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Abstract

Let G be an additive finite abelian group, S = g; - ... g; a sequence over G and
k(S) =ord(g;)~' +...+ord(g;) " its cross number. Then the cross number K(G) of
G is defined as the maximal cross number of all minimal zero-sum sequences over G.
In the spirit of inverse additive number theory, we study the structure of those minimal
zero-sum sequences S over G whose cross number equals K(G). These questions are
motivated by applications in the theory of non-unique factorizations.
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1 Introduction

Let G be an additively written finite abelian group, G =C,, @ ...® C; its direct decompo-
sition into cyclic groups of prime power order, exp(G) its exponent, and set

k*(G):quiq_il and K*(G):expl(G)—i—k*(G).

Note k*(G) = 0 and K*(G) = 1 for G trivial. For a sequence S = g; -...- g; over G,

=1

is the cross number of S, and

K(G) = max {k(S) | S is a minimal zero-sum sequence over G}
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denotes the cross number of the group G. It was introduced by U. Krause in 1984 (see [18],
[19]) and since that time was studied under various aspects (see [17, 6, 7, 10, 2, 11, 1, 4]).
The cross number may be viewed as a special weighted version of the Davenport constant.
Its relevance stems from the theory of non-unique factorizations (see [21, 22, 25] and [9,
Chapter 6]).

We trivially have K*(G) < K(G), and equality holds in particular for p-groups (see [9,
Proposition 5.1.18 and Theorem 5.5.9]). Recently, B. Girard ([15]) established a new upper
bound for the cross number, and his results support the conjecture that we always have
equality.

In the present paper, we study the inverse problem associated to the cross number, that
is we study the structure of minimal zero-sum sequences U over G with k(U) = K(G).
These investigations are motivated by questions from factorization theory (see recent work
on A*(G) performed in [23, 26, 3]), and they are part of inverse additive number theory
(see [20] for general information, and [8, Section 7] for a recent survey on inverse zero-
sum problems). This inverse question is simple for cyclic groups of prime power order
(see [9, Theorem 5.1.10]). The case when G is a direct sum of an elementary p-group and
an elementary g-group is studied in [12]. More recent progress is again due to B. Girard
[15, 13]. The main results of the present paper (formulated in Theorems 3.7 and 3.9) give
information on the order of elements contained in a minimal zero-sum sequence U with
k(U) = K(G). The results are sharp for p-groups and almost sharp in the general case (see
the discussion following Theorem 3.9). Among other consequences, they give a structural
characterization of the crucial equality K(G) = K*(G) (see Theorem 3.14).

Throughout this article, let G be an additively written, finite abelian group.

2 Preliminaries

Our notation and terminology are consistent with [5] and [9]. We briefly gather some key
notions and fix the notation concerning sequences over finite abelian groups. Let N denote
the set of positive integers, P C N the set of prime numbers, and let Ng = NU{0}. For real
numbers a,b € R, we set [a,b] = {x € Z | a <x < b}. Forn € Nand p € P, let C, denote a
cyclic group with n elements, nG = {ng | g € G} and v,,(n) € Ny the p-adic valuation of n
with v, (p) = 1. Throughout, all abelian groups will be written additively.

An s-tuple (ey,...,es) of elements of G is said to be independent (or briefly, the ele-
ments ey, ..., e, are said to be independent) if ¢; # 0 for all i € [1,s] and, for every s-tuple
(my,...,mg) € Z°,

mie; +...+mge; =0 implies mie; = ... =mye; = 0.

An s-tuple (eq,...,e;) of elements of G is called a basis if it is independent and G =
(e1) @...® (es). For a prime p € P, we denote by G, = {g € G | ord(g) is a power of p}
the p-primary component of G, and by r,(G), the p-rank of G (which is the rank of G),).

Let ¥ (G) be the free abelian monoid with basis G. The elements of F (G) are called
sequences over G. We write sequences S € F (G) in the form

S=TIe“®, with vy($)eNy forall geG.
geG
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We call v, (S) the multiplicity of g in S, and we say that S contains g if vg(S) >0. A
sequence S is called a subsequence of S if S;|S in F(G) (equivalently, vy(S1) < v,(S)
for all g € G). If a sequence S € F(G) is written in the form S = gy -...- g;, we tacitly
assume that / € Ng and g;,...,8; € G.

For a sequence

S =gi-..-g = Hgvg(S) e 7(G),

geG

we call
IS|=1="Y v,(S) €Ny the length of S,
geG

supp(S) ={g € G| v,(S) >0} CG the support of S and

!
o(S)=Y gi=) v(S)geG  the sum of .
i=1 g€eG

The sequence S is called
e a zero-sum sequence if 6(S) =0,
e zero-sum free if there is no nontrivial zero-sum subsequence,

e a minimal zero-sum sequence if 1 # S, o(S) =0, and every §'|S with 1 < |§'| < |S]
is zero-sum free.

We denote by 4(G) C F(G) the set of all minimal zero-sum sequences over G. Every
map of abelian groups @: G — H extends to a homomorphism ¢: F(G) — F (H) where
o(S) =0(g1)-...-9(g). If @ is a homomorphism, then @(S) is a zero-sum sequence if and
only if 6(S) € Ker(9).

Let

e D(G) denote the smallest integer / € N such that every sequence S over G of length
|S] > 1 has a nontrivial zero-sum subsequence.

e N(G) denote the smallest integer [ € N such that every sequence S over G of length
|S| > 1 has a zero-sum subsequence 7 of length |T'| € [1,exp(G)].

Then D(G) is called the Davenport constant of G, and we have D(G) = max{|U| | U €
A(G)}. We use

k(G) =max{k(U) | U € F(G) zero-sum free} € Q

to denote the little cross number of G. We summarize the main properties of k(G), D(G)
and 1 (G) which will be used in the manuscript without further citing. Suppose that

,
G=Cp®...0C,, with 1 <ny|...|n, andset d*(G)=) (n—1).
i=1

Then we have trivially,

K*(G) <k(G), K*(G) <K(G) and 1+d*(G)<D(G).
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Equality holds for p-groups ([9, Theorem 5.5.9]). Moreover, if G = C,, ® C,, with 1 <
ni | na, then (see [9, Theorem 5.8.3])

14+d*(G)=D(G) and M(G)=2n+n—2. (1)

The result on 1(G) is based on the determination of the Erd6s-Ginzburg-Ziv constant s(G),
and thus on Reiher’s solution ([24]) of the Kemnitz conjecture. For groups with rank r > 3,
no such results are available (see [8, Section 7] for more information around that).

3 Structural results

We start with some lemmas which are elementary and combinatorial. The main results,
Theorems 3.7, 3.9 and 3.14, are based on Equation (1) and use inductive techniques from
zero-sum theory (cf. [9, Chapter 5.7]).

Proposition 3.1.

1. There exists some U € A(G) with k(U) = K(G) such that max{v,(ord(g)) | g €
supp(U)} = v,(exp(G)) for all p € P.

2. LetU € A(G) withk(U)=K(G). Then (supp(U))= G if and only if max{v,(ord(g)) |
g €supp(U)} = vp(exp(G)) forall p € P.

Proof. 1. This follows from [9, Proposition 5.1.12.2].
2. If (supp(U)) = G and p € P, then

vp(exp(G)) = v, (exp((supp(U)))) = max{v,(ord(g)) | g € supp(U)}.

Conversely, set H = (supp(U)) and assume to the contrary that H < G. Clearly, the hypoth-
esis implies that exp(H) = exp(G). Since H # G, there exists p € P such that G, # H,.
Let g € supp(U) with v, (ord(g)) = v,(exp(H)) = v,(exp(G)), and let g = h+ g', where
¢ €H,, h € H and p{ord(h). Then ord(g') = p*»(*P(9)) and thus (g') is a direct summand
in G, so that G, = G}, ® (g'), for some G, < G ,. Consequently, since H, < G, and g’ € H),
there must exist some e € G;, \H.

Let g’ = g— (p—1)e. Since g = h+ g’ with p{ord(h) and ord(g') = p*»(*P(9)), since
G, =G, ®(g'), and since e € G),, we see (by considering v,(ord(g")) for all g € IP, with
separate cases for ¢ = p and g # p) that ord(g") = ord(g). Thus, since ne ¢ H = (supp(U))
forn € [1,p—1] (in view of e ¢ H), we have

U'=g'er'Ug™' € 4(G) with k(U') >k(U)=K(G),
a contradiction. O

Proposition 3.2. The following statements are equivalent :

(a) K(G) > K(H) for all proper subgroups H < G.
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(b) For all U € A(G) with k(U) = K(G), we have max{v,(ord(g)) | g € supp(U)} =
v,(exp(G)) for all p € P.

Proof. First we show (a) implies (b). Assume to the contrary that (b) fails. Then Proposition
3.1.2 implies that there exists U € 4(G) with k(U) = K(G) and H = (supp(U)) < G. Thus
U € A(H) and

contradicting (a).

Next we show (b) implies (a). Let H < G be a subgroup with K(H) = K(G). Then there
exists some U € A(H) with k(U) = K(H) = K(G). Hence (b) and Proposition 3.1.2 imply
that

G = (supp(U)) <H,

contradicting that H < G. O
We need the following basic result (see [16, Lemma 4.5]).

Lemma 3.3. Let G=Cp, ®...®Cy,, with 1 <my|...|m,, and let H < G be a subgroup,
say H= Cpy @ ... ® Cpy, with | <m) | ... |m,. If m; =m for some t € [1,r], then there
exists a subgroup K < H such that K = C,,, and K is a direct summand in both H and G.

We will also use the following simple lemma.
Lemma 34. If G=H ®K, with H and K nontrivial, then K(G) > K(H).

Proof. LetU € A(H) with k(U) = K(H) and |U| > 1 (possible in view of H nontrivial and
Proposition 3.1.1), let & € supp(U), let g € K \ {0}, and let ' = h— (ord(g) — 1)g. Set

Ul — gord(g)—]h/Uh—l .

Then U’ € 4(G) with

1 ord(g) — 1 1 1 1 1
k(U') > k(U) - >k(U)—z+3 k(U)=K(H
() 2 k) ord(h) ord(g) ord(h') ~ ) 2ty ord(h') > k(U) =K{H),
whence K(G) > K(H) follows. O
Proposition 3.5.

1. For a proper subgroup H < G, the following statements are equivalent :

(2) K*(H) = K*(G).

(b) Gis a p-group and H has a direct summand A such that H=A® B and G =
A®C, with B=Cy and C = Cyn, where p € P, ,m € Ny, [ <m and exp(A) |p[.

2. The following statements are equivalent :

(a) G has a proper subgroup H < G with K*(H) = K*(G).
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(b) G=A8C with C = Cyn, where p € P, m € N and A < G is a subgroup with

exp(A) [ p"!
Proof. 1. Let H < G be a proper subgroup.
We write G in the form G = @, (@;1 Cpf"-f) ,with/ €N, py, ...
0<ki1 <...<kj,foralli€e[l,l] andku,...
H = @i, 1ck,> with 0 <k,

J € [1,7] (see [9, Apendix A]). This shows that k*(H) < k*(G), and thus K*(H) =

, p1 distinct primes,
yk;» € N. Then H may be written in the form
<k, and ki ; <k, for all i € [1,/] and all

K*(G)

implies that exp(H) < exp(G). Therefore we get k; . < k; , for some i € [1,[], say w.L.o.g.

/
1,r < klv"‘

Suppose G is not a p-group (so [ > 2). Further suppose that H is a p-group. Then

H is nontrivial (else 1 = K*(H) =

K*(G), which, in view of G not a p-group, contradicts

Lemma 3.4) exp(H) > 2, G = G, ® A for a direct summand A, and A has a direct summand

isomorphic to C, for some prime power g. Hence, since H < G, it follows that

g—1 1 1
K'(G)—K*(H) >k*(G)) + — + —— — k" -
g exp(G) exp(H)
g—1 1 1 1
g  exp(G) exp(H) ~ exp(G)
K K K,
a contradiction. So H is not a p-group and hence p,'" -+ pl” >2p,"". Thus we have
[ r k"-jfkt"-.i
p —1 1 1
K*(G)—K*(H) = —+ -
N N (G T
B [ r i_("-jikt,'-.i -1 1 1
- Z Z ki,j + kl.r kl r k’] r k)
l=l]=1 pi pl i 1 ’ ]
ky—K,
A 1 1
- ki, + ki, kl.r k’[, k;,
Py pl pl 1 1 ’
Ky, —K, Ky, —K,
—1 1 —1 1
1 1
> ki B kllr ;r Z k1.r k’l r Z 07
Py 2% I Py 2p-
a contradiction. So we may assume G is a p-group.
Consequently, / = 1, exp(H) = p1 "and exp(G) = plfl"'. Hence
r—1 krl.i r—1 ki
)y T +H1=K'(H) =K (G) = ) ~—+1,
i=1 Py =l Py
whencek’ll:kliforallie[ ,r—1]. Thus H = A® B with B & Ckr LA Ckl,and

K o <ki,. Thus, if r =1, then the result is complete using A tr1v1al For r > 2, applymg
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Lemma 3.3 to H < G, we see that there exists Ay < H with Aj = C 4, and A; a direct
p

summand in both H and G. Moreover, we can choose the complimentar31/ summands so that
H=A ®H and G=A,®G with H < G, and now by iterating this application of Lemma
3.3 (next to H' < G', and then so forth), we see that an appropriate isomorphic copy of A
can be chosen that is a direct summand in both H and G, which establishes (b).

Next we show (b) implies (a). Since exp(H) = p' and exp(G) = p™, the hypotheses of
(b) further imply
K*(H) =k*(A)+ 1 =K*(G),

as desired.
2. This follows immediately from 1 (to see (b) implies (a), take H = A & p’"*’C =
A®C,y, where I = v,(exp(A))). O

For the proof of Theorem 3.9 we will need the following lemma. A sequence S € F (G)
is called short (in G) if 1 < |S| < exp(G).

Lemma 3.6. Let G=C,, ®C,, with 1 <ny|ny andlet S€ F(G) be a zero-sum sequence
of length |S| > D(G) =n1+ny—1. Then S has a short zero-sum subsequence.

Proof. Since N(G) =2n; +ny —2 and D(G) = n; +ny — 1 (see Equation (1)), the assertion
is clear for |S| > 2n; + ny — 2. Suppose that |S| = n; + ny + k with k € [0,n; — 3]. By [5,
Theorem 6.7],

So=0%""*s

has a zero-sum subsequence W = 0'S’ of length in {n,,2n,}, where [ € [0,n, —2 — k] and
S" € F(G) is a zero-sum subsequence of S. If [W| = ny, then §' is a short zero-sum subse-
quence of S. If |W| = 2ny, then §’ ~15 is a zero-sum subsequence of S of length

IS|=|S'|=n+na+k—2ny—1) <mi+m+k—2nm+n—-2—k=n—-2<n. O

Theorem 3.7. Let G=C,;, ®...®C,,, where 1 <q| < ... < g, = p™ are prime powers with
s,meN, s>2andp €P. Suppose that

G, =Cym®...0Cpm, where 1<m <...<m,=m,

and, for every i € [1,s], let H; < G be such that G = H;® C,,. Let U € A(G) with k(U) =
K(G) and |U| = 1. For every i € [1,s], we set

U= (hii+ai1)-...-(hiy+ai;) where hiy€H; anda;y € Cy, forallv e [1,1],

and let
o; = max{ord(a;y) | v € [1,1]}.

1. Forall i € [1,s— 1], we have o; = q;. If r =1, then 05 = g5, and if r > 2, then
s meril-

2. If G#Gpand 0, < gy, thenr >3 and 2 < m,_ <m,_1 < m,.
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Definition 3.8.
1. We say that G is exceptional if it has the form given in Proposition 3.5.2.

2. A sequence U satisfying the hypotheses of Theorem 3.7.2 will be called anomalous
over G.

Theorem 3.9. Let all notation be as in Theorem 3.7, and suppose G # G,. Let q be a prime
divisor of exp(G), V the subsequence of U consisting of all terms g with v4(ord(g)) =
maximal, and suppose that (supp(V)) = K is a g-group. Then |V| > D(q" 'K), and if
rq(q¢G) <2, then even

V| > D(¢"'K) +q. 2)

Let all notations be as above. If G is a p-group, then o, > p™ ! cannot be strengthened
in general. This will be shown in Corollary 3.12. If G = Cpn, then the structure of all
zero-sum free U € 7 (G) with k(U) = k(G) is described in [9, Theorem 5.1.10]. Thus we
may assume here that s > 2. Suppose that G is not a p-group. In that case we conjecture
that oy, = p", in other words, there are no anomalous sequences (in order to show this, it
suffices to consider the case o, = p™ !, as will be seen in the following proof). The fact
that the conjecture holds for r,(pG) < 2 is heavily based on Equation (1), and note that no
similar results are available for the case r,(pG) > 3.

Proof of Theorems 3.7 and 3.9. We set exp(G) = n and first proceed with a series of asser-
tions.

Al. Let g be a prime divisor of n and o = max{v,(ord(g)) | g € supp(U)}. If there exists

ot+l__ P

some g € supp(U) with ord(g) > ¥{_gq" = &=, where § = v (ord(g)), then
o = vy(n).

A2. There exists at most one prime divisor ¢ of n such that max{v,(ord(g)) | g €
supp(U)} < vy(n).

A3. Let g be a prime divisor of n such that max{v,(ord(g)) | & € supp(U)} = v4(n).
Suppose that G=H ®Cs and U = (h +a1) ... (h +a;), where h; € H and a; € Cs
for all i € [1,1]. Then max{ord(a;) | i € [1,1]} = ¢°.

A4. Let ¢ and g be two prime divisors of n with g% > ¢"¢(") Then max{v, (ord(g)) |
g € supp(U)} = vy ().

Proof of Al. Assume to the contrary that o < v,(n). Hence there is some e € G with
ord(e) = ¢**!'. We set ord(g) = ¢Pr for some r € Nand g’ = g — (¢ — 1)e. Then ord(g') =
g®*t't and
U=ge'Ug ' € 4(G)
with
1 qg—1
% gott T gty

k(U') = k(U) — > k(U) =K(G),
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a contradiction. O]

Proof of A2. Assume to the contrary that there are two distinct primes ¢’ and g such that

o =max{vy(ord(g)) |g € G} <vg(n) and P =max{v,(ord(g))|ge G} <vy(n).
Without restriction we may suppose that ¢’ ol ¢Pt!. Since o < vy (n), Al implies that
there exists some g € supp(U) with ord(g) = ¢'* (any g € supp(U) with v, (g) = a will
do).

Choose elements e; € G with ord(

e1) = ¢, and e; € G with ord(ey) = ¢P*!. Then
we have ord(g — (¢’ — 1)e; — (g —1)e2) =

/oc+1q[3+1 and

U'=(g—(q' —er—(qg—ex)e] 'ed'Ug™" € A(G)

with . - . |
N q — q— _
(V) =K(U) = o+t + et + g > V) =K(G),

a contradiction. OJ

Proof of A3. Assume to the contrary that max{ord(a;) | i € [1,]]} = ¢* < ¢°. Since
max{v,(ord(g) | g € supp(U)} = v,(n), let g € supp(U) with v,(ord(g)) = v,(n) > &> o.
We pick some ag € C,s with ord(a) = g**! and set g = g — (¢ — 1)ap. Then ord(g') =
ord(g) and

U' = a(q)*lg'Ug*1 € 4(G)
with k(U') > k(U) = K(G), a contradiction. O

Proof of A4. Assume to the contrary that max{v, (ord(g)) | g € supp(U)} = a0 < vg(n).
Then by A2, there exists some g € supp(U) with

o
ord(g) > ¢" > ¢ > ¢ S Y g,

and hence A1 gives a contradiction. O

In view of A4 and A3, we see that o; = g; for all g; such that p { g;. Set

o = max{v,(ord(g)) | g € supp(U)}.

We now proceed to show Theorem 3.7.1 holds. To that end, we can assume o < v,(n), else
A3 implies 3.7.1. Thus A1 implies that all elements g € supp(U) with v, (ord(g)) = o have
ord(g) = p®.

We continue with the following assertion, which establishes the first part of Theo-
rem 3.7.1.

AS. If p|g;and i€ [1,5—1], then o;; = g;.

Proof of A5. Assume to the contrary that a; = pP < p¥»(4). We pick some ag € Cp\,pm
with ord(ag) = pP*! and some e € Cn = C,, with ord(e) = p™ and set g’ = g — (p— 1)ap —
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(p"*—1)e, where g € supp(U) with ord(g) = p* (possible in view of the comment before
the statement of A5). Then ord(g') = p™ and

is zero-sum free. Thus

and

p—1
pB+1

k(U)=k(U) - 5 +——+—+

—k(U)+
p p" pm o phtl ©)

>k(U) =K(G),

a contradiction. O

Now suppose r = 1. Then s > 2 implies G # G,. Let S denote the subsequence of U
consisting of all elements of order p*. Since 6(U) = 0, it follows that ord(c(S)) < p*~ 1.
Since G # G, there is a prime divisor g of n distinct from p, and in view of A3 and A4, there
is some & € supp(U) with v, (h) = v,4(n). Consequently, S is a proper subsequence of U.
Thus, since r = 1, it follows that S has a subsequence T of length |T| < D(p"~'Cpm) = p
such that ord(c(7)) < p*! and which is a proper subsequence of U. We consider the
sequence

U =T""o(T)U € 4(G).

Then clearly k(U') > k(U). Iterating this process, we either eventually obtain a sequence
W € A(G) with k(W) > k(U) = K(G) which satisfies the assumptions of Al, or else we
find a proper zero-sum subsequence. In the second case, we contradict that U € 4(G), and
in the first, A1 implies that o0 = vp(n), a contradiction. So we may assume r > 2.

To conclude the proof of Theorem 3.7.1, suppose to the contrary that oy < p”!'. Then
o = m,_; (in view of A5). Let g € supp(U) with v,(ord(g)) = m,_; = o and pick some
ag € C,, with ord(ag) = p*. We set g = g— (p— 1)ap. Then, since o, < p* = p"r1,
g € supp(U) and ag € Cg,, it follows that ord(g’) = ord(g) and

U'= ag*lg'Ugf1 € 4(G),

with k(U') > k(U) = K(G), a contradiction. Thus Theorem 3.7.1 is established.

Next we proceed with the proof of Theorem 3.9. Thus, let g be a prime divisor of
exp(G), V the subsequence of U consisting of all terms g with v,(ord(g)) =y maximal, and
suppose that (supp(V)) = K is a g-group so that ¢g*~'K is an elementary g-group. Thus we
have ord(g) = ¢ for all g € supp(V). Since 6(U) = 0, it follows from the definition of V
that v,(ord(6(V))) < v. Let @: G — G be the multiplication by ¢¥~! map. Then @(K) = Cg,
where 8 is the rank of ¢*~'K, and D(¢"~'K) =0(¢— 1) + 1.

Let ej,...,eg € G be independent elements such that (¢(e;),...,@(eq)) is a basis of
¢(K) (and thus ord(e;) = pY for all i € [1,0]). Since v,(ord(c(V))) < yand K is a g-group,
it follows that we can factor V =V;V,-...-V,, with w € N and ¢(V;) € 4(9(K)) for all
i€[1,w].
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Let U' € F(G) be the sequence obtained from U by replacing each subsequence V; by
the single term 6(V;) (i.e., U' = (Vi) -...-o(V,,) UV, let

B = max{v(ord(g)) | g € supp(U")},
and let g € supp(U’) be an element such that ord(g) = t¢® with t maximal. Note U’ € 4(G)
0
(since U € A(G)) and B < y (since v, (ord(c(V))) < 7). Letg' =g—(¢—1)- ¥ e;. Observe
i=1

that ord(g') = t¢q". Define
U" = e‘lrl -...-.egflg/U/gf1 .

Since v,(e;) =y > B, it follows that U" € A(G). Moreover, since ord(c(V;))|gP for all
i € [1,w], it follows that

which implies that

1 1
VIZolg=1)+ +a P (w1 ). ®
Likewise, since U’ € A4(G), we have
/ Vi, w
k(U) =K(G) 2 k(U") 2 k(U) = —+ —, )
q 4P
which implies
V| > q" Pw. (5)

Since w, t > 1, it follows from (3) that |V| > 08(¢— 1) + 1 = D(@(K)), as claimed. Thus we
now assume r,(¢G) < 2.
Suppose w > 2. Then y > 3 and ¢ > 1 combined with (3) imply

VI>6(g—1)+1+9(2—-1)=6(qg—1)+qg+1,

yielding (2) and so completing the proof of Theorem 3.9. So we may instead assume w = 1.
Consequently (from the definitions of w and D(G)), it follows that

VI <D(o(K)) =6(g— 1)+ 1. (6)

Suppose 6 = 1. Then we must have equality in (5), and thus in (4) as well, with B =
v— 1, else (6) is contradicted. However, equality in (4) implies that U’ is anomalous over
G, whence Theorem 3.7.1 implies ¢ = p. However, since Theorem 3.7.2 implies that there
are no anomalous sequence over G with r,(pG) < 2, we see that this case will be complete
once we have proved Theorem 3.7.2 (whose proof will only use the case 6 > 2 in Theorem
3.9). So we may assume 0 > 2.

Suppose 6 > 3. Let W be the subsequence of U consisting of all terms h with
vg(ord(h)) > 0. Then, since r,(¢G) < 2 and 8 > 3, it follows that y = 1, and thus all
h € supp(W) have ord(h)|q?. As a result, since 6(U) = 0, it follows that (W) = 0.
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Thus, since U € A(G), it follows that either W is trivial or W = U. Since G # G, and
k(U) = K(G), either case contradicts Lemma 3.4. So we may assume 6 = 2.

Let fl(o), fz(o) € supp(V) be a basis for K. Let B’ € [1,y— 1] be the largest integer such
that there is some g € supp(U) with v,(ord(g)) = B’ and ord(g) > ¢¥; note, since G # G,
that B’ must exist, else we obtain from Lemma 3.4 a contradiction to k(U) = K(G), just as
we did in the case 6 > 3. Furthermore, since rq(qG) < 2, it follows that there are no three
independent elements of order ¢* with x > [3'.

We now iterate the arguments used to construct U ! and U". Let So =V, Uy=U and
Yo =Y. Assuming S;_1, U;_1, Y- 1 > B, flj D and f ) have already been constructed,

for j > 1, we define S;, Uj, v;, fl and f2 as follows. Since v, (ord(c(S;j-1))) < Yj-1
and v, (ord(h)) < yj—1 for all & € supp(S;_1) (this holds for j—1 =10 and follows, for
j—12>1, from the subsequent definitions of S and v;), it follows from Lemma 3.6 (applied
to S;_; modulo the multiplication by the pYi-1~!_homomorphism; we are allowed to apply
it in view of y;_; > B’ and the conclusion of the previous paragraph) that we can factor
Si =V VP with (V) € gYm 111G, for all i and with 1 < |Vi| < ¢ for
i>2. Let

Uj=o(v/ V). coM uiasT,

let v; = max{v,(ord(g)) | g € supp(U )} let S be the subsequence of U; consisting of all

terms & with v, (ord(4)) = vy;, and let f1 ) and f2 ) be two independent elements of order g.
If y; = B/, stop. Otherwise, every element i € supp(U;) with v,(ord(h)) = y; has ord(h) =
g%, whence 6(U;) = 6(Uj-1) = ... = 6(Up) = 6(U) = 0 implies v, (ord(c(S;))) < y;, as
claimed previously. Let k be the index such that y, = B’ (the process must terminate as 7;
decreases with each iteration and v,(n) is finite).

By their construction, we have U; € A(G) for all j. Let g € supp(Uy) with ord(g) =
tqh = thl and 7 > 2 (possible in view of the definition of §’). Then define

k—

0" = £ TIUA vig™

i=0

—_

k=1 ,
where f=g— (¢ — 1);0(f1(l) —i—fz(l)). Since B' =% < Vi1 < ... <Y1 <Y =1, since
vg(ord(h)) < vk for all h € supp(Ux), and since Ui € 4(G), it follows that U" € 4(G).

Observe that ord(f) = tg™. Thus, since |V | <gqforie[2,w;] and |V | <D(C,®Cy) =
2g—1,forall j €[0,k— 1], since ¥, — 1 > i1, fori € [0,k— 1], since r > 2, and since k > 1,
it follows that

V

K@ 2" > Ko+ x-Sl ) L pec,

qr gt orgh iz g g

k—1 k—1
2g—1+(wi—1)g  w; 1 2g—2 1
> k(U - - —
- ( ) + Z‘() < q T qYi+1 tq T 1:2‘6 qvi + tqv
k—1

2g—1 1 1 kilzq—z 1
thk = in tho

v
=
S
+

7N

|
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- S0 11 1 1
N ()+Z _q“{i+qu+l _[quk—i_;quo

i=0
= KO)

1 1 1 1
_%+ﬂ_l‘q77"+l‘q7%>k(U):K(G)7

a contradiction. Thus it remains to prove Theorem 3.7.2.

To this end, assume G # G, and 0, < g;. We can assume 0, < vp(n), else A3 contradicts
the hypotheses of Theorem 3.7.2. Thus Al implies that all elements g € supp(U) with
vp(ord(g)) = a have ord(g) = p*. In view of Theorem 3.7.1, we may assume r > 2 as well,
else the proof is complete. Furthermore, applying the argument used in the case r = 1, we
may w.l.o.g. assume o, = p"'. Thus . =m,_;. Let V be as defined in the hypothesis of
Theorem 3.9 with g = p, and let 6 be as in the proof of Theorem 3.9. Note, in view of » > 2,
G # G, and Theorem 3.7.1, that V is a nontrivial, proper subsequence of U.

Let & =r,(p™1"'G). Note 8 < 6’ and ¢; = p™-! for at least ©' — 1 indices i € [1,s].
Suppose 8 < 8'. Then there exist g1, ..., g € supp(U) such that all elements 4 € supp(U)
with v, (ord(h)) = m,_ (recall that we saw in the previous paragraph that all such elements
are of order p" ) are contained in the subgroup (gi,...,ge). If one of these g;, say ge, has
only its C,; coordinate being of order p"-!, then the independence of the g; implies gg is the
unique such g;, whence we can find a basis for G that includes g1,...,g¢—1 and a generator
of Cy,; applying Theorem 3.7.1 to U, using this basis to replace the representation of G
given by C;, @ ... ® C,,, we obtain a contradiction to o; = ¢; for i < s—1 (since 6 < 0.
Therefore we may instead assume every g; has a coordinate other than C,, of order p™-!.
But now, since g; = m,_; for at least ' — 1 > 0 indices, we can find a basis for G that
includes g1, ...,8e and a generator of C,, and then applying Theorem 3.7.1 to U, using this
basis to replace the representation of G given by C,, @ ... ® C,,, we obtain a contradiction
to o, > p™-1. So we may assume 6 = 0'. Consequently, 6 = 6’ > 2.

Assuming that Theorem 3.7.2 fails, we have r,(pG) < 2, whence the hypotheses of
Theorem 3.9 hold, and so in view of 8 > 2, we can apply the completed case of Theorem
3.9 to U with p = g to conclude |V| > 3p — 1. If there are three independent elements
of order p"', then r,(pG) < 2 implies m,_; = 1, whence (in view of every & € supp(V)
having ord(h)|p™ ' and 6(U) = 0) V is a zero-sum subsequence, which contradicts that
U € 4(G) (we noted in a previous paragraph that V is proper and nontrivial). Therefore
we may assume there are no three independent elements of order p™-!. Consequently,
V| > 3p—1>n(C;) implies that we can find a subsequence V|V with [Vo| < p and
ord(c(Vp)) | p"'~". Therefore the sequence

U'=oc(Vo)UV, ' € 4(G)

satisfies

Vol 1
= e T > k(U) = K(G)

and hence k(U') = K(G). Iterating this process, we see that we can w.l.0.g. assume

K(G) > k(U") > k(U)

p<2p—-1=QBp—-1)—-p<|V|<3p—1,

which contradicts Theorem 3.9 applied to V one last time, completing the proof. O
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Corollary 3.10. Suppose that G is not a p-group and let U € A(G) with k(U) = K(G).
Then for every prime divisor p of exp(G) with r,(pG) < 2, there exists some g € supp(U)
with ord(g) = p"» (&Pt for some t > 2.

Proof. Let V be the subsequence of U consisting of all g € supp(U) with v, (ord(g)) =
v, (exp(G)). By Theorem 3.7 and r,(pG) < 2, we conclude that V is nontrivial and proper
(since G # Gp). Thus, if the corollary is false, then we can apply Theorem 3.9 to U to
conclude that

VI=6(p—1)+p+1,

where 8 =r,(K) and K = (supp(V)). If 8 > 3, then r,,(pG) < 2 implies that v, (exp(G)) = 1,
whence V is a zero-sum subsequence of U, contradicting that U € A4(G). Therefore 6 < 2,
and we see that |V| > n(Cg) (recall T](Cf,) =3p—2and n(C,) = p by (1)). Thus we can
find V|V such that ord(c(Vp)) | p'»(*P(G)=1. Defining U’ = 6(Vo)UV, ' € A(G), observe,
as in the proof of Theorem 3.7.2, that k(U’) = k(U) = k(G). Thus iterating this process, we
can reduce the length of V until |V| < n(Cg), which then contradicts Theorem 3.9 applied
once more, completing the proof. O

The following corollary is thought to likely hold for all G. Here we show a very special
case.

Corollary 3.11. Suppose exp(G) = p*q and r,(pG) < 2, where p, g € P and o.> 0. Then

1

K(G) = =500 +k(G).

Proof. By the results mentioned at the end of Section 2, the result holds for p-groups.
Therefore we may suppose that p and ¢ are distinct and that o > 1. Let U € 4(G) with
k(U) = K(G). Applying Corollary 3.10 to U, we find that there is some g € supp(U) with
ord(g) = exp(G). Thus the assertion follows from [9, Proposition 5.1.8.6]. O

Corollary 3.12. Let G=Cym @ ... D Cpynr be a p-group with p €P, r e Nand 1 <m; <
o <my.

1. For every m € [m,_y,m,|, there exists some U € A(G) with k(U) = K(G) and
max{ord(g) | g € supp(U)} = p".

2. G is not exceptional if and only if every U € A(G) with k(U) = K(G) contains some
g € G with ord(g) = exp(G).

Proof. 1. Let m € [m,—_1,m,] and let (ey,...,e,) be a basis of G with ord(ey) = p™ for
v e[l r]. Wesetel. = p™ e, and eg = e; +...+ e, +e,. Then ord(e).) = ord(ep) = p™
and

r—1
U = epe _lnee "1 ea)
v=1

with k(U) = 1+ L2} £ = K*(G) = K(G).

2. By definition, G is not exceptional if and only if » > 2 and m,_; = m,. In that case,
Theorem 3.7 implies that every U € A(G) with k(U) = K(G) contains some element g € G
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with ord(g) = exp(G). Conversely, if G is exceptional, then Corollary 3.12.1 shows, for
r > 2, that there exists some U € 4(G) with k(U) = K(G) and max{ord(g) | g € supp(U)} <
exp(G). For r = 1, the sequence U = 0 has k(U) = 1 = K*(Cpm ) = K(Cpm ). O

Corollary 3.13. Suppose that G is not exceptional and let U € A(G) with k(U) = K(G). If
g € supp(U) such that ord(h) |ord(g) for all h € supp(U), then ord(g) = exp(G).

Proof. If G is a p-group, then the assertion follows from Corollary 3.12. Therefore we may
assume G is not a p-group, and we also assume to the contrary that ord(g) < exp(G). Then
there exists some p € IP such that oo = v,,(ord(g)) < v,,(exp(G)). Thus, since ord(%)|ord(g),
it follows that v, (ord(%)) < o for all & € supp(U). By Theorem 3.7, (supp(U)) is a p-group
if and only if G is a p-group. Therefore (supp(U)) is not a p-group, whence ord(g) is not a
power of p. Thus ord(g) = p® for some ¢ > 2. We pick some gy € G with ord(gg) = p**!
and set g’ = g — (p — 1)go. Then ord(g') = p**'t and

U = gg_lglU(gfl € 4(G)

with I (=D(p—1)
! _pP— _u=1)(p—
k(U') =k(U) = potl +[poc+1 _tpj - 1 potl >0,

contradicting k(U) = K(G). O

Theorem 3.14. Let G =G| ® ... D G, where s > 2 and Gy, ..., Gy are the non-trivial pri-
mary components of G. ForV € 4(G), we set 0(V) = |{g € supp(V) | ord(g) is not a prime
power}|. Then the following statements are equivalent :

(@) K(G) = K*(G).

(b) For everyV € A(G) with (V) > 1, there exists some U € A(G) with k(V) < k(U)
and O(U) < 6(V).

(c) There exists some U € A(G) with k(U) = K(G) such that

U :gHUi, where U; € F(G;) forall i€][l,s].
i=1

Moreover, if U has the above form, then ord(g) = exp(G) and k(U;) = k*(G;) for all i €
[1,s].

Proof. First we show (a) implies (b). Let (ey,...,es) be a basis of G with ord(e;) = ¢, a
prime power for every i € [1,s]. We set g = e + ...+ ;. Then ord(g) = exp(G) and

S
U=g[]ef"' € a(6)
i=1

satisfies k(U) = K*(G) = K(G) and 8(U) = 1 (since s > 2).
Next we show (b) implies (c). Condition (b) implies (since 8(U) = 0 is impossible for
U € 4(G) with k(U) = K(G), in view of Theorem 3.7 and s > 2) that

K(G) =max{k(U) |U € 4(G) with 6(U) = 1}.
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Clearly, if U € 4(G) with 8(U) = 1, then U has the form given in (c).

Finally, we show (c) implies both (a) and the moreover statement that follows (c). Let
exp(G) =n and let py,..., p, the distinct primes which divide n. For every i € [1,s], we set

o, = max{v,, (ord(h)) | h € supp(Ui)} and ord(c(U;)) = pP.
Note that B; < a; for every i € [1,s]. We continue with the following assertion.
A6. Forevery i€ [l,s], we have B; = ;.

Proof of A6. Letic [l,s]. We set a =g+ o(U;) with a € G, and let ord(a) = 1. Let
h € supp(U;) with ord(h) = p{ and let g = a+h. Then we have p; {1t and t > 2 (because

s >2and 6(U) = 0; else gU; is a proper zero-sum subsequence, contradicting U € A(G)),

pi

ord(g) =tp}" and ord(g') = tp}". Thus we obtain

U' =¢'(—o(Ui)U(gh) "' € A(G)

and
1 1 1 1
K(G) = k(UI):k(U)—fﬁ,—Tc,-*‘ %t
tp;" Pi tpi p
o;—Pi
- —D(r—1
_ k(o e -
This implies that o; = f3;. O]

Since g = —(o(U;) + ... +0(Us)), A6 implies that ord(/) | ord(g) for all & € supp(U;)
and i € [1,s]. Thus ord(g) = n by Corollary 3.13. Using the fact that k(G;) = k*(G;) for all
i € [1,s], we obtain that

Now all assertions follow. O
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