1

(|wi,j| − |wi,j−1|).

To obtain the inequality, we use P2, P3 and (5.2) to get∣∣|wi| − |wi,ti |∣∣ = ∣∣|wi| − |w0| + |w0| − |wi,ti |∣∣
≤ |di − d0| +

ti∑
j=1

∣∣|wi,j−1| − |wi,j|∣∣
≤ M + tiN ≤ M + ω(H)min L(b)N ≤ M + ω(H)sk−1N = M ′.

We can now choose for every i ∈ [1, s] a subset Ii ⊂ [1,m] such that |wi| − |wi,ti | =
∑

ν∈Ii
rν . Then, by (5.11),

|w′Ii,i| = |w
′
| + di − d0. Hence |w′| − d0 + A ⊂ L(a′) and a′ ∈ Φ(A).

Case 2: k = N .
Then B′ = [1,N] and B = ∅. From (5.8), we obtain, for all i ∈ [1, s],

|wi,ti | = |wi|. (5.12)

We set a′ = a0. Then a′ | a, and by (5.4) we get min L(a′) ≤ 2sω(H)2sN−1 = sN = ψ . To show that a′ ∈ Φ(A), we consider
the following factorizations of a′ (again note (5.7)):

T , Tw−10 w1,t1 , . . . , Tw
−1
0 ws,ts .

For every i ∈ [1, s], we have, using (5.12),

|Tw−10 wi,ti | = |T | + |wi,ti | − |w0| = |T | + |wi| − |w0| = |T | + di − d0.

Hence |T | − d0 + A ⊂ L(a′) and a′ ∈ Φ(A). �
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