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present paper, we show that, for a large class of Krull monoids (including all Krull domains),
the monoid is tame if and only if the associated Davenport constant is finite. Furthermore,
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1. Introduction

By an atomic monoid we mean a commutative cancellative semigroup with unit element such that every non-unit may
be written as a finite product of atoms (irreducible elements). The main examples we have in mind are the multiplicative
monoids consisting of the nonzero elements from a noetherian domain. Let H be an atomic monoid and b € H. We denote
by w(H, b) the smallest N € Ny U {oo} having the following property: if n € N and ay,...,a, € H are such that b
divides aj - ...-ay, then b already divides a subproduct of a; - . . . - a, consisting of at most N factors. Thus, by definition, b is
a prime element of H if and only if w(H, b) = 1. The w(H, -)-invariants have been studied in factorization theory for many
years, but only recently was it shown that in a v-noetherian monoid we have w(H, a) < oo for all a € H (see [24]).

The monoid H is said to be tame if the invariant w(H) = sup{w(H, u) | uis an atom of H} is finite. Indeed, this is not
the original definition but a new characterization achieved in the present paper (see Proposition 3.5). Tameness implies
a variety of further arithmetical finiteness properties (such as the finiteness of the catenary degree and of the elasticity),
and local tameness is a central finiteness property in factorization theory (we refer to the monograph [22] and some recent
publications [9,8,27]). Finitely generated monoids and Krull monoids with finite class group are simple examples of tame
monoids. A non-principal order o in an algebraic number field is locally tame, and it is tame if and only if for every prime
ideal p containing the conductor there is precisely one prime ideal p in the principal order o such that p N o = p. More
examples (including various classes of Mori domains) are discussed in Sections 3 and 4 (see Example 3.2 and Theorem 4.2).

Krull monoids and Krull domains have been in the center of interest of factorization theory since its very beginning. Their
arithmetic is completely determined by the class group and the distribution of prime divisors in the classes. If the class group
is finite, then the main invariants of factorization theory are finite too (this is relatively simple to show, but to obtain precise
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values for the invariants is open in most cases; see [18]). Suppose the class group is infinite. If every class contains a prime
divisor, then the main invariants of factorization theory are infinite, and in particular, every finite nonempty set L C N
occurs as a set of lengths (see [32,22] and [24, Theorem 4.4]). If there are classes without prime divisors, then the knowledge
on the arithmetic is still very limited. Chapman et al. studied the arithmetic of a Krull monoid with infinite cyclic class group
(see [6,7]; for more on the arithmetic in the case of infinite class groups see [28,19,21]). In Theorem 4.2 of the present paper,
we prove that, for a large class of Krull monoids (including all Krull monoids with torsion class group and all Krull domains)
the monoid is tame if and only if the associated Davenport constant is finite.

If an element a € H has a factorization of the forma = u; - ... - u,, wherek € Nand uq,...,u, € H are atoms,
then k is called the length of the factorization, and the set L(a) of all possible lengths is called the set of lengths of a. Sets
of lengths (and all invariants derived from them, as the elasticity or the set of distances) are among the most investigated
invariants in factorization theory. If H is v-noetherian, then all sets of lengths are finite, and it is easy to observe that either
all sets of lengths are singletons or that for every N € N there is an element a € H such that |L(a)| > N. The Structure
Theorem for Sets of Lengths states that all sets of lengths in a given monoid are almost arithmetical multiprogressions with
universal bounds for all parameters (roughly speaking, these are finite unions of arithmetical progressions having the same
difference). This Structure Theorem holds true for a great variety of monoids (among them are tame and non-tame monoids)
which satisfy suitable finiteness conditions; see Remark 5.2. Recently, Schmid established a realization theorem showing
that this structural description of sets of lengths is sharp (see [37]). In Theorem 5.1 of the present paper, we show that every
tame monoid satisfies the Structure Theorem. The proof uses the general machinery (as presented in [22, Section 4.3]) and
crucial new ideas introduced in [20].

2. Preliminaries

Our notation and terminology are consistent with [22]. We briefly gather some key notions. Let N denote the set of
positive integers, and put Ng = N U {0}. For integers a, b € Z we set [a, b] = {x € Z | a < x < b}. For a real number x € R,
|x] denotes the largest integer that is less than or equal to x, and [x] denotes the smallest integer that is greater than or
equal to x. By a monoid we mean a commutative semigroup with unit element which satisfies the cancellation laws.

Let G be an additive abelian group and Gy C G a subset. Then [Gy] C G denotes the submonoid generated by Gy and
(Go) C G denotes the subgroup generated by Gg. A family (e;);c; of elements of G is said to be independent if e; £ 0 for all
i € I and, for every family (m;)ic; € Z®©,

Z mie; = 0 implies m;e; =0 foralliel.

iel
The subset Gy C G is called independent if the family (g)gec, is independent, and it is called a basis if it is independent and
(Go) = G. The total rank of G is the maximum of the cardinalities of maximal independent subsets, and the torsion free rank
of G is the cardinality of a maximal independent subset consisting of elements of infinite order.

Let A,B C G be nonempty subsets. Then A+ B = {a+ b | a € A,b € B} denotes their sumset and, for k € N,
kA = A+ --- + A denotes the k-fold sumset of A. Now suppose that A C Z. We denote by A(A) the set of distances of A,
that is the set of all d € N for which there exists [ € Asuch that AN [l, [+ d] = {l, | + d}. Two distinct elements k, [ € A are
called adjacent if either AN [k, [] = {k, [} orAN [, k] = {k, I}. In particular, A(¥) = @, and if A = {a4, ..., a;} is finite, with
teNanday < --- < a, then A(A) = {a,11 —a, | v € [1,t — 1]}). Clearly, A(A) C {d} if and only if A is an arithmetical
progression with difference d. If A C N, we call

m SupA
,o(A):sup{— ‘ m,neA}: -
n minA

the elasticity of A, and we set p({0}) = 1.

€ QZ1 U {OO}

Throughout this paper, let H be a monoid.

We denote by A (H) the set of atoms (irreducible elements) of H, by q(H) a quotient group of H, by H* the group of
invertible elements and by H,eq = {aH* | a € H} the associated reduced monoid of H. We say that H is reduced if H* = {1}.

For a set P we denote by ¥ (P) the free (abelian) monoid with basis P. Then every a € # (P) has a unique representation
in the form

a= np"l’(") with v, (a) € Ny and v,(a) = 0 for almost all p € P,
peP

and we call suppp(a) = supp(a) = {p € P | vp(a) > 0} C P the support of a. For a subset Py C P, we set

vp, (@) = va(a), and we call |a|r = |a|] = vp(a) the length of a.
pePy

The free monoid Z(H) = ¥ (A(Hl-ed)) is called the factorization monoid of H, and the unique homomorphism

w: Z(H) — Hpq satisfying w(u) = uforallu € A(Heq)
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is called the factorization homomorphism of H. For a € H, the set
Z(a) = 7w '(aH*) C Z(H) is the set of factorizations of a,
L(a) = {|z| | z € Z(a)} C Np isthe set of lengths ofa and
L(H) = {L(a) | ac H} denotes the system of sets of lengths of H.
By definition, we have Z(a) = {1} for all a € H*. The monoid H is called

e atomic if Z(a) # ¢ foralla € H;

e factorial if |Z(a)| = 1 foralla € H (equivalently, H is atomic and every atom is a prime);
e half-factorial if |L(a)| = 1 foralla € H;

e a BF-monoid (a bounded factorization monoid) if L(a) is finite and nonempty for all a € H.

Let z, Z/ € Z(H). Then we can write

Z=Uj-...-UV1-... Uy and Z =uj-...-Wwi-... Wy,

wherel, m, n € Ng, uy,...,U;, V1, ..., Uy, W1, ..., Wy € A(Hrq) are such that
{vi, ..., vt N {wq, ..., wy} = 0.

We call

d(z, z') = max{m, n} = max{|zgcd(z,z")7"|, |z’ gcd(z, Z) |} € Ng
the distance of z and 2. If 7 (z) = 7 (2’) and z # 2/, then

2+ ||zl = |Z]] < d(z.2) (2.1)
by [22, 1.6.2]. For subsets X, Y C Z(H), we set

dX,Y) = min{d(x,y) | x € X, y € Y},
and thus X NY # @ if and only if d(X, Y) = 0.

3. Tame monoids: examples and first properties

Definition 3.1. Suppose that H is atomic.

1. Forb € H, let w(H, b) denote the smallest N € Ny U {oo} with the following property:
Foralln e Nandaq,...,a, € H,ifb|a; -...-a, then there exists a subset £2 C [1, n] such that |£2| < N and

b‘ Hav.
2

Furthermore,v \e/ve set
w(H) = sup{w(H, u) | u € A(H)} € Ng U {o0}.
2. Fora € Hand x € Z(H), let t(a, x) € Ng U {oo} denote the smallest N € Ny U {oo} with the following property:

If Z(a) N xZ(H) # ¥ and z € Z(a), then there exists z’ € Z(a) N xZ(H) such that d(z, z’) < N.
For subsets H' C H and X C zZ(H), we define

t(H', X) = sup {t(a,x) |a € H',x € X} € Ng U {oo}.
H is called locally tame if t(H, u) < oo forallu € A(Heq), and

t(H) = t(H, A(Hea)) = sup{t(H, u) | u € A(Hrea)} € No U {00}
denotes the tame degree of H. The monoid H is said to be tame if t(H) < oc.

Let H be atomic, and for simplicity of notation, suppose that it is reduced. Pick an atom u € A(H). Then u is a prime if
and only if w(H, u) = 1. Thus H is factorial if and only if w(H) = 1.Leta € H.Ifu ¢ g, then t(a, u) = 0 by definition.
Suppose that u | a. Then t(a, u) is the smallest N € Ny U {oo} with the following property: ifz = a; - ... - a, is any
factorization of a where ay, ..., a, are atoms, then there exist a subset 2 C [1, n], say £2 = [1, k], and a factorization
Z =uup ... WAgy - ... @y € Z(a), with atoms us, ..., u;, such that max{k, I} < N. Thus t(a, u) measures how far away
from any given factorization z of a there is a factorization z’ of a which contains u. Suppose that u is a prime. Then every
factorization of a contains u; we can choose z/ = z in the above definition, obtain that d(z, z’) = d(z,z) = 0 and hence
t(H, u) = 0. Thus H is factorial if and only if t(H) = 0. If u is not a prime, then w(H, u) < t(H, u), and hence if H is not
factorial, then w(H) < t(H).

The w(H, -)-invariants (introduced in [17]) and the tame degrees are well-established invariants in the theory of non-
unique factorizations which found much interest in recent literature (for example, see [4] for investigations in the context
of integral domains, or [5] for investigations in numerical monoids). Whereas in v-noetherian monoids (these are monoids
satisfying the ascending chain condition for v-ideals) we have w(H, u) < oo for all atoms u € A(H), this does not hold for
the t(H, u) values (see [25, Corollary 3.6], [24, Theorems 4.2 and 4.4], [23, Theorems 5.3 and 6.7]).

We continue with a list of examples, where tameness is characterized in various classes of monoids and domains. Krull
monoids will receive special attention and will be discussed in Section 4 (see in particular Theorem 4.2).
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Examples 3.2. Let R be an integral domain. Then R* = R\ {0} denotes its multiplicative monoid, X(R) the set of minimal
nonzero prime ideals, R its complete integral closure and G, (R) its v-class group. Clearly, R is a Mori domain if and only if
R*® is v-noetherian.

1. Finitely generated monoids. If Heq is finitely generated, then H is tame (see [22, Theorem 3.1.4]). The domain R is called
a (generalized) Cohen-Kaplansky domain if R has only finitely many nonassociated atoms (if almost all atoms are prime) (see
[2,1,3]). Thus generalized Cohen-Kaplansky domains are tame.

2. Finitely primary monoids. Let H be finitely primary of rank s € N. Then H is tame if and only if s = 1. Thus a one-
dimensional local Mori domain R with (R : R) # {0} is tame if and only if |X(R)] = 1 (see [22, Proposition 2.10.7 and
Theorem 3.1.5]).

3. Weakly Krull domains. Let R be a v-noetherian weakly Krull domain with nonzero conductor f = (R : R) and finite
v-class group G, (R). Note that, in particular, orders in algebraic number fields fulfill all these properties.

Then R is tame if and only if for every nonzero minimal prime ideal p € X¥(R) with p D f there is precisely onep € 3€(R)
such thatp N R = p (see [22, Theorem 3.7.1]).

4. Mori domains. Let R be a Mori domain with nonzero conductor f = (R: R) and let

S=Reg(R®) ={aeR|ifze R*andza € R®, thenz € R*}

denote the monoid of regular elements of R® (see [22, Section 2.3]). Suppose that R satisfies the following three finiteness
conditions:

e The v-class groups C,(R) and C, (R) are both finite.
e S~'R is semilocal and the Jacobson radical of S~ ]R/S f is nilpotent.
e The Jacobson radical of S~'R/S~!f is nilpotent.

Then R is tame if and only if the natural map spec(ﬁ) — spec(R) is one to one (see [31]). We point out two special cases
where the above three finiteness conditions are satisfied. First, if R is weakly Krull and G, (R) is finite, then all three finiteness
conditions are satisfied (so weakly Krull domains are a special case of the situation discussed here). Second, if the factor
ring R/ and the class group €, (R) are both finite, then R® is a C-monoid (see [22, Theorem 2.11.9]) and the above three
finiteness conditions are satisfied. Higher-dimensional finitely generated algebras over Z, whose multiplicative monoids
are C-monoids, are discussed in [29,33] and [22, Section 2.11].

We start with two technical lemmas. The first one gathers some simple observations (a proof can be found in [24, Lemma
3.3)]).

Lemma 3.3. Let H be atomic.

1. If by, by € H, then w(H, b1) < w(H, b1by) < w(H, b1) + w(H, by).
2. Forall b € H, we have sup L(b) < w(H, b). In particular, if o(H, u) < oo forallu € A(H), then H is a BF-monoid.

Lemma 3.4. Let H be atomic and reduced.

1. Ifb € H,z € Z(H) such that b | (), then there exists 2’ € Z(H) such that b | 7 (z'),z |z and |Z'| < w(H) minL(b).

2.Ifu € zZ(H) and v € A(H) such that v |m(u), then there exists u' € Z(w(u)) such that v|u' and ||u| — [u'|] <
max{0, t(H) — 2}.

3.Ifa,b € Hwithb|a, then minL(ab~") < minL(a) + (2t(H) — 1) min L(b).

Proof. 1. Let b = uy - ... u, with k = minL(b) and uq,...,u, € A(H). Then Lemma 3.3.1 shows that w(H, b) <
w(H) min L(b), which implies the assertion.

2.If v | u, then we set u’ = u. Suppose that v { u. This implies that H is not factorial and t(H) > 2. Further, there exists
some U’ € Z(7 (u)) such that v | v’ and d(u, v) < t(; (u), v) < t(H). Since v { u, we have u # v’ and by Eq. (2.1) we obtain
lul = [W]] <d(u,u’) =2 <t(H) — 2.

3. We note first

min L(a) > max L(b) + minL(ab™") — t(a, Z(b))
by [22, 4.3.4.1]. Moreover, by [22, 1.6.5.7] we have t(a, Z(b)) < 2minL(b)t(H). Hence we obtain
minL(ab~") < minL(a) — max L(b) + t(a, Z(b)) < minL(a) — min L(b) + 2t(H) min L(b)
=minL(a) + (2t(H) — 1) minL(b). O

We continue with a characterization of tameness, which is based on a precise recent description of local tameness
achieved in [24]. In Example 4.12, we present a monoid H, for which the bound t(H) < w(H)? is almost sharp. On the
other hand, suppose that H is atomic but not factorial. Then by definition we have w(H) < t(H). If H is half-factorial, then it
can be checked from the definitions that equality holds. In [34, Theorem 3.10], there is a class of non-half-factorial numerical
monoids for which w(H) = t(H) holds.

Proposition 3.5. Let H be atomic. Then t(H) < w(H)?. In particular, H is tame if and only if w(H) < oo.
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Proof. We may assume that H is reduced, and we have to show that t(H, u) < w(H)? forallu € A(H).Letu € A(H) be
given. If u is prime, then t(H, u) = 0, and the assertion is clear. Suppose that u is not prime. Then [24, Theorem 3.6] implies
that

t(H, u) = max{w(H, u), 14+ t(H, u)},
where
T(H,u) = sup{minL(u‘la)|a=u1 -...-ujeuHwithj e N, uy, ..., uj € AH),
and u fu; 'aforall i € [1,]]} € No U {oo}.
Clearly, w(H, u) < w(H)?, and thus we may assume that t(H, u) = 14 t(H, u). Let & € N with # < t(H, u). By definition,
there exista = vy - ... - vs € uH, wheres € N, vy, ..., v; € A(H) and u ¢ v[lafor alli € [1, s], such that min L(u~'a) > 6.

Thuss < w(H,u). Wesetu 'a=uy-... -u; witht € Nand uy, ..., u; € A(H) suchthatt — 1 = minL(u"'a) > 6. Then
a=1vy-... Vs =Uly-...-U,and clearly a divides uu, - ... - u; but does not divide any proper subproduct. Thus

0+1<t<wH,a)=wH,vi-...-v) <wH, v)+ - +owH,v) <swH) <wH)?,
and hence
tH,u) =14+ t(H, u) < w(H)*. O

It is well known that tame monoids are BF-monoids with finite elasticity and finite catenary degree. Here we provide
new proofs showing that the elasticity and the catenary degree are not only bounded by the tame degree t(H), but they are
in fact bounded by w(H). This new upper bound is sharp for large classes of Krull monoids (see Example 4.12). We recall the
definition of the elasticity and of the catenary degree.

Let H be atomic and a € H. Then p(a) = ,o(L(a)) is called the elasticity of a, and the elasticity of H is defined as

p(H) = sup{p(l) | L € L(H)} € R>1 U {o0}.
For k € N, we set px(H) = k ifH = H*, and
pr(H) = sup{supL | L € £L(H), ke L} e NU {oco}, ifH #H*.

The catenary degree c(a) is the smallest N € Ny U {oo} such that, for any two factorizations z, z’ of a, there exists a finite
sequence z = Zzy, 71, ...,2x = Z' of factorizations of a satisfying that d(zi_1,z) < N forall i € [1,k]. Globally, we
define

c(H) = sup{c(a) | a € H} € Ny U {00},

and we call c(H) the catenary degree of H. By Proposition 3.6.3, every tame monoid has finite catenary degree. But there are
monoids with finite catenary degree which are not tame (see [22, Section 3.7]). In Remark 5.2, we discuss the first example
of a Krull monoid with this property.

Proposition 3.6. Let H be atomic.

1. Then p(a) < min{w(H, a), w(H)} foralla € H, and thus p(H) < w(H).
2. Forallk > 2, we have py(H) — px—1(H) < max{1, w(H) — 1}.
3. ¢c(H) < w(H).

Proof. Without restriction we may suppose that H is reduced.

1. By definition, we have p(1) = 1. Pick an elementa € H \ {1}.Ifa = u; - ... - u = vy -...- v with
uq, ..., U, vq,..., U € A(H), then, by [24, Lemma 3.3], we get
k<wH,ui-...-u) =wH,vy-...-v) <wH,v))+ - -+ wlH,v) <Imin{fw(H), wH, a)},
and hence

p(a) = sup { g ) r,se L(a)} < min{w(H, a), w(H)}.

2.If w(H) = oo, then nothing has to be done. Suppose that w(H) < oo.Then H is a BF-monoid by Lemma 3.3. Let k € N,.
If pr(H) = k, then pr_1(H) = k — 1, and the assertion follows. Suppose that p(H) > k. Then H is not factorial, w(H) > 1,
and we pick ana € H with k € L(a) and £ = max L(a) > k. We have to show that £ < w(H) — 1+ px_1(H). Let

A=1Up ... U =V1-... Vg,
where uq, ..., U, v1, ..., v¢ € A(H). There is a subset 2 C [1, £], say £2 = [1,j], such thatj < w(H) and uq [ vy - ... - vj
Since w(H) > 1and ! > k > 1, we may suppose thatj > 2. Thenu, - ... - u, = (u;1v1 R ) 1 TR I /TR

1+ —j) < maxL(u;lm <o) FmaxLjpg ..o ve) < maxL(up - ) < k-1 (H),

and thus £ < w(H) — 1+ pr_1(H).
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3.Asin 2, we may suppose that w(H) < oo, and we have to show that c(a) < w(H) forall a € H. To do so, we proceed by
induction on max L(a).IfmaxL(a) < 1,thena € A(H)U{1} and c(a) = 0. Suppose that max L(a) > 1and thatc(b) < w(H)
forall b € H with max L(b) < maxL(a). Let z € Z(a). It is sufficient to find an w(H)-chain of factorizations from z to every

Z' € Z(a) with |Z/| = maxL(a).Letz’ = v;-... v € Z(a) with vy, ..., v; € A(H) and |Z’| = | = max L(a).Pickau € A(H)
such that z € uZ(H). After renumbering if necessary, thereisa k € [1, [ withk < w(H, u) < w(H) suchthatu|v;-...- v
Consider a factorization vy - ... - vy = utly - ... - Uy Withuy, ..., u, € A(H). Since |z’| = max L(a), it follows that m < k,
and thus

dZ',uuy - ... UpUkgq o ee o 0) =d(Ug -l Vg, Ul - .- Up) < max{k, m} < w(H).
Since max L(u~'a) < max L(a), there exists an w(H)-chain fromu~'z € Z(u™'a) touy - ... - UpVps1 - ... v € Z(u 'a), and
thus there is an w(H)-chain fromz toutly - ... UpVgyr - ... -yandtoz. O

4. Tame Krull monoids

The main aim of this section is to derive a characterization for being tame, which is valid for a large class of Krull monoids
(see Theorem 4.2). Krull monoids can be characterized by ideal theoretic or by divisor theoretic tools. We briefly gather the
necessary terminology. For details we refer to one of the monographs [26,22].

Let D be a monoid. A homomorphism ¢: H — D is called

e cofinal if for every a € D there exists some u € H such that a | ¢(u);

e a divisor homomorphism if ¢ (u) | ¢(v) implies u | v forallu, v € H;

e a divisor theory (for H) if D = ¥ (P) for some set P, ¢ is a divisor homomorphism and, for every p € P (equivalently for
every a € F), there exists a finite subset ) # X C H satisfyingp = gcd(<p(X)).

Note that, by definition, every divisor theory is cofinal. Now suppose that H C D and q(H) C q(D). Then H C D is called
saturated (resp. cofinal) if the inclusion H < D is a divisor homomorphism (resp. cofinal). For a € q(D), we denote by
[a] = [alp/n = aq(H) € q(D)/q(H) the class containing a, and we set D/H = {[a] | a € D} C q(D)/q(H). The quotient
group q(D)/q(H) is called the class group of D modulo H, and H C D is cofinal if and only if D/H = q(D)/q(H) (see [22,
Corollary 2.4.3]). Class groups will be written additively whence [1] is the zero element of D/H. If H C D is saturated and
a,b € D with [a] = [b], thena € H if and only if b € H. The monoid H is called a Krull monoid if it satisfies one of the
following equivalent conditions (see [22, Theorem 2.4.8]):

e H is v-noetherian and completely integrally closed.
e H has a divisor theory.
e H.q is a saturated submonoid of a free monoid.

In particular, H is a Krull monoid if and only if Heq is a Krull monoid. Let H be a Krull monoid and F = # (P) a free monoid.
Then F is called a monoid of divisors and P a set of prime divisors for H if Heq C F is a submonoid, and the inclusion
Hieq < F is adivisor theory. The monoid of divisors and the set of prime divisors are uniquely determined (up to canonical
isomorphism). Hence the class group of Hyeq C F,

C(H) =F/Hyq and the subset Gp = {[p] € C(H) | p € P}

of all classes containing prime divisors, are uniquely determined by H. Clearly, we have [Gp] = C(H), and conversely, there
is the following realization result (see [22, Theorems 2.5.4 and 3.7.8]).

Lemma 4.1. Let G be an abelian group, (Mg )gcc a family of cardinal numbers, Go = {g € G | mg 0} and Gy ={g € G| my =
1}. Then the following statements are equivalent:

(a) There exists a Krull monoid H and a group isomorphism @ : G — C(H) such that
card(P N @(g)) = my forevery g € G.
(b) G = [Gol, and G = [Go \ {g}] for every g € G;.

Let H be a Krull monoid and F = ¥ (P) a monoid of divisors for H. Then we say that H has the approximation property if
it satisfies the following condition (see [22, Proposition 2.5.2]):

e Foralln € N, distinct p1,...,p, € Pandey, ..., e, € Ny, there exists some a € H such that v, (a) = e; foralli € [1, n].

Let R be an integral domain. Then R is a Krull domain if and only if its multiplicative monoid R®* = R \ {0} is a Krull monoid,
and if this holds, then R® has the approximation property.

Next we discuss a Krull monoid of crucial importance, the monoid of zero-sum sequences over a subset of an abelian
group. Let G be an additive abelian group and Gy, C G a subset. According to the tradition of combinatorial number theory,
the elements of % (Gg) are called sequences over Ggy. Thus a sequence S € ¥ (Gp) will be written in the form

S=g1-...-g= nng(S),
g€ty
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and we use all notions (such as length and support) as in general free monoids. Furthermore, we denote by o (S) =
g1+ - - + g the sum of S and by

X(S) = {Zgi |0 #£1C [1,1]} C G the set of subsums of S.

iel
The monoid
B(Go) = {S € F(Go) | o (S) =0}

is called the monoid of zero-sum sequences over Gy.

Clearly, 8(Gyp) is reduced, 8(Gg) C F (Gp) is saturated, and hence B(Gy) is a reduced Krull monoid. Moreover, # (Gp) is
a monoid of divisors for 8(Gy) if and only if (Gg) = [Go \ {g}] for every g € Gy (see [22, Proposition 2.5.6]).

For every arithmetical invariant *(H) defined for a monoid H, we write *(Gg) instead of *(;B(Go)). In particular, we set

A(Go) = #4(B(Go)), w(Go) = w(B(Gp)), t(Go) = t(B(Go)), and so on. We define the Davenport constant of Go by
D(Go) = sup{|U| | U € A(Go)} € No U {oo},

which is a central invariant in zero-sum theory (see [15,18] for its relevance in factorization theory). We will use without
further mention that for a finite set Go we have D(Gg) < oo (see [22, Theorem 3.4.2]).

Let H be a reduced Krull monoid, H C F = ¥ (P) a divisor theory and Gp = {[p] | p € P} C F/Hpeq the set of classes
containing prime divisors. The homomorphism 8: #(P) — ¥ (Gp), mapping an element p € P onto its class [p] € Gp,
induces a transfer homomorphism 8 = B | H: H — B(Gp). In particular, B(A(H)) = 4(Gp) and

D(H) = sup{lu| | u € A(H)} = D(Gp)

(for details see [22, Section 3.4 and Theorem 5.1.5]).
Recall that, for a constant m € N, mGy denotes the m-fold sumset. Clearly, the condition —Gy C m(Gy U {0}) is equivalent
to the condition that for every g € Gy there exists a zero-sum sequence Uy € B(Gp) suchthatg | Uy and |Ug| < m + 1.
Now we can formulate the main result of this section.

Theorem 4.2. Let H be a Krull monoid, F = % (P) a monoid of divisors and Gp = {[p] | p € P} C F/Heq = G the set of classes
containing prime divisors. Suppose that one of the following conditions hold:

(a) H has the approximation property.

(b) Every g € Gp contains at least two prime divisors.

(c) Thereis an m € N such that —Gp C m(Gp U {0}).

(d) The torsion free rank of G is finite.

Then H is tame if and only if D(Gp) < oo. Moreover, we have:

1. If (a) or (b) or ((c) withm = 1) holds, then w(H) = D(Gp).
2. Suppose that either the total rank of G is finite or that there is an m € N such that G = m(Gp U {0}). Then H is tame if and
only if Gp is finite.

We will see that the finiteness of the Davenport constant implies (almost trivially) that the monoid is tame. But
the converse needs some additional assumption. Indeed, in Example 4.13 we will point out a tame Krull monoid with
D(Gp) = oo. But before that we start with the proof of Theorem 4.2, which will be done in a series of lemmas. We fix
our notations for the rest of this section.

Let H be a reduced Krull monoid, H C F = ¥ (P) a monoid of divisors and Gp = {[p] | p € P} C F/H = G the set of
classes containing prime divisors. We define subsets Ps, Py, P; and Py of P by

Pi={peP|PN[p]={p}}, Pn=P\P;, P ={pePlord([p]) <oc} and Py =P\P.

Fora € {s,m},b € {f, t}, we set P, , = P, N Pp. In order to get lower bounds on w(H, -), we make the following definition.
Let Py, Py C P be finite subsets. We call (Py, P1) independent of order (op)pep, € NP0 if the following two conditions hold:

1. For any p € P there exists a, € H such that v,(a,) = op and v4(a,) = Oforallq € Py \ {p}.
2. There exists some b € H such that P; C supp(b) C P\ P,.

The first lemma is well known. Since it is the starting point of our investigations, we present its short and simple proof.
Lemma 4.3.

1. Forevery a € H, we have w(H, a) < |a|.
2. w(H) < D(Gp). In particular, if D(Gp) < oo, then H is tame.
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Proof. 1. leta € Handay,...,a, € Hsuchthatal|a; - ... - a,. Suppose thata = p; - ... p; with |[a] = | € N and
P1,--., D1 € P.Clearly, there is a subset £2 C [1, n] such that |£2| < land
a=p;-...-p divides l—[ a, inF, and hence in H.
vesR

2. Obviously, 1 implies that
w(H) = sup{w(H, u) | u € AH)} < sup{|u| | u € A(H)} = D(Gp).
Thus, if D(Gp) < o0, then w(H) < 00, and hence H is tame by Proposition 3.5. O
Lemma 4.4.

1. Suppose there exists a constant m € N such that —Gp C m(Gp U {0}). Then w(H, a) > |a|/(m + 1) foralla € H, and if
m = 1and a € A(H), then w(H, a) > |a|. Thus H is tame if and only if D(Gp) < o0.
2. Suppose there exists a constant m € N such that G = m(Gp U {0}). Then H is tame if and only Gp is finite.

Proof. 1.leta = p;-...-p, € Hwithl € Nand py,...,p, € P.Foreveryi € [1,]], there is an a; € H with p; | a; and
lajl < m+ 1.Thena]a; - ... - a,and there is a subset 2 C [1, 1], say £2 = [1, A], such that a divides a; - ... - a; but no
proper subproduct. Then we obtain
a
la| <la;-... @] <A(m+1) andhence w(H,a) > > lal )
m+4 1

Now suppose that m = 1and a € A(H). For | = 1, the assertion is clear. Suppose that [ = 2. Since H C F is a divisor theory,
there are a;, a; € H such that p; |ay, p2 1 a1, p2|az and py t ay. Thus a|aja;, but a t a1, a 1 az, and hence w(H, a) > 2.
Suppose thatl > 3. Fori € [1,1],letq; € —[p;] N P and a; = p;q; € H. Clearly,a|a; - ... - a, and we assert that a does
not divide a proper subproduct, which implies that w(H, a) > |a|. Assume to the contrary that there is an 2 C [1, [] such
thata divides [ ], a,. Then [, (; o P2 divides [ ], g, InF, and hence thereisai € [1,1]\ $2 and a p € £2 such that
P = (. But this implies that [p,p, ] = [p»] — [9,] = 0, and hence p,p,, € H, a contradictionto! > 3 and a € A(H).

Using Lemma 4.3, we infer that w(H) < oo if and only if D(Gp) < o0, and thus Proposition 3.6 shows that H is tame if
and only if D(Gp) < o0.

2. If Gp is infinite, then G is infinite, A(H) is infinite by [28], and hence H is not tame by Proposition 3.6.3. If Gp is finite,
then D(Gp) < oo, and H is tame by Lemma 4.3. O

Remark 4.5.

1. By definition, a group is called bounded if there isan N € N such that Ng = Oforallg € G. Note that a bounded group is
adirect sum of finite cyclic groups with a bound on their orders; see e.g. [22, Corollary A.4]. Now suppose that G is a bounded
group, and let Gy C G be a subset with 0 € Gy. Then, for every g € Gg, thereisann € [1, N] such that —g = (n — 1)g, and
thus —Gg C NGy.

2. Let R be a Krull domain with class group G and Gp C G the set of classes containing prime divisors. If R is either a
finitely generated Z-algebra or a finitely generated k-algebra over some infinite perfect field k, then there is an m € N such
that G = m(Gp U {0}) (see [33, Propositions 4.2 and 4.4]).

Lemma 4.6. Leta € H, Py, Py C P be such that supp(a) = Py U P; and (Po, P) is independent of order (ap)pep, € NPo. Then
a
w(H, a) > Z{L()W
PEPy %p

Proof. Forallp € Py,leta, € Handletb € H be as in the definition of independence. We set, forallp € Py, e, = [vp(a)/a, ],
M = max{vp(a) |p € P1} and

u= l_[ aybM.
pePg
Thenu € H, vp(a) < vp(u) forall p € P, and hence a | u. Thus there exist (8p)pep, € Ng‘) and M’ € [0, M] such that B, < e,
forall p € Py, ZpEPo Bp +M' < w(H, a) and
a divides u = l—[ af"bM/.
pePg

Then, for any p € Py, we have v,(a) < v,(u') = apf,. Hence B, > [vy(a)/e,] = ep, and therefore 8, = e, forallp € Py.
This implies that

oM.z Y g M = Y[

pePy pePy ®p
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Lemma 4.7. Let Py, P(’,, Py C P be finite subsets and p € P \ P;.

1. IfH has the approximation property, then (P, ¥) is independent of order (1) pep,.
2. ({p}, Py) is independent of order 1.
3. Suppose that Py, P, P, have the following properties:

(a) Py C Py,

(b) Py C P .

(c) Py C P\ (PyUP)).

(d) [p] # [ql, if p, q € Py are different orif p € Py and q € P,

Forp € Py U Py, set

_ {1 p € Py
P~ lord(p) peP;.

Then (Pq U P}, Py) is independent of order (ap)pepoupé.

Proof. 1. This follows immediately from the definition of independence and the approximation property (for b in the
definition of independence take b = 1).

2.Since H C F is a divisor theory, there are a, b € H such thatv,(a) = 1, ]|
conditions for independence of order 1 of ({p}, P1).

3. First note that Py N Py = Py N Py = Py N Py = {. Since Py C Py, we can choose for any p € Py some p’ € P\ {p}
such that [p'] = [p]. Then, by construction and condition (3d), we have {p’ | p € Py} N (Py U Py) = §. We continue with the
following assertion.

pepy P | band p 1 b. Then a and b satisfy all

A. Ifu € Hand Q C supp(u) N P, then there exists u’ € H such that supp(u’) = supp(u) \ Q.

Proof of A. Let u and Q be as above, and set u = uju,, where uq, u; € ¥ (P) are uniquely determined by supp(u;) =
supp(u) \ Q and supp(u,) = Q.Set N = Iem{ord([p]) | p € Q}. Then u} € H, and from u" = u'u} we obtain u} € H. Since
supp(uY) = supp(u;) = supp(u) \ Q, the claim follows. O

In order to show that (P, U P}, P;) is independent of order (ozp)pepoupé, we verify the two conditions in the definition of
independence.

First, we show that there exists b € H such that Py C supp(b) C P\ (P U Py).Since H C F is a divisor theory, we may
choose by € H such that P; C supp(b;). Using A with Q = supp(b;) N Py and using Py N P; = §, we see that there exists
b, € H such that Py C supp(b,) C P\ P;.SetS = supp(b,). Then b, = c;c;, where

¢ = 1‘[ pe®) o = 1‘[ pr®2)

peS\Py peSNPy
Now set
o vp(€2)
4= 1
PESNPy

and b = c¢;¢}. From [c}] = [c;], it follows that b € H. By construction, we have P; C supp(b) C P\ (Po U P}).
Second, we pick p € Py U Pj and show that there exists some a € H such that v,(a) = «, and v4(a) = 0 for all

q € (PoUPy \ {p}.

If p € Py, then ap[p] = 0, and hence a = p* e H has the required property. Suppose that p € Py. Choose a; € H
with Py C supp(a;). Then, using Py N Py = ¥ and A with Q = supp(a;) N Pj, we obtain an element a, € H such that
Py C supp(ay) C P\ Pj. Now set

a—= pp/vp(az)—l . 1—[ q/vp(az) . l_[ qVq(GZ)-
ge(supp(ax)\{pH NPy gesupp(az)\Po

Since [a,] = [a], it follows that a € H. From {q' | q¢ € Py} N (P, U Py) = ¥ we obtain v,(a) = 1 = «, and v4(a) = 0 for all
q€ (PoUPy\ {p}. O

Corollary 4.8. Leta € H.
1. Suppose that [p] # [q] for all distinct p, q € supp(a) N Py,. Then

vp(a)
H, : ‘
w(H, a) > vp, (@) +p§t (ord([P])—‘

2. If H has the approximation property, then w(H,a) = |a|, and if P = P, then there is an a’ € ﬁ_l(ﬂ(a)) such that
o(H,d) = |d'| =a|.
3. w(H, a) > max{vy(a)|p € P}.
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Proof. 1. We set Py = supp(a) N P, Py = supp(a) N Py, and P; = supp(a) N Psy. Then supp(a) = (Py U P}) U P;. For
p € Py UP|, set

_ 1 p € Py
P lord([p]) p € P

By Lemma 4.7.3, (Py U P, P;) is independent of order (ap)pepoupé. By Lemma 4.6, we obtain

oH,a) > > (Vix(a)—‘ =ven (@ + 3 [o:cll)(([?])-“

pePoUP;, 4 pePs ¢

2. By Lemma 4.3.1, it suffices to show that w(H, a) > |a| and w(H, d') > |d'| = |a|, respectively.

Suppose that H has the approximation property and set P, = supp(a), Py = Py = ¥ and « = (1)pep,. Then, by
Lemma 4.7.1, (Py, P) is independent of order ¢, and thus Lemma 4.6 implies that w(H, a) > |a]|.

Suppose that P = P, and set B(a) = gf‘ S ‘gs"s withkq, ..., ks € Nand gy, ..., g € G pairwise distinct. Fori € [1, s],
we pick p; € P N g; and define ' = p’]<l . fS. Now we set Py = supp(a’), Pj = P; = @ and a« = (1)pep,. Then, by
Lemma 4.7.3, (Py, P;) is independent of order «, and thus Lemma 4.6 implies that w(H, a’) > |d’| = |a|.

3. Letp € supp(a). By Lemma 4.7.2 ({p}, supp(a) \ {p}) is independent of order 1. Hence w(H, a) > v,(a) by 46. O
Corollary 4.9. Let a € H and suppose that [p] # [q] for all distinct p, q € supp(a) N Py,. Then

Isupp(a)| = w(H, a) w(H) + [supp(a) N Py|.

Proof. By 4.8.1, we have

w(H,0) = vp, (@) + ) {L@

1
Ord([p])] > |supp(@) NPl + >
PEPs ¢

pesuppt@nes, OTd((PD

Set A = max{ord([p]) | p € supp(a) N Ps}. Then we obtain

1 1
w(H, a) > |supp(a) N Pyl + ;Isum)(a) NPl > Z(Isupp(a)l — |supp(a) N Psz|).

It remains to show that A < w(H). So let p € P;; N supp(a). Then u = p°UPD js an atom of H and by 4.8.3 we obtain
ord([p]) = vp(u) < w(H,u) < w(H). O

Lemma 4.10. Let A be an abelian group, Gy C A be a subset such that [Go] = Aand M = sup{vg(U) |g € Gy, U € A(Gp)} <
00, and set Goy = {g € Go | ord(g) = oo}. If the torsion free rank of A is finite, then the set {M!g | g € Gy} is finite. If the total
rank of A is finite, then Gy is finite.

Proof. First suppose that the torsion free rank of A is finite. Let E C Go s be a maximal independent set. Then E is finite by
assumption. Since [Gy] = A, there eXists, for each h € E, some S, € £ (Gp) such that hS, € B(Gp). Then the set

Ey = E U|_Jsupp(Sh)
heE

is finite, and we claim that for any g € Gof there exists some C € 4({g} UEq) suchthatg | C.Letg € Goy. Clearly, it is
sufficient to find some B € 8({g} U Eq) such that g | B.If g € E, then gS; does the job. So suppose that g ¢ E. Since E U {g}
is not independent, there are o« € Z and, for every h € E, an element f; € Z such thatag + Y,z Bxh = 0 and ag # O or
Bnh # 0 for some h € E. Since E is independent, we get « # 0, and suppose without restriction that « > 0. Then, clearly
we have

B=g* [0 [] 5" € B{g} UE)) and g|B.
heE heE
Br=0 Br<0
Since the set
E, = {_Z'ng | B € [0,M -M!]forallg € E1}
g€k

is finite, it suffices to show that for every g € Gof we have M!g € E;. Pickg € Goyanda C € A({g} UE ) suchthatg | C,
say C = g* ngE] gfs. Then o € [1, M] and By € [0, M] forallg € E;. Since g + Zgéﬂ Bsg = 0, it follows that M!g € E,.
Now suppose that the total rank of A is finite, and for a prime p € P let

Z@C’O):{%ermez,keN}cQ/z
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denote the Priifer group of type p>. Then, by [ 14, Sections 23 and 24],
t
Acoe@Pzed. (%)
i=1

where s, t € Ny, s+ t is the total rank of A and pq, ..., p; € P. Obviously, (x) implies that for every n € N the subgroup
{g € A| Ng = 0} is finite. This and the finiteness of {M!g | g € Go s} imply that Go ; is finite. Let Go; = Go \ Go.1fg € Go ¢,
then g°4® ¢ 4(Gy), and hence ord(g) < M. As before, this implies that Gy, is finite, and hence Gy is finite. O

Proposition 4.11. Suppose that the torsion free rank of G is finite and that w(H) < oo.
Then D(Gp) < <.

Proof. Since w(H) < oo, Corollary 4.8.3 implies that M = sup{v,(u) |u € A(H), p € P} < oo. Thus by Lemma 4.10 the set
{M![p] = [p™']| p € Psy} isfinite, and hence there exists a finite subset P’ C Ps s such that {[p™']|p € Pss} = {[p™']|p € P'}.
We pick an u € A(H) and claim that |u] < w(H)? + |P’|w(H). We start with the following assertion.

A. There exists a € H such that:
e minL(a) < M!;
o [uM| =la|;
e [p] # [q] for distinct p, q € supp(a) N Pp,;
e supp(a) N Psy C P'.

Proof of A. Let §: H — B(Gp) be the block homomorphism and let S(u) = gfl C e gf’ with pairwise distinct

g1,...,8 € Gp.Foreachi € [1,r], let p; € P be such that [p;] = g. Thenu' = pl]<1 S -p’ﬁ € A(H) and |u| = |v/].
Thus, after replacing u by v’ if necessary, we can suppose that [p] # [q] for distinct p, g € supp(u). By definition of P’ there
isamap6: Py — P’ such that [pM'] = [0 (p)™'] for all p € P; ;. We now set

a= l_[ pM!vP(u) 1_[ 9(p)M!vp(u)'

pesupp)N(PmUPs ¢) pePs ¢

Then [a] = [uM'], and hence a € H. From B(a) = B(uM"), we obtain min L(a) = minL(B(a)) < M! and |a| = |u™'|. Thus a
fulfills all our requirements. O

Now leta = v; - ... - v, be a factorization of a such that n = minL(a) < M!. Choose some i € [1, n]. Then clearly
supp(v;) N Psy C P"and [p] # [q] for distinct p, g € supp(v;) N Pp,. By Corollary 4.9, we obtain

|supp(vi)| < w(H, v)w(H) + [supp(v;) N Psy| < w(H)* + |P'].
Using 4.8.3, we obtain

il= Y v = > oM v <od)?+ PloH),

pesupp(v;) pesupp(v;)

and hence

_ 1 _ 1 ¢ n 3 / 3 /
ul = —lal =~ ) vl < o @H) + Plo(H) < o) + PloH). O

i=
Proof of Theorem 4.2. If D(Gp) < oo, then H is tame by Lemma 4.3. Conversely, suppose that H is tame. If Condition (a) or
(b) of Theorem 4.2 holds, then all assertions follow from Corollary 4.8.2. If Condition (c) holds, then Lemma 4.4.1 does the
job. If the torsion free rank of G is finite, then D(Gp) < oo by Proposition 4.11. Suppose that the total rank of G is finite. Since
H is tame, the invariant M occurring in Lemma 4.10 is finite, and clearly we have [Gp] = G. Thus Lemma 4.10 implies that
Gp is finite. If G = m(Gp U {0}) for some m € N, then the assertion follows from Lemma 4.4. O

We end this section with two examples. The first example shows that several bounds obtained in Section 3 are sharp for
Krull monoids. Example 4.13 reveals a tame Krull monoid H with D(Gp) = o0.

Example 4.12. Let H be a Krull monoid with finite class group G such that every class contains a prime divisor. In order to
avoid trivial cases we suppose that |G| > 3. Then w(H) = D(G) by Theorem 4.2.(c).

1. Suppose that G is isomorphic to C} for some evenr € N. Then, by [22, Corollary 6.5.6], we have

2
DIC))=r+1=w(H) and tH) =1+ %

This shows that the bound given in Proposition 3.5 has the right order of magnitude.
2. Suppose that G is either cyclic or an elementary 2-group. Then ¢(H) = D(G) by [22, Theorem 6.4.7], and thus equality
holds in Proposition 3.6.3.
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3. Letk € N.Then px(H) — px—1(H) < D(G)/2, and equality holds for a variety of groups (see [22, Section 6.3]. If G is cyclic,
then por(H) — pok—1(H) = w(H) — 1 by [18, Corollary 5.3.2], and thus equality holds in Proposition 3.6.2.

Example 4.13. We construct a Krull monoid H with t(H) = 2 and D(H) = oc. To do so we proceed in two steps.
1.Letn € Ny, Fy = @y (e) = Z"*1 be an additive free abelian group of rank n + 1 with basis {eg, . .., e,} and P, the
power set of [1, n]. For I € Py, let ¢ : F,;, — Z be defined by

n
7] (Z Xiei) =Xo + in,
i=0 iel
and hence fori € [1, n] we have

1 iel
0 i¢l,

0 iel

(e = { 1 igl

@i(eg —€) = {

We define
H,={x€eF, | ¢(x) > 0foralll € P,}.

Then ¢ = (¢ | Ho: Hy — No),_, is a defining family for H,; hence

IePy
(/)n: Hn - Ngnv X = (q)l(x))lepn

is a cofinal divisor homomorphism (see [22, Proposition 2.6.2]), and therefore H is a Krull monoid.
1(a) We assert that

Hn = [617"'7en7e0_elv"'7eo_en]'
The inclusion D follows from Egs. (4.1). Conversely, let Z?:o xie; € Hy,. Then, for every I € P,, we have
X0+ ) x>0 (4.2)
iel
Fori € [1,n — 1], set b; = max{0, —x;} € Ny. Takingl; = {i € [1,n — 1] | x; < 0} in (4.2), we obtain
n—1
Xo—Zbi=Xo+inZO-
i=1 icly
We define b, = xo — Z?;ll b; € Ny. Taking I, = I; U {n} in (4.2), we obtain
by + x, :xo—i—in > 0.
iely

It follows that a; = x; + b; € Ny for alli € [1, n]. Now we have

n n n n n
inei = <Zbi) eo + Z(ai —bpe; = Zaiei + Zbi(eo —e) eler,...,eq,e0—e€1,...,8 — eyl
i—0 p p i1 i1

1(b) We assert that ¢, is a divisor theory. For I, ] € P,, wesetH,; = {e;|i € [} U{eq —e;|i € [1,n] \ I} C Hp, and claim
that
1 J=1I
0 J#L
Then every element of Ng" is a greatest common divisor of a finite subset of elements of ¢, (H,,). If] = I, then ¢;(a) = 1 for

alla € Hy;, by (4.1). Now let] # I.IfI ¢ J, takei € I \ J. Thene; € Hy; and g;(e;) = 0.1fI C J, then ] \ I # ¥, and we take
ieJ\I1.Theney — e € Hy;and g;(eg — €;) = 0.

min ] (Hnp) = {

1(c) Since the family (eg, . .., e,) is independent, it follows immediately that
AHp) =1{e1,...,en,e0—€1,...,€ — €y},
and hence
D(Hy) = max| >~ g1 u € AH) | =2"".
lePy

1(d) Finally, we show that t(H,) = 2. Pick some u € A(H,) and consider the automorphism f: F, — F, defined by
f(eg) = eg and f(e;) = e — e; for every i € [1, n]. Then f(H,) = H,, and hence we may assume that u = e; for some
jel1,n].
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Pick some i € [1, n] \ {j}. Then the equation e; + (g — €;) = eg = ¢; + (e — ;) shows that e; is not prime, and hence
t(H,, e)) > 2. To show the reverse inequality, take an element h € ¢; + H,andaz = 2?21 ae; + Z?zl bi(eg — e;) € Z(h).
We show that there is some z' € Z(h) such that e; |z’ (in Z(H,)) and d(z, Z') < 2.

To see this, weset] = {i € [1,n]|a; > 0} and K = {i € [1, n]| b; > 0}. If ] N K # @, then, for some k € ] N K, we set

Z'= ) (aei+bieo — e)) + (ax — Dex + (b — 1)(eo — ex) + € + (eo — ).
ie[1,n1\{k}
Thenz' € Z(h), e; | 2’ and d(z, z') < 2. Suppose that ] N K = . Assume to the contrary thatj ¢ J. Then, taking

x=h—e¢= (Z bi) e+ Y aei—e+ » (—be

ieK ie] ieK
and I = K U {j} in (4.2), we obtain
0= b+ (=14 (=b)=-1,
iek iek

a contradiction. Thus we have j € ] and hence ¢; | z.
2. Let

H= ]_[Hn
n>2
be the coproduct of all H,. Then H is Krull monoid, the coproduct of the divisor theories ¢, is a divisor theory of H,
A(H) =|_J A(H,), hence D(H) = sup{D(H,) | n > 2} = o0
n>2
and, by [22, Proposition 1.6.8],
t(H) = sup{t(H,) | n > 2} = 2.

5. Sets of lengths in tame monoids

Let H be a tame monoid. By Lemma 3.3, all sets of lengths in H are finite. Suppose there is an a € H such that [L(a)| > 1,
saya=1uy-...-U=vy-...-ywithk <landuy,...,uvq,...,v € A(H).Then, for every N € N, we have

a =@ ow) (.. o)V forallv € [0, N,

whence {vk+I(N —v) | v e [0,N]} C L(@") and |L(aV)| > N + 1. This shows that sets of lengths get arbitrarily large, but
by the following Theorem 5.1 they have a well-defined structure. Indeed, sets of lengths are AAMPs (almost arithmetical
multiprogressions) with universal bounds for all parameters. We recall the definitions involved.

To begin with, let

A(H) = U A(l) C N
LeL(H)

denote the set of distances of H. A simple calculation (based on Eq. (2.1)) shows that 2 4+ sup A(H) < c(H), and hence by
Proposition 3.5 it follows that in a tame monoid the set of distances is finite.

Letd e N, M € Ny and {0,d} C D C [0, d]. Asubset L C Z is called an almost arithmetical multiprogression (AAMP for
short) with difference d, period D, and bound M, if

L=y+ (' UL*ULl") C y+ D +dz,
where

e [*is finite nonempty with min L* = 0 and L* = (D + dZ) N [0, max L*];
o ' C[-M, —1] and L” C maxL* + [1, M];
eyc.

Ifae Hand k € Z,then Z,(a) = {z € Z(a) | |z| = k} C Z(a) denotes the set of factorizations of a having length k. Now we
can formulate the main result of this section.

Theorem 5.1. Let H be a tame monoid. Then there exists a constant M € Ny such that for all a € H the following two properties
hold:

(a) The set of lengths L(a) is an AAMP with difference d € A(H) and bound M.
(b) For each two adjacent lengths k, | € L(a) N [minL(a) + M, maxL(a) — M] we have d(Zk(a), Zl(a)) <M.
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In the following remark we discuss Statement (a) of Theorem 5.1. Its proof will require the rest of this section. More on
Statement (b) can be found in Remark 5.5.

Remark 5.2. We say that the Structure Theorem for Sets of Lengths holds for the monoid H if H is atomic and there exist some
M* € Ny and a finite nonempty set A* C N such that every L € L(H) is an AAMP with some difference d € A* and bound
M*,

1. An overview of further classes of monoids and domains satisfying the Structure Theorem can be found in [22, Section
4.7]. But the structure of sets of lengths was open for general tame monoids, and in particular for the tame Mori domains
discussed in Example 3.2.4. Let H be a tame monoid. By [16, Theorems 3.5 and 4.2] and Proposition 3.6.2, all sufficiently
large unions of sets of lengths are even AAMPs with period {0, min A(H)}.

By a recent Realization Theorem (due to Schmid, [37]) the Structure Theorem is sharp for Krull monoids with finite class
group.

2. Suppose that H is a Krull monoid with finite class group G. Then H satisfies the Structure Theorem with the set

A* = A*(G) = {min A(Gp) | Go C G with A(Go) # 0} C A(H).

The set A*(G) has been investigated in detail (see [35,10,36]), and in general it is a proper subset of A(H). Theorem 5.1
shows that for tame monoids the Structure Theorem holds with A* = A(H), and by [22, Example 4.8.10] this cannot be
improved in general.

3. There is a Dedekind domain R (in particular, R® is a Krull monoid with approximation property) with finite catenary
degree (hence with a finite set of distances) which does not satisfy the Structure Theorem for Sets of Lengths. In particular,
R not tame, and if Gp C C(R) denotes the set of classes containing prime ideals, then D(Gp) = 0.

Proof. By [22, Theorem 4.8.4], there is a Krull monoid H with finite catenary degree which does not satisfy the Structure
Theorem for Sets of Lengths. We may suppose that H is reduced and consider a divisor theory H C F = ¥ (P) with class
group G = F/H and Gy C G being the set of classes containing primes. Then ¢(Gy) < c(H) < oo. By Claborn’s Realization
Theorem there is a Dedekind domain R and an isomorphism v : G — C(R) mapping Go onto the set of classes Gp C C(R)
containing prime ideals. Then L(H) = £(Gg) = £L(Gp) = L(R), and hence R does not satisfy the Structure Theorem for
Sets of Lengths. By Theorem 5.1, R is not tame, and by Theorem 4.2.(a) it follows that D(Gp) = co. Let §: R — B(Gp) denote
the block homomorphism. Then [22, Theorem 3.4.10] implies that

¢(R) < max{c(Gp), 2} = max{c(Gyp), 2} < oo,
and hence R has finite catenary degree. O

In order to prove Theorem 5.1, we apply the machinery presented in [22, Section 4.3]. In order to do so, we need one
more concept, that of tamely generated pattern ideals.

Definition 5.3. Let H be atomic, a C H and A C Z be a finite nonempty subset.

1. We say that a subset L C Z contains the pattern A if there exists some y € Z such thaty + A C L. We denote by
@ (A) = &4 (A) the setofall a € H for which L(a) contains the pattern A.
2. aiscalled a patternideal if a = @ (B) for some finite, nonempty subset B C Z.
3. Asubset E C H is called a tame generating set of a if E C a and there exists some N € N with the following property:
for every a € a, there exists some e € E such that

ela, suplL(e) <N and t(a,Z(e)) <N.

In this case, we call E a tame generating set with bound N, and we say that a is called tamely generated.
4. If a is tamely generated, then we denote by ¢(a) the smallest N € Ny such that a has a tame generating set with bound
N. Otherwise, we define ¢ (a) = oo, and we set p(A) = go(cb (A)).

The significance of tamely generated pattern ideals stems from the following result.

Proposition 5.4. Let H be a BF-monoid with finite nonempty set of distances A(H), and suppose that all pattern ideals of H are
tamely generated. Then there exists a constant M € Ny such that for all a € H the following properties are satisfied:

(a) The set of lengths L(a) is an AAMP with difference d € A(H) and bound M.
(b) For each two adjacent lengths k, | € L(a) N [minL(a) + M, max L(a) — M] we have d(Zx(a), Z;(a)) < M.

Proof. We use Theorem 4.3.11 of [22]. Then (a) follows immediately.
The proof of (b) uses the same ideas used in the proof of (a) in [22]. For that we will need some further notations. For a
finite subset L C Z and 6 € N, we set

k(L) =max {|ILN[y+1,y+06] |y €L} €[0,0].

Note that for finite Ly C L, C Zand m € Z we have ky(L1) < ky(Ly) and ky(m 4+ L1) = ky(L1). Ify € L is such that
ko(L) = |[y+ 1,y +61NL|,and if we set D = ([y,y + 61 NL) —y, then ks (L) = k¢ (D),0 € D C [0, 6] and L contains the
pattern D.
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If A C B are subsets of Z, then we say that A is an interval of B, if # # A = BN [a, b] for some a, b € Z. Note if B C C and
A is an interval of C, then A is an interval of B, too.
We choose 6 € Nsuch that® > 2max A(H) + 1. We set

M =2max {p(4) | AC[0,0]}.

Now, suppose that a € H such that L(a) ¢ minL(a) + [0, M]. We choose D C Z suchthat0 € D C [0, 8], kg(D) =
kg(L(a)) and a € @ (D). Since @ (D) is tamely generated, there exists a* € & (D) such that a* | a, maxL(a*) < p(D) <M
and t(a, Z(a*)) < (D) < M/2.Letm € Z be such that m + D C L(a*).

Let b € H be such that a = a*b. Then L(a) ¢ minL(a) + [0, 2t(a, Z(a*))], and by Proposition 4.3.4.2 of [22] we obtain
that L(b) contains at least two elements. So we can choose x € Z and d € A(L(b)) such that {x, x + d} C L(b).

Nowwesetl; =m+ D C L(a*),L, = L(b),L* =L; + L, L = L(a) N [minL*, maxL*], &' = D N[0,d]. ThenL* C L, L
is an interval of L(a) and

ko (D) = kg(L1) = ko(L1 +x) < ko(L*) < kg(L) < ko(L(a)) = k(D).

Hence equality holds, and by Theorem 4.2.20 of [22] we obtain L* = L, L; is an interval of minL; + £’ + dZ and L* is an
interval of min L* 4+ D’ + dZ (i.e. L; and L* are AMPs with period £’ and difference d). From L; = m + £ and m = min(L,),
we obtain D C D’ + dZ, and hence D + dZ = D’ + dZ.

Next we apply Proposition 4.2.19.1 and assertion A. of the proof of Proposition 4.2.19.3 of [22] to L; — minL; and L;.
We obtain A(L;) C Ly — minL; = D and that for any y € L, the sety + L; is an interval of minL, 4+ L; 4+ dZ. Hence
max A(L(b)) = max A(L,) < max D, and we claim that for any y € L, the set y + L; is an interval of L*. To see this it is
enough to show that L* C minL, + L; 4+ dZ. This follows from

LI cminl* + D +dZ =minL; + minL, + D + dZ = minlL, + Ly + dZ.
Using Proposition 4.3.4.1 of [22], we see that
max L(a) < maxL* — t(a, Z(a")), min L(a) > minL* — t(a, Z(a")),
and hence
L(a) N [minL(a) + M, maxL(a) — M] C L*.

Now we set D = {0 = 0y, ..., 8, and L(b) = {e1,..., &} with0 =6p < 61 <--- < §,ande; < - -+ < €. We show
first that, if x € L* withx < maxL* thenx = m 4 §; + ¢; withi € [0, u — 1] and j € [1, s]. Indeed, since L* = L + L(b),
there arei € [0, u]andj € [1, s] such thatx = m 4+ §; 4 ¢;. Suppose thati = p. Since x < max L*, it follows thatj < s. Since

€+1 — € <max A(L(b)) <maxD =3, — do,
we infer that

m+6& +e€p <m+45, +¢ <m+8, + €.

Since €j;1+Lq is an interval of L*, it follows thatx = m+§,, +€; € €41 +m+D.Frome; < €1, we obtainx = m+§;, +€j41
for someip € [0, u —1]. Now letk, [ € L(a) N[min L(a)4+M, maxL(a)—M] C L* be two adjacent lengths with k < [. Then
k < maxL* and by the above there arei € [0, . — 1] andj € [1, s] such that k = m + §; + ;. Since €; + L; is an interval of L*,
it follows that I = m+ §;11 +€;. Now choose factorizations x;, X1 € Z(a*) with |[x;| = m+6;, |Xi11| = m+8i41 andy € Z(b)
with |y| = €. Thenz = x;y,z’ = x;11y € Z(a) with |z| =k, |z'| = land d(z, z') = d(X;, Xi41) < maxL(a*) < ¢(D) <M. O

Remark 5.5. In[13, Theorem 3.1], it is proved that C-monoids satisfy Property (b) of Theorem 5.4. Note that there are finitely
primary monoids - they have finite catenary degree and their pattern ideals are tamely generated — where Property (b) does
not hold for all adjacent lengths k, | € L(a). We do not know whether in tame monoids there is an M € N such that for all
a € H and all adjacent lengths k, | € L(a) we have d(Z(a), Zi(a)) < M.

Several conditions, stronger than Property (b) above, have been studied in the literature. The interested reader is referred
to [11-13,30]. We only want to recall that also in tame monoids the successive distance §(H) and the monotone catenary
degree might be infinite (see [11, Example 4.5]). We do not know if this might happen in tame Krull monoids.

In tame monoids there is a simple characterization for tamely generated ideals. We formulate a variant which is suitable
for our purposes.

Lemma 5.6. Let H be a tame monoid and a C H an s-ideal. Then the following statements are equivalent:

(a) aistamely generated.
(b) There is a constant { € N such that {a’ € a | minL(d’) < ¥}H = a.

If (b) holds, then ¢(a) < 2yrt(H).
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Proof. The implication (a) = (b) follows from the definition. Conversely, suppose that (b) holds. We set E = {e € a |
minL(e) < ¥} and have to verify that E is a tame generating set of a. Let a € a. Then there is an e € E such that e |a and
minL(e) < . By Proposition 3.6.1, we have maxL(e) < p(H) minL(e) < ¥t(H). By [22, Lemma 1.6.5.7], it follows that

t(a, Z(e)) < 2minL(e)t(H) < 2yt(H).
Thus E is a tame generating set of a with bound 2y t(H). O

Now we start with the more specific preparations for the proof of Theorem 5.1. The constructions follow the ideas
developed in the setting of Krull monoids (see [20]).

Let H be a tame monoid with t(H) > 3,N = t(H) — 2 and a € H. We denote by A, (a) the set of all integersd € [—N, N]
for which there exists a divisor b of a and z, z’ € Z(b) such that min L(b) < w(H) and d = |z| — |Z’|. Then, by definition, we
have Aq(a) = —Acar(a) and Ay (a) C Acac(@) for every a’ € aH.

Letb € Hwithb|aand w, w’ € Z(a). We call a triple ((wj)je(o,¢1. T, t) adapted to (a, b, w, w’) if the following properties
hold:

P1: (w))jelo.¢) Is a finite sequence in Z(a) with wy = w and w, = w', T € Z(H) is a divisor of w and t € [0, £].
P2: t < w(H) minL(b).
P3: Foreveryj € [1, £] we have ]le,ll — |wj|‘ <N, and foreveryj € [t + 1, £] we have |wj_{| — |wj| € Aca(ab™).
P4: wT~! divides wy.
P5: |T| < 2w(H)?> minL(b) and b | 7 (T).
We show the existence of adapted triples in three steps.

Lemma 5.7. Leta, b € H withb|a and w, w’' € Z(a). Then there exists a finite sequence (wj)jejo,¢] in Z(a) and some t € [0, £]
such that the following properties hold:
1. wo=w and w’ = Wy.
2. t < w(H) min L(b).
3. Forevery j € [1, £] we have |wj_; ged(wj—1, w)~!| < w(H) and ||wj_1| — |wj|| < N.
4. b | w(ged(we, w')).
5. Foreveryj € [1, £], gcd(wj—1, w') divides gcd(wj, w").
Proof. Since b | a = w(w'), there is, by Lemma 3.4.1, a divisor w of w’ such that |w| < w(H) min L(b) and b | 7 ().
Letz € Z(a) \ {w'}. Call a factorization z € Z(a) an elementary transformation of z if it can be constructed in the following
way. Let

v | weed(z, w)~!  ifwiz

H) be such that v
v € A®H) besuchtha {vlw/gcd(z,w/)l if % | 2.

Note that z # w’ implies that z + w’ because 7 (z) = m(w’). Since w ged(z, w)~' | w’ ged(z, w')~!, it follows that

v | w'ged(z, w')~!,and hence v | 7 (w’ ged(z, w)~!) = mw(zged(z, w’)~!). Again, by Lemma 3.4.1, there isa u € Z(H) such

thatu |z ged(z, w)~ ', v | w(u) and |u| < w(H).By Lemma 3.4.2, thereisau’ € Z(s (u)) such thatv | u’ and ||u| — |u’|| <N.
Now set Z = zu~ v/, and observe that

zged(z,Z) ' =uged(u,u)™' and Zged(z,z)”! = u' ged(u, u)) .

Now let Z € Z(a) be an elementary transformation of z € Z(a) \ {w’}, and let v, u, v’ be as in the above construction. Then
we have

(a) Since v | w’ gcd(z, w') !, it follows that v gcd(z, w’) | w’, and by construction we have

Z .,

N |z
gcd(z, w)v )—v‘ —u'.
u lu
Thus ged(z, w’) is a proper divisor of gcd(z, w').
(b) |zged(z,2)7"| < w(H).
(© |lzl = 1zI|= [lul = [«/||< N.
Now choose for any z € Z(a) \ {w'} an elementary transformation Z of z, and set w’ = w’. Define the sequence (w))j=o
inductively by wy = w and w; = wj_; forj > 1. Whenever w; # w’, we have by (a) that gcd(wj, w’) is a proper divisor of

ged(wjt1, w'). Hence there is some ¢ < |w'| such that w, = w’. Similarly, there is some t < || < w(H) min L(b) such that
w | w, and hence b | w(w) | 7 (ged(w;, w')). Hence the sequence (wj)jejo,¢; and t fulfill all our properties 1-5. O

Lemma 5.8. Leta,b € H withb|a, w, w € Z(a), (w))jefo,¢e; be a sequence in Z(a) and t € [0, €] such that Properties 1-5 of
Lemma 5.7 are satisfied. Set

T = wged(w, w) ! € Z(H).

Then we have
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1. |T'] < w(H)? minL(b).
2. b | 7 (THr (gcd(w, w)).
3.7 | wged(w, w) L
4. weged(w, w) T~ | w, ged(w, w')~! (note by 5.7.5 that gcd(w, w') divides wy).
Proof. We introduce some abbreviations:
Uj = wj—1 ged(wj—1, wj)_1 forallj € [1, t]
X0 = gcd(w, w')
X = ged(w, w')
)_(t - ng(w, w[).

By definition, we have wj_; | wju; for everyj € [1, t]. Hence we obtain w = wg | we; -...-u,. Weobtain T’ | uy-...-u,
and by Lemma 5.8 |T'| < |uq| + - - - + |u¢| < tw(H) < w(H)? min L(b), so that 1 holds.

3. follows from gcd(w, w’) | ged(w, w,) (Lemma 5.7.5) and 4 follows from the definition of T'.

From 4, we obtain w | w,T’, and hence wx; ' | T'. To prove 2, it is therefore enough to show that b | 7 (wx; 'xg) =

n(wt;'cflxo).

Since xo | w;, we have x = gcd(w, w') = ged(w, we, w) = ged(ged(w, wy), ged(we, w')) = ged(x;, x;). Hence
xt)'ctxg] = lcm(X;, x;) | w; and therefore x; | wt)'ct_lxo. Since, by 5.7.4, b | w(x;), we obtain b | n(wt)'ct_lxo). O
Lemma 5.9. Leta, b € Hwith b|aand w, w' € Z(a). Then there exists a triple adapted to (a, b, w, w’).
Proof. Let (wj)jefo,¢jand t € [0, £] be asin Lemma 5.7 and define T” as in Lemma 5.8. Then we have b | 7 (T")x (ged(w, w')).
Using Lemma 3.4.1, we obtain a divisor u of gcd(w, w’) such that b | 7 (T'u) and |u| < w(H) min L(b). We set T = T’u and
show that ((wj)jefo,¢1. T, t) is an adapted triple for (a, b, w, w’).

P1: It remains to show that T | w. Lemma 5.8.3 shows that T’ gcd(w, w’) | w. Since u | ged(w, w’), we obtain that
T = T'u divides w.

P2: This is Lemma 5.7.2.

P3: Letj € [1, £]. By Lemma 5.7.3, we have \le,1|— |wj|| < N.Now suppose thatj > t+1.Sety = wj_; gcd(wj—_1, wj)‘1.
y = wjged(wj_1, wy) ' and ¢ = w(y) = 7 (). Then ||w]-,1| - |w]-|’ = ||y| — 1¥’||, and from Lemma 5.7.3 we obtain
minL(c) < |y| < w(H).Hence we only have to show that ¢ | ab~! or equivalently b | ac™! = 7 (ged(wj—1, wy)). But, by
5.7.4, we have b | (gcd(w,, w')). Since t < j, Lemma 5.7.5 implies that

ged(we, w') | ged(wegr, w) | ... | ged(wjoq, w') | ged(wy, w'),

and hence gcd(w;, w') | ged(wj—1, w') | ged(wj—1, wy).

P4: This follows from u | gcd(w, w’) and Lemma 5.8.4.

P5: By construction, we have b | 7 (T), and by Lemma 5.8.1, we get |T| = |T'| + |u| < w(H)?> min L(b) +w(H) min L(b) <
2w(H)? minL(b). O
Lemma 5.10. Let B C Z \ {0} by a finite nonempty subset with —B = B, d = gcd(B), N’ = max(B)/d and M’ € N. Then there
existsan S € ¥ (B) such that |S| < 2M’ + 3N’ — 3 and dZ N [—dM’, dM'] C X (S).
Proof. Since 2| (M’ + 1)/N’] + 3N’ — 5 < 2M’ + 3N’ — 3, this follows from [20, Lemma 5.1]. O

Proof of Theorem 5.1. Let H be tame. By Lemma 3.3 and Proposition 3.6.3, H is a BF-monoid with finite catenary degree
and with finite set of distances A(H). If A(H) = @, then all sets of lengths are singletons, and the assertion is clear.
Suppose that A(H) is nonempty. Then, by Proposition 5.4, it suffices to show that every pattern ideal is tamely generated.
LetA = {dy,...,ds} C Z be a finite nonempty subset. If |[A| = 1, then ®(A) = H, and {1} is a tame generating set of H.
Suppose that |A| > 2. By Lemma 5.6, we have to show that there is a constant i € N such that for every a € @ (A) there is
and € ®(A) withd' | aand minL(a") < .

We need one more definition. For c € H and & € N, we say that d € [—N, N] is 6-deficient in c if there exists some
divisor ¢’ of ¢ such that minL(c’) < @ andd ¢ Ac(cc’™"). Since —Acyy = Aca, d is O-deficient in ¢ if and only if —d is
@-deficient in c. If & < 6’ and d is O-deficient in ¢ then d is 8’-deficient in c, too.

Now set M = max(A) — min(A) and N = t(H) — 2. Then M > 1,

t(H) > w(H) > ¢(H) > 2+ max A(H) > 3,
and hence N = t(H) — 2 > 1. We define a sequence (s;);c[—1,n] Of nonnegative integers by
s_1 =0,
sk = (2sw(H)? + 2w(H)?N + 2N + 4)s,_1 + (2M + 3N — 4)w(H) fork € [0,N — 1] and
sy = 2sw(H)?sy_1.

We assert that i = sy has the required property, and we pick ana € @ (A).
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Clearly, (sj)je[—1,n7 1S increasing and sy_1 > sop = (2M + 3N — 4)w(H) > 1. Using thisand s > 1, w(H) > 1, we obtain
forall k € [0, N — 1] that

Y = 2s0(H)’sy_1 = o(H)*sy_1 + o(H)*sy_1 = sy—1 + o(H) > sy + o(H). (5.1)
Setting k = 0, B’ = ), b = 1, we see that there exist k € [0, N], B C [1, N] and a divisor b of a such that
IB| =k, minL(b) <sp_; and B N Aa(ab™') = 0. (5.2)

We take k to be maximal in [1, N] such that there exist B C [1, N] and a divisor b of a such that (5.2) holds and we choose
such B’ and b. We claim that

nod e [1,N]\ B is (s — Sg_1)-deficientin b~ 'a. (5.3)

Indeed, suppose that d € [1,N] \ B is (sy — sx_1)-deficient in b~'c. Then B* # [1, N], and hence k < N — 1. We choose
a divisor ¢ of b~'a such that minL(c) < sy — S¢_;and d ¢ Ac(ab~'c™!) and set B’ = B’ U {d}. Then |B"| = k + 1,
min L(bc) < minL(b)+minL(c) < sg_1+Sk—Sk—1 = Sxand B’ NAqc(ab~c™) = BNAq(ab~c™") € BNAq(ab™1) = 0.
But this contradicts the maximality of k.

Foreveryi € [0, s], we pick a factorization w; € Z(a) with length |w;| = d;. By Lemma 5.9, there eXists for everyi € [1, s]

a triple ((w;j)jeqo,¢;1, ti» Ti) adapted to (a, b, wo, w;). Define T = lem(Ty, ..., Ty) and ap = 7 (T). Then, from the definitions,
we obtain
minL(ag) < |T| < |T1| + -+ - + |Ts| < 2sw(H)? minL(b) < 2sw(H)?sp_1, (5.4)
T | wo and hence qq | a, (5.5)
b|n(T) =ay and (5.6)
woT ! | wi foreveryie [1,s]. (5.7)

Finally, we set B= —([1,N] \ B') U ([1, N] \ B). Since Acy(ab™") N B’ = @, we obtain Ac,(ab~") C B U {0}. Applying
P3, we obtain
|lwijl — |wij—1] € BU{0} forallje [t;+1,¢]andalli e [1,s]. (5.8)
For the construction of the required element a’ € & (A) we distinguish two cases.

Case1: k<N —1.
Then @ # B C [N, N]\ {0} and —B = B. We set d = gcd(B), N' = max(B)/d < Nand M’ = M + w(H)s;_1N. Applying

Lemma 5.10, we obtain a sequence S =r; - ... -y € £ (B) such that
m<2M + 3N —3<2M+ 20(H)si_ ;N +3N —3 and dZN[—dM,dM']| C 5@ -...-Tm). (5.9)
We choose m’ € [0, m] maximal, aq, ..., an € Hand, forallv € [1,m'], z,,z, € Z(a,) such that
minL(a,) < w(H), 1, =1z)|—|z| and a;-...-ay |aa;". (5.10)
We claim that m" = m. Indeed, suppose that m’ < m — 1. Then rpy4q ¢ Acc(agy'a;’ - ... a ') = Ac((ab™)
(agb™'ay - ... - aw)~") (note (5.6)). Hence ryyq is minL(dp - ... - aub™")-deficient in ab~". By (5.3), we obtain min L(ao -
...~ awb™1) > s — s;_1. But we have
minL(dg - ...  ayb™') < (Lemma 3.4.3)
< minL(ag) + minL(a;) + --- 4+ minL(a,) + (2N + 3) minL(b) < ((5.4), (5.10),(5.2))
< 2sw(H)*s—1 + (m — Do(H) + 2N + 3)s,1 < (5.9)

< (2sw(H)? 4+ 2N + 3)s;_1 + M + 2w(H)sg_1N + 3N — 4)w(H)
= (2sw(H)? + 2w(H)?N 4 2N + 3)s,_1 + M + 3N — d)w(H)
= (2sw(H)? + 2w(H)*N + 2N + 4)s,_1 + 2M + 3N — d)w(H) — si_1
= Sk — Sk—1,

a contradiction.

Weseta =aq - ... - ay. Then, by construction, @’ | a and
minL(a’) < minL(ag) + minL(a;) + ...+ minL(ay) < ((5.4),(5.10))

< 2sw(H)?sp—1 + mw(H) < (5.9)

< 2sw(H)*si—1 + (2M + 2w(H)sg_1N + 3N — 3)w(H)

= (2sw(H)? + 20(H)*>N)si_1 + M + 3N — 3)w(H)

< 2sw(H)? + 2w(H)?N + 2N + 4)s,_1 + (2M + 3N — dw(H) + w(H)

=8 +wH) < (5.1) 9.
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It remains to show that a’ € @ (A). For that we set w’ = Tz; - ... -z, € Z(d') and, forI C [1, m] and i € [1, s], we define
1

w,=T"w([]z] []z Tws'wiy) €2z@) (note(5.7)).

vel vel
We have
wi il = [w'| + [wig| — [wol + Y _(Iz)] = |zu])
vel
= [w'| + |wi| — [wol = (Jwil — [wig) + D 1
vel
= [w'| +di — do — (Jwil = [wig]) + ) o (5.11)
vel
We claim that |w;| — |w;,] € X(ry - ... - 1y). Indeed, in view of (5.9), we have to show that |w;| — |w;| € dZ and

]lwil — |wi,ti|‘ < M’. The first assertion follows from dZ = (B U {0}), (5.8) and

i
wil = Jwigl = Y (wigl — [wija)).

j=ti+1
To obtain the inequality, we use P2, P3 and (5.2) to get

[lwil — [wigl| = |lwil = [wol + [wol — [wiy]|

IA

G
|di — dol + Y _|lwij1] — |wil]

j=1
<M+tN <M+ oH)minL(B)N <M + o(H)s,_1N =M.

We can now choose for every i € [1,s] a subset I; C [1, m] such that |w;| — |w;,| = Zve,i r,. Then, by (5.11),
lwy ;| = |w'| +d; — do. Hence |w'| —dp +A C L(d') and d’ € @ (A).
Case2: k=N.
Then B’ = [1, N] and B = ¢. From (5.8), we obtain, for alli € [1, s],
lwi | = wi. (5.12)

We set @’ = ao. Then d’ | a, and by (5.4) we get min L(a') < 2sw(H)?sy_1 = sy = ¥. To show that a’ € @ (A), we consider
the following factorizations of a’ (again note (5.7)):

T, Twy 'wig,, ..., Twy ' wsy,.
For every i € [1, s], we have, using (5.12),

ITwg "wig| = T| + [wig] — [wol = IT| + [wi] — |wol = T| +d; — do.
Hence |T| —dy+A CL(d)andd € ®(A). O
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