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Abstract

Let G be an additive finite abelian group, S = g1 � : : : � gl a sequence over G and
k(S) = ord(g1)

�1 + : : :+ord(gl)
�1 its cross number. Then the cross number K(G) of

G is defined as the maximal cross number of all minimal zero-sum sequences over G.
In the spirit of inverse additive number theory, we study the structure of those minimal
zero-sum sequences S over G whose cross number equals K(G). These questions are
motivated by applications in the theory of non-unique factorizations.
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1 Introduction

Let G be an additively written finite abelian group, G =Cq1 � : : :�Cqs its direct decompo-
sition into cyclic groups of prime power order, exp(G) its exponent, and set

k
�(G) =

s

∑
i=1

qi�1
qi

and K
�(G) =

1
exp(G)

+k
�(G) :

Note k�(G) = 0 and K
�(G) = 1 for G trivial. For a sequence S = g1 � : : : �gl over G,

k(S) =
l

∑
i=1

1
ord(gi)

2Q

is the cross number of S, and

K(G) = maxfk(S) j S is a minimal zero-sum sequence over Gg
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denotes the cross number of the group G. It was introduced by U. Krause in 1984 (see [18],
[19]) and since that time was studied under various aspects (see [17, 6, 7, 10, 2, 11, 1, 4]).
The cross number may be viewed as a special weighted version of the Davenport constant.
Its relevance stems from the theory of non-unique factorizations (see [21, 22, 25] and [9,
Chapter 6]).

We trivially have K
�(G)� K(G), and equality holds in particular for p-groups (see [9,

Proposition 5.1.18 and Theorem 5.5.9]). Recently, B. Girard ([15]) established a new upper
bound for the cross number, and his results support the conjecture that we always have
equality.

In the present paper, we study the inverse problem associated to the cross number, that
is we study the structure of minimal zero-sum sequences U over G with k(U) = K(G).
These investigations are motivated by questions from factorization theory (see recent work
on ∆�(G) performed in [23, 26, 3]), and they are part of inverse additive number theory
(see [20] for general information, and [8, Section 7] for a recent survey on inverse zero-
sum problems). This inverse question is simple for cyclic groups of prime power order
(see [9, Theorem 5.1.10]). The case when G is a direct sum of an elementary p-group and
an elementary q-group is studied in [12]. More recent progress is again due to B. Girard
[15, 13]. The main results of the present paper (formulated in Theorems 3.7 and 3.9) give
information on the order of elements contained in a minimal zero-sum sequence U with
k(U) = K(G). The results are sharp for p-groups and almost sharp in the general case (see
the discussion following Theorem 3.9). Among other consequences, they give a structural
characterization of the crucial equality K(G) = K

�(G) (see Theorem 3.14).

Throughout this article, let G be an additively written, finite abelian group.

2 Preliminaries

Our notation and terminology are consistent with [5] and [9]. We briefly gather some key
notions and fix the notation concerning sequences over finite abelian groups. Let N denote
the set of positive integers, P� N the set of prime numbers, and let N0 = N[f0g. For real
numbers a;b 2 R, we set [a;b] = fx 2 Z j a � x � bg. For n 2 N and p 2 P, let Cn denote a
cyclic group with n elements, nG = fng j g 2 Gg and vp(n) 2 N0 the p-adic valuation of n
with vp(p) = 1. Throughout, all abelian groups will be written additively.

An s-tuple (e1; : : : ;es) of elements of G is said to be independent (or briefly, the ele-
ments e1; : : : ;es are said to be independent) if ei 6= 0 for all i 2 [1;s] and, for every s-tuple
(m1; : : : ;ms) 2 Z

s,

m1e1 + : : :+mses = 0 implies m1e1 = : : := mses = 0 :

An s-tuple (e1; : : : ;es) of elements of G is called a basis if it is independent and G =
he1i� : : :�hesi. For a prime p 2 P, we denote by Gp = fg 2 G j ord(g) is a power of pg
the p-primary component of G, and by rp(G), the p-rank of G (which is the rank of Gp).

Let F (G) be the free abelian monoid with basis G. The elements of F (G) are called
sequences over G. We write sequences S 2 F (G) in the form

S = ∏
g2G

gvg(S) ; with vg(S) 2 N0 for all g 2 G :
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We call vg(S) the multiplicity of g in S, and we say that S contains g if vg(S) > 0. A
sequence S1 is called a subsequence of S if S1 jS in F (G) (equivalently, vg(S1)� vg(S)
for all g 2 G). If a sequence S 2 F (G) is written in the form S = g1 � : : : � gl , we tacitly
assume that l 2 N0 and g1; : : : ;gl 2 G.

For a sequence
S = g1 � : : : �gl = ∏

g2G
gvg(S) 2 F (G) ;

we call
jSj= l = ∑

g2G
vg(S) 2 N0 the length of S ;

supp(S) = fg 2 G j vg(S)> 0g � G the support of S and

σ(S) =
l

∑
i=1

gi = ∑
g2G

vg(S)g 2 G the sum of S :

The sequence S is called

� a zero-sum sequence if σ(S) = 0,

� zero-sum free if there is no nontrivial zero-sum subsequence,

� a minimal zero-sum sequence if 1 6= S, σ(S) = 0, and every S0jS with 1 � jS0j < jSj
is zero-sum free.

We denote by A(G)� F (G) the set of all minimal zero-sum sequences over G. Every
map of abelian groups ϕ : G!H extends to a homomorphism ϕ : F (G)! F (H) where
ϕ(S) = ϕ(g1) � : : : �ϕ(gl). If ϕ is a homomorphism, then ϕ(S) is a zero-sum sequence if and
only if σ(S) 2 Ker(ϕ).

Let

� D(G) denote the smallest integer l 2N such that every sequence S over G of length
jSj � l has a nontrivial zero-sum subsequence.

� η(G) denote the smallest integer l 2N such that every sequence S over G of length
jSj � l has a zero-sum subsequence T of length jT j 2 [1;exp(G)].

Then D(G) is called the Davenport constant of G, and we have D(G) = maxfjU j j U 2
A(G)g. We use

k(G) = maxfk(U) jU 2 F (G) zero-sum freeg 2Q

to denote the little cross number of G. We summarize the main properties of k(G), D(G)
and η(G) which will be used in the manuscript without further citing. Suppose that

G =Cn1 � : : :�Cnr with 1 < n1 j : : : jnr and set d
�(G) =

r

∑
i=1

(ni�1) :

Then we have trivially,

k
�(G)� k(G) ; K

�(G)� K(G) and 1+d
�(G)� D(G) :
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Equality holds for p-groups ([9, Theorem 5.5.9]). Moreover, if G = Cn1 �Cn2 with 1 �
n1 jn2, then (see [9, Theorem 5.8.3])

1+d
�(G) = D(G) and η(G) = 2n1 +n2�2 : (1)

The result on η(G) is based on the determination of the Erdős-Ginzburg-Ziv constant s(G),
and thus on Reiher’s solution ([24]) of the Kemnitz conjecture. For groups with rank r � 3,
no such results are available (see [8, Section 7] for more information around that).

3 Structural results

We start with some lemmas which are elementary and combinatorial. The main results,
Theorems 3.7, 3.9 and 3.14, are based on Equation (1) and use inductive techniques from
zero-sum theory (cf. [9, Chapter 5.7]).

Proposition 3.1.

1: There exists some U 2 A(G) with k(U) = K(G) such that maxfvp(ord(g)) j g 2
supp(U)g= vp(exp(G)) for all p 2 P.

2: Let U 2A(G) with k(U)=K(G). Then hsupp(U)i=G if and only if maxfvp(ord(g)) j
g 2 supp(U)g= vp(exp(G)) for all p 2 P.

Proof. 1. This follows from [9, Proposition 5.1.12.2].

2. If hsupp(U)i= G and p 2 P, then

vp(exp(G)) = vp
�
exp(hsupp(U)i)

�
= maxfvp(ord(g)) j g 2 supp(U)g :

Conversely, set H = hsupp(U)i and assume to the contrary that H �G. Clearly, the hypoth-
esis implies that exp(H) = exp(G). Since H 6= G, there exists p 2 P such that Gp 6= Hp.
Let g 2 supp(U) with vp(ord(g)) = vp(exp(H)) = vp(exp(G)), and let g = h+ g0, where
g0 2Hp, h 2H and p - ord(h). Then ord(g0) = pvp(exp(G)), and thus hg0i is a direct summand
in Gp so that Gp = G0

p�hg
0i, for some G0

p <Gp. Consequently, since Hp �Gp and g0 2Hp,
there must exist some e 2 G0

p nH.
Let g00 = g� (p�1)e. Since g = h+g0 with p - ord(h) and ord(g0) = pvp(exp(G)), since

Gp = G0

p�hg
0i, and since e 2 G0

p, we see (by considering vq(ord(g00)) for all q 2 P, with
separate cases for q = p and q 6= p) that ord(g00) = ord(g). Thus, since ne =2H = hsupp(U)i
for n 2 [1; p�1] (in view of e =2 H), we have

U 0 = g00ep�1Ug�1 2 A(G) with k(U 0)> k(U) = K(G) ;

a contradiction.

Proposition 3.2. The following statements are equivalent :

(a) K(G)> K(H) for all proper subgroups H � G.
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(b) For all U 2 A(G) with k(U) = K(G), we have maxfvp(ord(g)) j g 2 supp(U)g =
vp(exp(G)) for all p 2 P.

Proof. First we show (a) implies (b). Assume to the contrary that (b) fails. Then Proposition
3.1.2 implies that there exists U 2 A(G) with k(U) = K(G) and H = hsupp(U)i�G. Thus
U 2 A(H) and

K(G) = k(U)� K(H)� K(G) ;

contradicting (a).

Next we show (b) implies (a). Let H �G be a subgroup with K(H) =K(G). Then there
exists some U 2 A(H) with k(U) = K(H) = K(G). Hence (b) and Proposition 3.1.2 imply
that

G = hsupp(U)i � H ;

contradicting that H � G.

We need the following basic result (see [16, Lemma 4.5]).

Lemma 3.3. Let G =Cm1 � : : :�Cmr , with 1 < m1 j : : : jmr, and let H � G be a subgroup,
say H �= Cm0

1
� : : :�Cm0

r
, with 1 � m0

1 j : : : jm
0

r. If m0

t = mt for some t 2 [1;r], then there
exists a subgroup K � H such that K �=Cmt and K is a direct summand in both H and G.

We will also use the following simple lemma.

Lemma 3.4. If G = H�K, with H and K nontrivial, then K(G)> K(H).

Proof. Let U 2A(H) with k(U) =K(H) and jU j> 1 (possible in view of H nontrivial and
Proposition 3.1.1), let h 2 supp(U), let g 2 K nf0g, and let h0 = h� (ord(g)�1)g. Set

U 0 = gord(g)�1h0Uh�1:

Then U 0 2 A(G) with

k(U 0)� k(U)�
1

ord(h)
+

ord(g)�1
ord(g)

+
1

ord(h0)
� k(U)�

1
2
+

1
2
+

1
ord(h0)

> k(U) =K(H);

whence K(G)> K(H) follows.

Proposition 3.5.

1: For a proper subgroup H � G, the following statements are equivalent :

(a) K
�(H) = K

�(G).

(b) G is a p-group and H has a direct summand A such that H = A�B and G =
A�C, with B�=Cpl and C �=Cpm , where p2 P, l;m2N0, l < m and exp(A) j pl .

2: The following statements are equivalent :

(a) G has a proper subgroup H � G with K
�(H) = K

�(G).
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(b) G = A�C with C �= Cpm , where p 2 P, m 2 N and A � G is a subgroup with
exp(A) j pm�1.

Proof. 1. Let H � G be a proper subgroup.

We write G in the form G�=
Ll

i=1

�Lr
j=1C

p
ki; j
i

�
, with l 2N, p1; : : : ; pl distinct primes,

0� ki;1 � : : :� ki;r for all i 2 [1; l] and k1;r; : : : ;kl;r 2N. Then H may be written in the form

H �=
Ll

i=1

�Lr
j=1C

p
k0i; j
i

�
; with 0 � k0i;1 � : : : � k0i;r and k0i; j � ki; j, for all i 2 [1; l] and all

j 2 [1;r] (see [9, Apendix A]). This shows that k�(H) < k
�(G), and thus K�(H) = K

�(G)
implies that exp(H)< exp(G). Therefore we get k0i;r < ki;r for some i 2 [1; l], say w.l.o.g.

k01;r < k1;r :

Suppose G is not a p-group (so l � 2). Further suppose that H is a p-group. Then
H is nontrivial (else 1 = K

�(H) = K
�(G), which, in view of G not a p-group, contradicts

Lemma 3.4) exp(H)� 2, G = Gp�A for a direct summand A, and A has a direct summand
isomorphic to Cq for some prime power q. Hence, since H � Gp, it follows that

K
�(G)�K

�(H)� k
�(Gp)+

q�1
q

+
1

exp(G)
�k

�(H)�
1

exp(H)

�
q�1

q
+

1
exp(G)

�
1

exp(H)
�

1
exp(G)

> 0 ;

a contradiction. So H is not a p-group and hence p
k01;r
1 � � � p

k0l;r
l � 2p

k01;r
1 . Thus we have

K�(G)�K�(H) =
l

∑
i=1

r

∑
j=1

p
ki; j�k0i; j
i �1

pki; j
i

+
1

exp(G)
�

1
exp(H)

=
l

∑
i=1

r

∑
j=1

p
ki; j�k0i; j
i �1

pki; j
i

+
1

pk1;r
1 � � � pkl;r

l

�
1

p
k01;r
1 � � � p

k0l;r
l

�
p

k1;r�k01;r
1 �1

pk1;r
1

+
1

pk1;r
1 � � � pkl;r

l

�
1

p
k01;r
1 � � � p

k0l;r
l

>
p

k1;r�k01;r
1 �1

pk1;r
1

�
1

p
k01;r
1 � � � p

k0l;r
l

�
p

k1;r�k01;r
1 �1

pk1;r
1

�
1

2p
k01;r
1

� 0 ;

a contradiction. So we may assume G is a p-group.

Consequently, l = 1, exp(H) = p
k01;r
1 and exp(G) = pk1;r

1 . Hence

r�1

∑
i=1

p
k01;i
1 �1

p
k01;i
1

+1 = K
�(H) = K

�(G) =
r�1

∑
i=1

pk1;i
1 �1

pk1;i
1

+1;

whence k01;i = k1;i for all i 2 [1;r�1]. Thus H = A�B with B�=C
p

k01;r
1

, A�=
Lr�1

j=1C
p

k1; j
1

and

k01;r < k1;r. Thus, if r = 1, then the result is complete using A trivial. For r � 2, applying
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Lemma 3.3 to H � G, we see that there exists A1 � H with A1 �= C
p

k1;1
1

and A1 a direct

summand in both H and G. Moreover, we can choose the complimentary summands so that
H = A1�H 0 and G = A1�G0 with H 0 �G0, and now by iterating this application of Lemma
3.3 (next to H 0 � G0, and then so forth), we see that an appropriate isomorphic copy of A
can be chosen that is a direct summand in both H and G, which establishes (b).

Next we show (b) implies (a). Since exp(H) = pl and exp(G) = pm, the hypotheses of
(b) further imply

K
�(H) = k

�(A)+1 = K
�(G);

as desired.

2. This follows immediately from 1 (to see (b) implies (a), take H = A� pm�lC �=
A�Cpl , where l = vp(exp(A))).

For the proof of Theorem 3.9 we will need the following lemma. A sequence S 2 F (G)
is called short (in G) if 1 � jSj � exp(G).

Lemma 3.6. Let G=Cn1�Cn2 with 1< n1 jn2 and let S2F (G) be a zero-sum sequence
of length jSj> D(G) = n1 +n2�1. Then S has a short zero-sum subsequence.

Proof. Since η(G) = 2n1+n2�2 and D(G) = n1+n2�1 (see Equation (1)), the assertion
is clear for jSj � 2n1 + n2 � 2. Suppose that jSj = n1 + n2 + k with k 2 [0;n1 � 3]. By [5,
Theorem 6.7],

S0 = 0n2�2�kS

has a zero-sum subsequence W = 0lS0 of length in fn2;2n2g, where l 2 [0;n2� 2� k] and
S0 2 F (G) is a zero-sum subsequence of S. If jW j= n2, then S0 is a short zero-sum subse-
quence of S. If jW j= 2n2, then S0�1S is a zero-sum subsequence of S of length

jSj� jS0j= n1 +n2 + k� (2n2� l)� n1 +n2 + k�2n2 +n2�2� k = n1�2 � n2 :

Theorem 3.7. Let G =Cq1 � : : :�Cqs , where 1< q1 � : : :� qs = pm are prime powers with
s;m 2 N, s � 2 and p 2 P. Suppose that

Gp =Cpm1 � : : :�Cpmr ; where 1 � m1 � : : :� mr = m ;

and, for every i 2 [1;s], let Hi < G be such that G = Hi�Cqi . Let U 2 A(G) with k(U) =
K(G) and jU j= l. For every i 2 [1;s], we set

U = (hi;1 +ai;1) � : : : � (hi;l +ai;l) where hi;ν 2 Hi and ai;ν 2Cqi for all ν 2 [1; l] ;

and let
αi = maxford(ai;ν) j ν 2 [1; l]g:

1: For all i 2 [1;s� 1], we have αi = qi. If r = 1, then αs = qs, and if r � 2, then
αs � pmr�1 .

2: If G 6= Gp and αs < qs, then r � 3 and 2 � mr�2 � mr�1 < mr.
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Definition 3.8.

1. We say that G is exceptional if it has the form given in Proposition 3.5.2.

2. A sequence U satisfying the hypotheses of Theorem 3.7.2 will be called anomalous
over G.

Theorem 3.9. Let all notation be as in Theorem 3.7, and suppose G 6= Gp. Let q be a prime
divisor of exp(G), V the subsequence of U consisting of all terms g with vq(ord(g)) = γ

maximal, and suppose that hsupp(V )i = K is a q-group. Then jV j � D(qγ�1K), and if
rq(qG)� 2, then even

jV j � D(qγ�1K)+q: (2)

Let all notations be as above. If G is a p-group, then αs � pmr�1 cannot be strengthened
in general. This will be shown in Corollary 3.12. If G = Cpm , then the structure of all
zero-sum free U 2 F (G) with k(U) = k(G) is described in [9, Theorem 5.1.10]. Thus we
may assume here that s � 2. Suppose that G is not a p-group. In that case we conjecture
that αs = pmr , in other words, there are no anomalous sequences (in order to show this, it
suffices to consider the case αs = pmr�1 , as will be seen in the following proof). The fact
that the conjecture holds for rp(pG)� 2 is heavily based on Equation (1), and note that no
similar results are available for the case rp(pG)� 3.

Proof of Theorems 3:7 and 3:9. We set exp(G) = n and first proceed with a series of asser-
tions.

A1. Let q be a prime divisor of n and α = maxfvq(ord(g)) j g 2 supp(U)g. If there exists

some g 2 supp(U) with ord(g) > ∑
α

ν=β
qν = qα+1

�qβ

q�1 , where β = vq(ord(g)), then
α = vq(n).

A2. There exists at most one prime divisor q of n such that maxfvq(ord(g)) j g 2
supp(U)g< vq(n).

A3. Let q be a prime divisor of n such that maxfvq(ord(g)) j g 2 supp(U)g = vq(n).
Suppose that G = H�Cqδ and U = (h1+a1) � : : : �(hl +al), where hi 2H and ai 2Cqδ

for all i 2 [1; l]. Then maxford(ai) j i 2 [1; l]g= qδ.

A4. Let q0 and q be two prime divisors of n with qvq(n) > q0vq0 (n). Then maxfvq0(ord(g)) j
g 2 supp(U)g= vq0(n).

Proof of A1. Assume to the contrary that α < vq(n). Hence there is some e 2 G with
ord(e) = qα+1. We set ord(g) = qβt for some t 2 N and g0 = g� (q�1)e. Then ord(g0) =
qα+1t and

U 0 = g0eq�1Ug�1 2 A(G)

with
k(U 0) = k(U)�

1
qβt

+
q�1
qα+1 +

1
qα+1t

> k(U) = K(G) ;



On the Structure of Minimal Zero-Sum Sequences : : : 17

a contradiction.

Proof of A2. Assume to the contrary that there are two distinct primes q0 and q such that

α = maxfvq0(ord(g)) j g 2 Gg< vq0(n) and β = maxfvq(ord(g)) j g 2 Gg< vq(n) :

Without restriction we may suppose that q0α+1 > qβ+1. Since α < vq0(n), A1 implies that
there exists some g 2 supp(U) with ord(g) = q0α (any g 2 supp(U) with vq0(g) = α will
do).

Choose elements e1 2 G with ord(e1) = q0α+1, and e2 2 G with ord(e2) = qβ+1. Then
we have ord(g� (q0�1)e1� (q�1)e2) = q0α+1qβ+1 and

U 0 = (g� (q0�1)e1� (q�1)e2)e
q0�1
1 eq�1

2 Ug�1 2 A(G)

with

k(U 0) = k(U)�
1

q0α
+

q0�1
q0α+1 +

q�1
qβ+1 +

1
q0α+1qβ+1

> k(U) = K(G) ;

a contradiction.

Proof of A3. Assume to the contrary that maxford(ai) j i 2 [1; l]g = qα < qδ. Since
maxfvq(ord(g) j g 2 supp(U)g= vq(n), let g 2 supp(U) with vq(ord(g)) = vq(n)� δ > α.
We pick some a0 2 Cqδ with ord(a0) = qα+1 and set g0 = g� (q� 1)a0. Then ord(g0) =
ord(g) and

U 0 = aq�1
0 g0Ug�1 2 A(G)

with k(U 0)> k(U) = K(G), a contradiction.

Proof of A4. Assume to the contrary that maxfvq0(ord(g)) j g 2 supp(U)g = α < vq0(n).
Then by A2, there exists some g 2 supp(U) with

ord(g)� qvq(n) > q0vq0 (n) � q0α+1
>

α

∑
ν=0

q0ν ;

and hence A1 gives a contradiction.

In view of A4 and A3, we see that αi = qi for all qi such that p - qi. Set

α = maxfvp(ord(g)) j g 2 supp(U)g:

We now proceed to show Theorem 3.7.1 holds. To that end, we can assume α < vp(n), else
A3 implies 3.7.1. Thus A1 implies that all elements g 2 supp(U) with vp(ord(g)) = α have
ord(g) = pα.

We continue with the following assertion, which establishes the first part of Theo-
rem 3.7.1.

A5. If p jqi and i 2 [1;s�1], then αi = qi.

Proof of A5. Assume to the contrary that αi = pβ < pvp(qi). We pick some a0 2 Cpvp(qi)

with ord(a0) = pβ+1 and some e 2Cpm =Cqs with ord(e) = pm and set g0 = g� (p�1)a0�
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(pm�α�1)e, where g2 supp(U) with ord(g) = pα (possible in view of the comment before
the statement of A5). Then ord(g0) = pm and

ap�1
0 epm�α

�1Ug�1

is zero-sum free. Thus
U 0 = g0ap�1

0 epm�α
�1Ug�1 2 A(G)

and

k(U 0) = k(U)�
1
pα

+
pm�α�1

pm +
1
pm +

p�1
pβ+1 = k(U)+

p�1
pβ+1 > k(U) = K(G) ;

a contradiction.

Now suppose r = 1. Then s � 2 implies G 6= Gp. Let S denote the subsequence of U
consisting of all elements of order pα. Since σ(U) = 0, it follows that ord(σ(S)) � pα�1.
Since G 6=Gp, there is a prime divisor q of n distinct from p, and in view of A3 and A4, there
is some h 2 supp(U) with vq(h) = vq(n). Consequently, S is a proper subsequence of U .
Thus, since r = 1, it follows that S has a subsequence T of length jT j � D(pm�1Cpm) = p
such that ord(σ(T )) � pα�1 and which is a proper subsequence of U . We consider the
sequence

U 0 = T�1
σ(T )U 2 A(G) :

Then clearly k(U 0) � k(U). Iterating this process, we either eventually obtain a sequence
W 2 A(G) with k(W ) � k(U) = K(G) which satisfies the assumptions of A1, or else we
find a proper zero-sum subsequence. In the second case, we contradict that U 2 A(G), and
in the first, A1 implies that α = vp(n), a contradiction. So we may assume r � 2.

To conclude the proof of Theorem 3.7.1, suppose to the contrary that αs < pmr�1 . Then
α = mr�1 (in view of A5). Let g 2 supp(U) with vp(ord(g)) = mr�1 = α and pick some
a0 2 Cqs with ord(a0) = pα. We set g0 = g� (p� 1)a0. Then, since αs < pα = pmr�1 ,
g 2 supp(U) and a0 2Cqs , it follows that ord(g0) = ord(g) and

U 0 = ap�1
0 g0Ug�1 2 A(G);

with k(U 0)> k(U) = K(G), a contradiction. Thus Theorem 3.7.1 is established.

Next we proceed with the proof of Theorem 3.9. Thus, let q be a prime divisor of
exp(G), V the subsequence of U consisting of all terms g with vq(ord(g)) = γ maximal, and
suppose that hsupp(V )i= K is a q-group so that qγ�1K is an elementary q-group. Thus we
have ord(g) = qγ for all g 2 supp(V ). Since σ(U) = 0, it follows from the definition of V
that vq(ord(σ(V )))< γ. Let ϕ : G!G be the multiplication by qγ�1 map. Then ϕ(K)�=Cθ

q ,
where θ is the rank of qγ�1K, and D(qγ�1K) = θ(q�1)+1.

Let e1; : : : ;eθ 2 G be independent elements such that (ϕ(e1); : : : ;ϕ(eθ)) is a basis of
ϕ(K) (and thus ord(ei) = pγ for all i 2 [1;θ]). Since vq(ord(σ(V )))< γ and K is a q-group,
it follows that we can factor V = V1V2 � : : : �Vw with w 2 N and ϕ(Vi) 2 A(ϕ(K)) for all
i 2 [1;w].
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Let U 0 2 F (G) be the sequence obtained from U by replacing each subsequence Vi by
the single term σ(Vi) (i.e., U 0 = σ(V1) � : : : �σ(Vw)UV�1), let

β = maxfvq(ord(g)) j g 2 supp(U 0)g;

and let g 2 supp(U 0) be an element such that ord(g) = tqβ with t maximal. Note U 0 2A(G)

(since U 2A(G)) and β < γ (since vq(ord(σ(V )))< γ). Let g0 = g� (q�1) �
θ

∑
i=1

ei. Observe

that ord(g0) = tqγ. Define
U 00 = eq�1

1 � : : : � eq�1
θ

g0U 0g�1 :

Since vq(ei) = γ > β, it follows that U 00 2 A(G). Moreover, since ord(σ(Vi)) jqβ for all
i 2 [1;w], it follows that

k(U) = K(G)� k(U 00)� k(U)�
jV j
qγ

�
1

tqβ
+

w
qβ

+
θ(q�1)

qγ
+

1
tqγ

;

which implies that

jV j � θ(q�1)+
1
t
+qγ�β

�
w�

1
t

�
: (3)

Likewise, since U 0 2 A(G), we have

k(U) = K(G)� k(U 0)� k(U)�
jV j
qγ

+
w
qβ

; (4)

which implies
jV j � qγ�βw: (5)

Since w; t � 1, it follows from (3) that jV j � θ(q�1)+1 =D(ϕ(K)), as claimed. Thus we
now assume rq(qG)� 2.

Suppose w � 2. Then γ > β and t � 1 combined with (3) imply

jV j � θ(q�1)+1+q(2�1) = θ(q�1)+q+1;

yielding (2) and so completing the proof of Theorem 3.9. So we may instead assume w = 1.
Consequently (from the definitions of w and D(G)), it follows that

jV j � D(ϕ(K)) = θ(q�1)+1: (6)

Suppose θ = 1. Then we must have equality in (5), and thus in (4) as well, with β =
γ� 1, else (6) is contradicted. However, equality in (4) implies that U 0 is anomalous over
G, whence Theorem 3.7.1 implies q = p. However, since Theorem 3.7.2 implies that there
are no anomalous sequence over G with rp(pG)� 2, we see that this case will be complete
once we have proved Theorem 3.7.2 (whose proof will only use the case θ � 2 in Theorem
3.9). So we may assume θ � 2.

Suppose θ � 3. Let W be the subsequence of U consisting of all terms h with
vq(ord(h)) > 0. Then, since rq(qG) � 2 and θ � 3, it follows that γ = 1, and thus all
h 2 supp(W ) have ord(h)jqγ. As a result, since σ(U) = 0, it follows that σ(W ) = 0.
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Thus, since U 2 A(G), it follows that either W is trivial or W = U . Since G 6= Gp and
k(U) = K(G), either case contradicts Lemma 3.4. So we may assume θ = 2.

Let f (0)1 ; f (0)2 2 supp(V ) be a basis for K. Let β0 2 [1;γ�1] be the largest integer such
that there is some g 2 supp(U) with vq(ord(g)) = β0 and ord(g)> qβ0 ; note, since G 6= Gp,
that β0 must exist, else we obtain from Lemma 3.4 a contradiction to k(U) = K(G), just as
we did in the case θ � 3. Furthermore, since rq(qG) � 2, it follows that there are no three
independent elements of order qx with x > β0.

We now iterate the arguments used to construct U 0 and U 00. Let S0 = V , U0 = U and
γ0 = γ. Assuming S j�1, U j�1, γ j�1 > β0, f ( j�1)

1 and f ( j�1)
2 have already been constructed,

for j � 1, we define S j, U j, γ j, f ( j)
1 and f ( j)

2 as follows. Since vq(ord(σ(S j�1))) < γ j�1
and vq(ord(h)) � γ j�1 for all h 2 supp(S j�1) (this holds for j� 1 = 0 and follows, for
j�1� 1, from the subsequent definitions of S j and γ j), it follows from Lemma 3.6 (applied
to S j�1 modulo the multiplication by the pγ j�1�1-homomorphism; we are allowed to apply
it in view of γ j�1 > β0 and the conclusion of the previous paragraph) that we can factor
S j�1 = V ( j�1)

1 � : : : �V ( j�1)
w j�1 with σ(Vi) 2 qvq(n)�γ j�1+1Gq for all i and with 1 � jVij � q for

i � 2. Let
U j = σ(V ( j�1)

1 ) � : : : �σ(V ( j�1)
w j�1 )U j�1S�1

j�1;

let γ j = maxfvq(ord(g)) j g 2 supp(U j)g, let S j be the subsequence of U j consisting of all
terms h with vq(ord(h)) = γ j, and let f ( j)

1 and f ( j)
2 be two independent elements of order qγ j .

If γ j = β0, stop. Otherwise, every element h 2 supp(U j) with vq(ord(h)) = γ j has ord(h) =
qγ j , whence σ(U j) = σ(U j�1) = : : : = σ(U0) = σ(U) = 0 implies vq(ord(σ(S j))) < γ j, as
claimed previously. Let k be the index such that γk = β0 (the process must terminate as γ j

decreases with each iteration and vq(n) is finite).
By their construction, we have U j 2 A(G) for all j. Let g 2 supp(Uk) with ord(g) =

tqγk = tqβ0 and t � 2 (possible in view of the definition of β0). Then define

U 000 = f �
k�1

∏
i=0

( f (i)1 f (i)2 )q�1 �Ukg�1;

where f = g� (q� 1)
k�1
∑

i=0
( f (i)1 + f (i)2 ). Since β0 = γk < γk�1 < :: : < γ1 < γ0 = γ, since

vq(ord(h)) � γk for all h 2 supp(Uk), and since Uk 2 A(G), it follows that U 000 2 A(G).
Observe that ord( f ) = tqγ0 . Thus, since jV ( j)

i j � q for i 2 [2;w j] and jV ( j)
1 j �D(Cq�Cq) =

2q�1, for all j 2 [0;k�1], since γi�1� γi+1, for i2 [0;k�1], since t � 2, and since k� 1,
it follows that

K(G)� k(U 000) � k(U)+
k�1

∑
i=0

�
�
jSij

qγi
+

wi

qγi+1

�
�

1
tqγk

+
k�1

∑
i=0

2q�2
qγi

+
1

tqγ0

� k(U)+
k�1

∑
i=0

�
�

2q�1+(wi�1)q
qγi

+
wi

qγi+1

�
�

1
tqγk

+
k�1

∑
i=0

2q�2
qγi

+
1

tqγ0

� k(U)+
k�1

∑
i=0

�
�

2q�1
qγi

+
1

qγi+1

�
�

1
tqγk

+
k�1

∑
i=0

2q�2
qγi

+
1

tqγ0
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= k(U)+
k�1

∑
i=0

�
�

1
qγi

+
1

qγi+1

�
�

1
tqγk

+
1

tqγ0

= k(U)�
1

qγ0
+

1
qγk

�
1

tqγk
+

1
tqγ0

> k(U) = K(G);

a contradiction. Thus it remains to prove Theorem 3.7.2.

To this end, assume G 6= Gp and αs < qs. We can assume α< vp(n), else A3 contradicts
the hypotheses of Theorem 3.7.2. Thus A1 implies that all elements g 2 supp(U) with
vp(ord(g)) = α have ord(g) = pα. In view of Theorem 3.7.1, we may assume r � 2 as well,
else the proof is complete. Furthermore, applying the argument used in the case r = 1, we
may w.l.o.g. assume αs = pmr�1 . Thus α = mr�1. Let V be as defined in the hypothesis of
Theorem 3.9 with q = p, and let θ be as in the proof of Theorem 3.9. Note, in view of r� 2,
G 6= Gp and Theorem 3.7.1, that V is a nontrivial, proper subsequence of U .

Let θ0 = rp(pms�1�1G). Note θ � θ0 and qi = pmr�1 for at least θ0� 1 indices i 2 [1;s].
Suppose θ < θ0. Then there exist g1; : : : ;gθ 2 supp(U) such that all elements h 2 supp(U)
with vp(ord(h)) = mr�1 (recall that we saw in the previous paragraph that all such elements
are of order pmr�1) are contained in the subgroup hg1; : : : ;gθi. If one of these gi, say gθ, has
only its Cqs coordinate being of order pmr�1 , then the independence of the gi implies gθ is the
unique such gi, whence we can find a basis for G that includes g1; : : : ;gθ�1 and a generator
of Cqs ; applying Theorem 3.7.1 to U , using this basis to replace the representation of G
given by Cq1 � : : :�Cqs , we obtain a contradiction to αi = qi for i � s� 1 (since θ < θ0).
Therefore we may instead assume every gi has a coordinate other than Cqs of order pmr�1 .
But now, since qi = mr�1 for at least θ0� 1 � θ indices, we can find a basis for G that
includes g1; : : : ;gθ and a generator of Cqs , and then applying Theorem 3.7.1 to U , using this
basis to replace the representation of G given by Cq1 � : : :�Cqs , we obtain a contradiction
to αs � pmr�1 . So we may assume θ = θ0. Consequently, θ = θ0 � 2.

Assuming that Theorem 3.7.2 fails, we have rp(pG) � 2, whence the hypotheses of
Theorem 3.9 hold, and so in view of θ � 2, we can apply the completed case of Theorem
3.9 to U with p = q to conclude jV j � 3p� 1. If there are three independent elements
of order pmr�1 , then rp(pG) � 2 implies mr�1 = 1, whence (in view of every h 2 supp(V )
having ord(h)jpmr�1 and σ(U) = 0) V is a zero-sum subsequence, which contradicts that
U 2 A(G) (we noted in a previous paragraph that V is proper and nontrivial). Therefore
we may assume there are no three independent elements of order pmr�1 . Consequently,
jV j � 3p� 1 > η(C2

p) implies that we can find a subsequence V0jV with jV0j � p and
ord(σ(V0)) j pmr�1�1. Therefore the sequence

U 0 = σ(V0)UV�1
0 2 A(G)

satisfies

K(G)� k(U 0)� k(U)�
jV0j

pmr�1
+

1
pmr�1�1 � k(U) = K(G)

and hence k(U 0) = K(G). Iterating this process, we see that we can w.l.o.g. assume

p < 2p�1 = (3p�1)� p � jV j< 3p�1;

which contradicts Theorem 3.9 applied to V one last time, completing the proof.
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Corollary 3.10. Suppose that G is not a p-group and let U 2 A(G) with k(U) = K(G).
Then for every prime divisor p of exp(G) with rp(pG) � 2, there exists some g 2 supp(U)
with ord(g) = pvp(exp(G))t for some t � 2.

Proof. Let V be the subsequence of U consisting of all g 2 supp(U) with vp(ord(g)) =
vp(exp(G)). By Theorem 3.7 and rp(pG)� 2, we conclude that V is nontrivial and proper
(since G 6= Gp). Thus, if the corollary is false, then we can apply Theorem 3.9 to U to
conclude that

jV j � θ(p�1)+ p+1;

where θ= rp(K) and K = hsupp(V )i. If θ� 3, then rp(pG)� 2 implies that vp(exp(G))= 1,
whence V is a zero-sum subsequence of U , contradicting that U 2 A(G). Therefore θ � 2,
and we see that jV j > η(Cθ

p) (recall η(C2
p) = 3p� 2 and η(Cp) = p by (1)). Thus we can

find V0jV such that ord(σ(V0)) j pvp(exp(G))�1. Defining U 0 = σ(V0)UV�1
0 2 A(G), observe,

as in the proof of Theorem 3.7.2, that k(U 0) = k(U) = k(G). Thus iterating this process, we
can reduce the length of V until jV j < η(Cθ

p), which then contradicts Theorem 3.9 applied
once more, completing the proof.

The following corollary is thought to likely hold for all G. Here we show a very special
case.

Corollary 3.11. Suppose exp(G) = pαq and rp(pG)� 2, where p; q 2 P and α � 0. Then

K(G) =
1

exp(G)
+k(G):

Proof. By the results mentioned at the end of Section 2, the result holds for p-groups.
Therefore we may suppose that p and q are distinct and that α � 1. Let U 2 A(G) with
k(U) = K(G). Applying Corollary 3.10 to U , we find that there is some g 2 supp(U) with
ord(g) = exp(G). Thus the assertion follows from [9, Proposition 5.1.8.6].

Corollary 3.12. Let G = Cpm1 � : : :�Cpmr be a p-group with p 2 P, r 2 N and 1 � m1 �
: : :� mr.

1: For every m 2 [mr�1;mr], there exists some U 2 A(G) with k(U) = K(G) and
maxford(g) j g 2 supp(U)g= pm.

2: G is not exceptional if and only if every U 2 A(G) with k(U) = K(G) contains some
g 2 G with ord(g) = exp(G).

Proof. 1. Let m 2 [mr�1;mr] and let (e1; : : : ;er) be a basis of G with ord(eν) = pmν for
ν 2 [1;r]. We set e0r = pmr�mer and e0 = e1 + : : :+ er�1 + e0r. Then ord(e0r) = ord(e0) = pm

and

U = e0e0r
pm
�1

r�1

∏
ν=1

epmν�1
ν 2 A(G)

with k(U) = 1+∑
r�1
i=1

pmi�1
pmi = K

�(G) = K(G).
2. By definition, G is not exceptional if and only if r � 2 and mr�1 = mr. In that case,

Theorem 3.7 implies that every U 2A(G) with k(U) =K(G) contains some element g 2G
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with ord(g) = exp(G). Conversely, if G is exceptional, then Corollary 3.12.1 shows, for
r� 2, that there exists some U 2A(G) with k(U)=K(G) and maxford(g) j g2 supp(U)g<
exp(G). For r = 1, the sequence U = 0 has k(U) = 1 = K

�(Cpmr ) = K(Cpmr ).

Corollary 3.13. Suppose that G is not exceptional and let U 2 A(G) with k(U) = K(G). If
g 2 supp(U) such that ord(h) jord(g) for all h 2 supp(U), then ord(g) = exp(G).

Proof. If G is a p-group, then the assertion follows from Corollary 3.12. Therefore we may
assume G is not a p-group, and we also assume to the contrary that ord(g)< exp(G). Then
there exists some p2 P such that α = vp(ord(g))< vp(exp(G)). Thus, since ord(h) jord(g),
it follows that vp(ord(h))� α for all h2 supp(U). By Theorem 3.7, hsupp(U)i is a p-group
if and only if G is a p-group. Therefore hsupp(U)i is not a p-group, whence ord(g) is not a
power of p. Thus ord(g) = pαt for some t � 2. We pick some g0 2 G with ord(g0) = pα+1

and set g0 = g� (p�1)g0. Then ord(g0) = pα+1t and

U 0 = gp�1
0 g0Ug�1 2 A(G)

with

k(U 0)�k(U) =
p�1
pα+1 +

1
t pα+1 �

1
t pα

=
(t�1)(p�1)

t pα+1 > 0 ;

contradicting k(U) = K(G).

Theorem 3.14. Let G = G1� : : :�Gs, where s � 2 and G1; : : : ;Gs are the non-trivial pri-
mary components of G. For V 2A(G), we set θ(V ) = jfg 2 supp(V ) j ord(g) is not a prime
powergj. Then the following statements are equivalent :

(a) K(G) = K
�(G).

(b) For every V 2 A(G) with θ(V ) > 1, there exists some U 2 A(G) with k(V ) � k(U)
and θ(U)< θ(V ).

(c) There exists some U 2 A(G) with k(U) = K(G) such that

U = g
s

∏
i=1

Ui; where Ui 2 F (Gi) for all i 2 [1;s] :

Moreover, if U has the above form, then ord(g) = exp(G) and k(Ui) = k
�(Gi) for all i 2

[1;s].

Proof. First we show (a) implies (b). Let (e1; : : : ;es) be a basis of G with ord(ei) = qi a
prime power for every i 2 [1;s]. We set g = e1 + : : :+ es. Then ord(g) = exp(G) and

U = g
s

∏
i=1

eqi�1
i 2 A(G)

satisfies k(U) = K
�(G) = K(G) and θ(U) = 1 (since s � 2).

Next we show (b) implies (c). Condition (b) implies (since θ(U) = 0 is impossible for
U 2 A(G) with k(U) = K(G), in view of Theorem 3.7 and s � 2) that

K(G) = maxfk(U) jU 2 A(G) with θ(U) = 1g :
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Clearly, if U 2 A(G) with θ(U) = 1, then U has the form given in (c).

Finally, we show (c) implies both (a) and the moreover statement that follows (c). Let
exp(G) = n and let p1; : : : ; ps the distinct primes which divide n. For every i 2 [1;s], we set

αi = maxfvpi(ord(h)) j h 2 supp(Ui)g and ord
�
σ(Ui)

�
= pβi

i :

Note that βi � αi for every i 2 [1;s]. We continue with the following assertion.

A6. For every i 2 [1;s], we have βi = αi.

Proof of A6. Let i 2 [1;s]. We set a = g+σ(Ui) with a 2 G, and let ord(a) = t. Let
h 2 supp(Ui) with ord(h) = pαi

i and let g0 = a+h. Then we have pi - t and t � 2 (because
s � 2 and σ(U) = 0; else gUi is a proper zero-sum subsequence, contradicting U 2 A(G)),
ord(g) = t pβi

i and ord(g0) = t pαi
i . Thus we obtain

U 0 = g0(�σ(Ui))U(gh)�1 2 A(G)

and

K(G) � k(U 0) = k(U)�
1

t pβi
i

�
1

pαi
i
+

1
t pαi

i
+

1

pβi
i

= K(G)+
(pαi�βi

i �1)(t�1)
t pαi

i
: (7)

This implies that αi = βi.

Since g = �(σ(U1)+ : : :+σ(Us)), A6 implies that ord(h) jord(g) for all h 2 supp(Ui)
and i 2 [1;s]. Thus ord(g) = n by Corollary 3.13. Using the fact that k(Gi) = k

�(Gi) for all
i 2 [1;s], we obtain that

K
�(G) =

1
n
+k

�(G) =
1
n
+

s

∑
i=1

k
�(Gi) =

1
n
+

s

∑
i=1

k(Gi)

� K(G) = k(U) =
1
n
+

s

∑
i=1

k(Ui)�
1
n
+

s

∑
i=1

k(Gi) =
1
n
+

s

∑
i=1

k
�(Gi)

=
1
n
+k

�(G) = K
�(G) :

Now all assertions follow.
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