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Abstract. Let H be an atomic monoid. For k € N let ¥"x(H) denote the set of all m € N with
the following property: There exist atoms (irreducible elements) uy,...,ux,v,...,v, € H with
Uy ... Ug =101 ... Uy,. Weshow that for a large class of noetherian domains satisfying some natural
finiteness conditions, the sets #"x(H) are almost arithmetical progressions. Suppose that H is a
Krull monoid with finite cyclic class group G such that every class contains a prime (this includes
the multiplicative monoids of rings of integers of algebraic number fields). We show that, for every
k€N, max ¥ 541 (H) = k|G| + 1 which settles Problem 38 in [4].
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1. Introduction

Let H be an atomic monoid. This means a commutative cancellative semigroup
with unit element such that every non-unit may be written as a finite product
of atoms (irreducible elements) of H. The main examples we have in mind are
the multiplicative monoids of non-zero elements of noetherian domains. If an
element a € H has a factorization of the form a = u; - ... - u, where k€ N and
uy,...,u, € H are atoms, then k is called the length of the factorization, and the set
L(a) of all possible lengths is called the set of lengths of a. Sets of lengths (and all
invariants derived from them, as the elasticity or the set of distances) are the most
investigated invariants in factorization theory.

In many natural settings (so for example if H is the multiplicative monoid of
non-zero elements of a noetherian domain) all sets of lengths are finite, and a
straightforward argument shows that either all sets of lengths are singletons or that
for every N €N there is an element a € H such that |L(a)| > N. The Structure
Theorem for Sets of Lengths states that all sets of lengths in a given monoid
are almost arithmetical multiprogressions with universal bounds for all parameters
(roughly speaking, these are finite unions of arithmetical progressions having the
same difference). In the meantime it is well known that this Structure Theorem
holds true for a great variety of monoids satisfying suitable finiteness conditions
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(which, among others, are satisfied for orders in algebraic number fields, see [13,
Section 4.7] for an overview).

In 1990, Chapman and Smith [5] introduced, for every k&N, the unions
7 «(H) of all sets of lengths containing k (see Definition 3.1), and let px(H) €
N U {oo} denote the supremum of ¥ "x(H). Obviously, unions of sets of lengths
have a simpler structure than sets of lengths themselves. If H is a Krull monoid
such that every class contains a prime, then all sets ¥ x(H) are intervals (see [10,
Theorem 4.2]). Such a result cannot be expected in general, not even for finitely
generated monoids. In Theorem 4.2 we present a structure theorem for unions of
sets of lengths under very mild finiteness assumptions: these unions are arithmeti-
cal progressions apart from possible gaps in their beginning and end part, provided
that either, px(H) = oo for some k€N, or that there is an M €N such that
pe(H) — pr—1(H) < M for all k > 2. In Section 3 we verify this assumption among
others for Krull monoids with finite Davenport constant (Corollary 3.6) and for
C-monoids (Theorem 3.10).

In Section 4 we study Krull monoids H with finite cyclic class group G such
that every class contains a prime (this setting includes rings of integers in algebraic
number fields, and more generally holomorphy rings in global fields). The problem
to determine p3(H) was first tackled in [7, Section 5] where the bound p3(H) <
(4|G| — 1)/3 was established. Furthermore, it was observed that p3(H) = |G| + 1
for |G| €3, 8]. Theorem 5.3 shows that py; 1 (H) = k|G| + 1 for all k€ N which
settles Problem 38 in [4]. The proof is based on recent results by Savchev and
Chen [21, Proposition 10] and by Pingzhi Yuan [23, Theorem 3.1].

2. Preliminaries

Our notation and terminology is consistent with [13]. We briefly gather some
key notions. Let N denote the set of positive integers, and put No = N U {0}. For
integers a,be Z we set [a,b] = {x€Z|a < x < b}. Let A, B C Z be subsets. Then
A+B={a+blacA,beB} is their sumset. We denote by A(A) the set of
(successive) distances of A, that is the set of all d€ N for which there exists
l€A such that AN[l,l+d] ={l,l+d}. The set A is called an arithmetical
progression with difference d if A(A) C {d}. Note that A()) =( and that an
arithmetical progression may be empty, finite or infinite. If A C N, we call

m supA
A) = — Ay = U
p(A) sup{n‘m,ne } minAe@% {oc}

the elasticity of A, and we set p({0}) = 1.

By a monoid we mean a commutative semigroup with unit element which
satisfies the cancellation laws. Let H be a monoid. We denote by H* the set of
invertible elements of H, by Hyeq = H/H”* = {aH " |acH} the associated re-
duced monoid, and by q(H) a quotient group of H.

A monoid F is called free (with basis P C F) if every a€F has a unique
representation in the form

a= H p@  with v,(a) €N and v,(a) =0 for almost all p € P.
peP
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In this case, F is (up to canonical isomorphism) uniquely determined by P (and
conversely P is uniquely determined by F). We set F' = % (P), and if a is as above,
then we call

la| = Z V,(a) the length of a.

peEP

The monoid H is called a Krull monoid if it is v-noetherian and complete-
ly integrally closed (equivalently, Hq is a saturated submonoid of a free
monoid F, that is Hyq = F N Q(Hreq)). If H is a Krull monoid, then its class
group is denoted by % (H) (see [13, Definition 2.4.9]). For all the terminology
used in the theory of Krull monoids we refer to one of the monographs [13],
[17], [18].

Next we recall some basic arithmetical notions from factorization theory.
We denote by .7(H) the set of atoms of H, and we call Z(H) = % (.o/ (Hyeq))
the factorization monoid of H. Further, 7 :Z(H) — Hq denotes the natural
homomorphism. For a € H the set Z(a) = Zy(a) = 7 (aH*) C Z(H) is called
the ser of factorizations of a, L(a) = Ly(a) = {|z| |z€Z(a)} C Ny is called the set
of lengths of a and ¥ (H) = {L(a)|lac H} is called the system of sets of lengths
of H.

H is said to be atomic if Z(a) # () for all a € H (equivalently, every non-unit of
H may be written as a finite product of atoms of H). H is said to be factorial if one
of the following equivalent statements is satisfied:

|Z(a)| =1 for all a€ H.

Every non-unit of H may be written as a finite product of primes of H.
H.q is a free monoid.

H is a Krull monoid with trivial class group.

For the rest of this section we suppose that H is atomic. If H is v-noetherian,
then all sets of lengths are finite (see [13, Theorem 2.2.9]), and arithmetical
invariants describing sets of lengths are well investigated. We need the following
two notions. For an element a € H we call p(a) = p(L(a)) the elasticity of a.
Furthermore,

p(H) = sup{p(L)|L€ Z(H)} € R> U {oo}
is the elasticity of H, and the set of distances of H is defined by

AH) = | A@).
)

Le ¥YH

We recall the concept of the distance of two factorizations and the concept of
local tameness, which is a basic finiteness property in factorization theory. Let
z, 7 €Z(H). Then we can write

Z=Up .U ..Uy and = up Wy Wy,
where I, m, n€No, uy,...,u;, U1, ..., 0p, Wi, ..., W, €./ (Hpq) such that

{v1,. s omp N {wy, o wy, b = 0.
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We call d(z,7') = max{m, n} € Ny the distance of z and 7. For a factorization
x€Z(H) and a€ H we define the tame degree t(a,x) to be the smallest N €
No U {oo} with the following property:

If Z(a)NxZ(H)#0 and ze€Z(a), then there exists some factorization
7 €Z(a) NxZ(H) such that d(z,7') < N.

We set t(H, x) = sup{t(a,x) |a€ H}. The monoid H is called locally tame if
t(H,u) < oo for all u € .o/ (Hyeq), and it is called tame if

t(H) = sup{t(H,u) |u € .o/ (Hreq)} < 0.

Block monoids over subsets of abelian groups are a crucial tool for the inves-
tigation of Krull monoids. Let G be an additive, abelian group, Gy C G a subset
and 7 (Gy) the free monoid with basis Gy. According to the tradition of combina-
torial number theory, the elements of % (Gy) are called sequences over Go. If
Se 7 (Gy), then

S:glgl: H ng(S>7
g€ Go

where V,(S) is the g-adic value of S (also called the multiplicity of g in S), and
Ve(S) =0 forall g€ Go\{g1,..., g} Then S| = 1=}, ; V,(S) is the length of
S, and we set —S = (—g;) ... (—g). We call supp (S) = {g1,...,8/} the sup-
port and o(S) = g1 + -+ - + g the sum of S. The monoid

#(Go) = {S€ F(Go) | a(S) =0}

is called the block monoid over Gy, and we have #(Gy) = #(G) N 7 (Gy). Itis a
Krull monoid, its elements are called zero-sum sequences over Gy, and its atoms
are the minimal zero-sum sequences (that is, zero-sum sequences without a proper
zero-sum subsequence).

For every arithmetical invariant *(H) defined for a monoid H, we write
*(Gy) instead of *(%(Gy)). In particular, we set .«Z(Gy) = o/ (%(Gy)), p(Go) =
p(%(Gy)) and A(Gy) = A(%(Gy)). We define the Davenport constant of Gy by

D(Go) = sup{|U|| U € o/(Gy)} €Ny U {0},

which is a central invariant in zero-sum theory (see [12]).

3. On the difference p;(H) — px—1(H)
Definition 3.1. Let H be an atomic monoid and k € N.

1. Let ¥"+(H) denote the set of all meN for which there exist uy,...,
uk,vl,...,vmed(H) with uy ... ug =01 ... Uy
2. IfH=H*, we set pt(H) = \(H) =k, and if H+# H*, then we define

ox(H) =sup V7 (H)eNU{oc} and MN(H)=min? (H)<[l,k].

The invariants p;(H) were introduced in [16], and the sets 7" (H) were first
studied in [5]. It was proved only recently that a v-noetherian monoid with
pr(H) < oo for all k€N is locally tame (see [15, Corollary 4.3]). In this section
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we study the growth rate (in k) of the invariants p;(H). We prove that tame
monoids, products of finitely primary monoids and C-monoids satisfy the follow-
ing property:

Either, px(H) = oo for some k € N (and then clearly p;(H) = oo for all [ > k),
or there is an M € N such that py(H) — pr—1 (H) < M for all k > 2.

This is the crucial assumption in the structure theorem for unions of sets of
lengths in Section 4.

We start with a lemma which gathers some elementary properties of the
"« (H) sets and of pi(H) and A (H) which will be used throughout without further
mentioning.

Lemma 3.2. Let H be an atomic monoid with H+#H* and k,l € N.
1. v 1(H)={1}, ke V" «(H) and
7H) = |J L

keLLe ¥(H)

2. px(H) =sup{supL|Le ¥(H), keL} =sup{supL|L€ ¥ (H), minL < k}.
3. &(H) =min{minL |Le ¥(H), keL}.
4. "Vk(H> + "VZ(H) - "VkJr[(H) and

Meri(H) < M(H) + M(H) S k+ 1< pe(H) + pi(H) < previ(H).
5. We have €V «(H) if and only if k€ 7" |(H).

Proof. The second equality in 2. follows from [13, Proposition 1.4.2.2], and all
remaining statements are straightforward. O

We would like to thank Guy Barat for the crucial argument in the proof of the
following limit assertion.

Lemma 3.3. Let H be an atomic monoid with H#H* .
1. We have

and

1 [ M(H) o N(H)
p(H)_mf{ . ’kEN}—klinolo 0

with the usual convention that 1/p(H) = 0 if p(H) = oc.

2. Let p(H) < o0 and M €N such that kp(H) — px(H) < M for all k€ N.
Then pr(H) — pr—1(H) < M + p(H) for all k = 2.

3. If there is some a € H such that p(a) = p(H) < oo, then there is an M € N
such that kp(H) — pr(H) < M for all ke N.

Proof. 1. The first assertion follows from [13, Proposition 1.4.2].
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To verify the second one, let k €N be given. By definition of p(H), we have
k < M\ (H)p(H), and hence it suffices to verify the limit assertion. We distinguish
two cases.

Case 1. p,(H) < oo for all me N. Let /€ N be maximal such that p;,(H) < k.
Then k = p;(H) +j with j€ [0, pi+1(H) — pi(H)), and we obtain that

1 - )\k(H) - )\p,(H)(H)+>\j(H) - [+
p(H) = k= pHE)+j p(H) 4+
I+ (pe1(H) —p(H) 1 p(H) 1

S OE )+ i (H) - pH) @) g (H)

Since the right hand side tends to 1/p(H) if I tends to infinity, the assertion follows.

Case 2. There is an me€ N such that p,,(H) = co. We set ¥ ,(H) NN, =
{G1,Gy,...} where m =G <G, < ..., and let Gy = 1. Let N € N be maximal
with Gy < k. Then k has a unique representatlon in the form

|
M=

a;G;, and we set S(k) = Za,-,
=0 -

where ay,...,ay €Ny, ay >0, and starting with ay, the elements ay,ay_i,. ..
are chosen to be maximal possible. This implies that, for all /€[l,N + 1],
Sy @G;i < G; and hence

:Zai+zai< ZaiGi+ ZGG G1+£
i<l izl i<l iz

Therefore for every £ > 0 there is an /€ N such that 1/G; <e/2, and thus for all
n>2G;/e we have

S(I’l) Gl 1
— < —+=<
n + Gl “
hence
1 S0
n—oo n

Since ¥ (H) NN s, = {G,Gy,...} and k = 3  a;G,, there is a product of k
atoms which has a factorization of length

N
ao + mZai < mS(k),
=1

=0.

hence

M(H) <mS(k) and 0 < lim Mn(H) < lim

n—oo n—o0 n

mS(n) _0

n
2. If k=2, then 1. implies that py(H) < kp(H) and since (k — 1)p(H) —
pr—1(H) < M, we obtain the assertion.
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3. By [13, Proposition 1.4.2.3], there exists some N € N such that p;y(H) =
iNp(H) for all i€ N. Let k = iN +j with i€ Ny and j€ [1,N]. Then

iNp(H) +j < pin(H) + pj(H) < pinyj(H)

and hence
(N +j)p(H) = N(p(H) — 1) < (iN +j)p(H) = j(p(H) = 1) < pivj(H).
Thus the assertion holds with M = N(p(H) — 1). ]

A subset U C H is called an almost generating set of H if UNH* = () and
if there exists some n€ N such that (H\H *)" C UH. We denote by .4 (U) the
smallest n€ N with this property. Let U C H be an almost generating set.
We shall need the following simple fact. If a€ H\UH and k = maxL(a), then
(H\H* )"V} ¢ UH implies that k <./ (U).

Lemma 3.4. Let H be an atomic monoid such that py(H) < oo for all ke N.
Suppose that there exist an almost generating set U C H\H”* and constants
M, M, e N such that the following two properties are satisfied:

(a) sup{supL(u)lucU} < M.
(b) Forall ac UH and all z€ Z(a) there are uc U, u€Z(u) and 7 € uZ(H) N
Z(a) such that d(z,7) < M, and minL(z"'a) < minL(a).

Then p(H) — pr—1(H) < max{.#(U) —2,M; + M,} for all k > 2.

Proof. Let k > 2. If p(H) < .#(U) — 1, then p(H) — pr—1(H) < pr(H) —
1 <.4(U) —2. Suppose that py(H) > .#(U). We choose an element a€H
with minL(a) <k, maxL(a) = px(H) and a factorization z€Z(a) with |z] =
max L(a). Since maxL(a) = .#(U), there exist uc U, u€Z(u), yeZ(H) and
7 =uy€Z(a) such that d(z,7) < M, and minL(x 'a) < minL(a). Therefore
we obtain that

pe(H) = pee1 (H) < |z = [y = [z] = |uy| + |u] < d(z,2) + [u] < My + M>.
0

Theorem 3.5. Let H be a tame monoid. Then A(H) is finite, p(H) <
max{1,t(H)} and px(H) — px—1(H) < 1 +t(H) for all k = 2. If, in particular,

(a) H is factorial, then p(H) =1 and 1 = pp(H) — pr—1(H) =1 +t(H) =1
forall k = 2.

(b) Hyeq is finitely generated, then there is an M €N such that kp(H) —
pr(H) < M for all ke N.

Proof. We may suppose that H is reduced. Then A(H) is finite by [13,
Theorems 1.6.3 and 1.6.7]. We set U = .o/ (H). Then U is an almost generating
set of H with .#(U) = 1. We verify the two properties of Lemma 3.4. Clearly,
Property (a) holds with M; = 1. Let ac H\H”* and a =u; - ... u; with s =
minL(a) and uy,...,u;€ U. Then minL(u; - ... u;) = s — 1, and there is some
7€ wyZ(H) N Z(a) such that d(z,7') < t(H,u;) < t(H). Thus Property (b) holds
with M, =t(H).
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Suppose that H is factorial. Then by definition we have p(H) =1 and
t(H) = 0, and thus the assertion follows.

Suppose that Hq4 is finitely generated. Then by [13, Theorem 3.1.4] there
is some a€H such that p(a) = p(H) <oo. Thus the assertion follows from
Lemma 3.3.3. O]

In the following corollary we deal with Krull monoids. Recall that an integral
domain R is a Krull domain if and only if its multiplicative monoid R\{0} is a
Krull monoid. Furthermore, for every finite subset Gy of any abelian group G the
Davenport constant D(Gy) is finite, but the converse does not hold (see [13,
Theorem 3.4.2 and Example 3.4.3]).

Corollary 3.6. Let H be a Krull monoid with class group G and let Gp C G
denote the set of classes containing primes. If D(Gp) < 0o, then A(H) is finite
and

D(Gp)(D(Gp) — 1)
2

Proof. Suppose that D(Gp) < co. Then [13, Theorem 3.4.10.6] implies that
D(Gp)(D(Gp) — 1

Thus H is a tame monoid, and the assertion follows from Theorem 3.5. O

o(H) — pr(H) <2+ for all k = 2.

We recall the concepts of finitely primary monoids and of weakly Krull
domains. Details may be found in [13, Sections 2.9 and 2.10]. The monoid H is
called finitely primary if there exist s, € N such that H is a submonoid of a

factorial monoid F = F* X [py,. .., ps] with s pairwise non-associated prime ele-
ments py,...,ps satisfying
H\H* Cpy-...-p;F and (p;-...-ps)"F C H.

If this is the case, then we say that H is finitely primary of rank s and exponent .
The significance of finitely primary monoids stems from their appearance in ring
theory.

A domain R is called a weakly Krull domain if it is v-noetherian and v-
max(R) = X(R) (see [13, Definition 2.10.11], and [18, Chapters 22 and 24.5]
for a more general notion of weakly Krull domains). Let R be a one-dimensional
noetherian domain. Then R is a weakly Krull domain and the monoid of v-invert-
ible v-ideals with v-multiplication coincides with the monoid of invertible ideals
with usual ideal multiplication. If moreover its integral closure R is a finitely
generated R-module, then (R :R)# {0} and, for every non-zero prime ideal
p C R, the multiplicative monoid H = R,,\{0} is finitely primary.

Theorem 3.7. Let H be a finite product of finitely primary monoids. Then A(H)
is finite, and either, py(H) = oo for some k€N, or there is an M €N such that
pe(H) — pr_1(H) < M for all k = 2.

Proof. Suppose that H = D; X D, with submonoids D;,D, of H. By
[13, Proposition 1.4.5], the set A(H) is finite if and only if A(D;) and A(D,)
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are both finite, and ¥ (H) = {L, + L, | L € ¥(D,), L, € ¥(D»)}. Therefore, set-
ting po(D1) = po(D2) = 0, we obtain that

pr(H) = sup{pe—i(D1) + pi(D2)]i € [0, k]}

for all k€ N. Thus it suffices to show the assertion for finitely primary monoids.

Let D be a finitely primary monoid of rank s and exponent .. If s = 1, then D is
tame by [13, Theorem 3.1.5], and hence the assertion follows from Theorem 3.5.
If s> 2, then A(D) is finite and minL(a) < 2« for all a€ D (again by [13,
Theorem 3.1.5]), which implies that p,, (D) = occ. O

Corollary 3.8. Let R be a weakly Krull domain, i = (R : R) # {0} and H =
(SX(R), ) the monoid of v-invertible v-ideals with v-multiplication. Then A(H) is
finite, and either, py(H) = oo for some k€N, or there is an M €N such that
or(H) — px—1(H) < M for all k > 2.

Proof. By [13, Theorem 3.7.1], A(H) is finite, and H = % (P) x T where T is a
finite product of finitely primary monoids. Thus the assertion follows from
Theorem 3.7. [

We recall the concept of C-monoids (see [13, Sections 2.9 and 2.11] for some
background information and [14] for recent progress). The monoid H is called a
C-monoid if it is a submonoid of a factorial monoid F = F * x % (P) such that
HNF* = H* and the class semigroup 4™ (H, F) is finite. If this is the case, then
there exist some € N such that

¢°FNH=q"(¢"FNH) forall gc F\F*.

We refer to these properties by saying that H is defined in F with exponent
a. A subset E C P is called H-essential if there is some x€H\F* such
that E = {peP|v,(x)>1}. H is called simple (in F) if every minimal H-
essential subset of P is a singleton. To point out a crucial example for
C-monoids, let R be a Mori domain with complete integral closure R such
that the conductor = (R: R) is non-zero and the ring R/{ and the v-class
group of R are both finite. Then the multiplicative monoid R\{0} is a C-
monoid (see [13, Theorem 2.11.9]). Note that these finiteness assumptions
are satisfied for all orders in algebraic number fields and for a large number
of higher-dimensional finitely generated algebras over Z (see [19], [20] for
details).

Proposition 3.9. Let H be a reduced C-monoid defined in a factorial monoid
F = F* x 7 (P) with exponent o € N such that P and F* are finite.

1. Let ue o/(H), pe P and ne€ Ny.

(@) If Vy(u) — nae = 2av, then up™"“ € o/ (H).
(b) If v,(u) = 4c, then up"* € o/ (H).

2. Let ac H and z€Z(a) with |z| > 2P, Then there exist an u € </ (H) with
vV, (1) < 4a for all p€ P and some 7 € uZ(H) N Z(a) such that d(z,7') < 2.

Proof. 1. See [9, Lemma 4.3].
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2. Let z=uy ... up with k>2P1 and u,...,ux €./ (H). Since k>2/7,
there are distinct i,j € [1,k], say i = 1 and j = 2, such that

V,(u1) = 4a if and only if v,(uy) >4 forall peP.

Let Q C P denote the set of all p € P with v,,(u;) > 4a. If Q = (), then u = u; and
7' = z have the required properties.

Suppose that Q0. For peQ let n, €Ny be maximal such that v, (u;)—
nya = 20 Then ny, > 2 and v, (1) — npa <3a < 4o By 1., we infer that

u=u; =u H p e/ (H) and uy=u, H pried(H).

pPeEQ PeEQ
Then u\uy = uyup, 7 = wyubus - ... - upcuZ(H) N Z(a) and d(z,7') = 2. 0
Theorem 3.10. Let H be a C-monoid.
1. The set A(H) is finite, and the following statements are equivalent:

(a) H is simple.
(b) p(H) < oc.
(¢) pr(H) < oo for all ke N.

2. If H is simple, then there exists an M € N such that py(H) — pr—1(H) < M
forall k = 2.

Proof. 1. By [13, Theorems 3.3.4 and 1.6.3] the set of distances A(H) is finite.

(a) = (b) This follows from [13, Theorem 3.3.1.2].

(b) = (c) This follows from Lemma 3.3.1.

(c) = (a) If H is not simple, then the proof of [13, Theorem 3.3.1.2] shows that
there is some k < (3a — 1)|suppp(a)| such that py(H) = oc.

2. Suppose that H is simple. By [13, Theorem 3.3.4], there is a transfer homo-
morphism to a reduced C-monoid H defined in a factorial monoid F =
F* x 7 (P) where P and F* are finite. Since py(H) = pi(H) for all ke N, it
suffices to study H. We write H instead of H. Suppose that H has exponent « and
observe that the assumptions of Proposition 3.9 are satisfied.

Since P is finite, H has a finite almost generating set U’ (see [13, Proposition
2.9.15.4]), and hence

U=UU{beH\H*|maxL(b) < 2" p(H)}
is an almost generating set of H. We verify the two properties of Lemma 3.4.
Then the assertion follows from Lemma 3.4. Clearly, Property (a) of Lemma 3.4
holds.

To verify Property (b), let ac UH be given. If minL(a) <2/, then
max L(a) < 2PIp(H) whence a€U. Thus Property (b) holds with u=a
and U = z. Suppose that minL(a) >2/"l, and let y€Z(a) with |y| = minL(a).
By Proposition 3.9.2 there exists an u€.o/(H) CU with > _,Vy(u) <
4a|P| and a factorization Y =uuy - ... - w€uZ(H)NZ(a) with d(y,y) <2
where k€N and uy,...,u; € o/(H). Then it follows that |y'| = |y| = minL(a)
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and minL(u'a) =k — 1<k =minL(a). Since H is locally tame ([13,
Theorem 3.3.3]), it follows that for every z€Z(a) there is a factorization
7 €uZ(H) NZ(a) such that d(z,7) < t(H,u). By [13, Proposition 3.3.2], it fol-
lows that

t(H,u) < |P|((2a — 1)(4a|P| +d + 1) + ) + max L(u),

where d = d(%*(H, F)) is the Davenport constant of the class semigroup. Since
¢* (H, F) is finite, we get d < oo by [13, Proposition 2.8.13], and hence Property
(b) of Lemma 3.4 holds with

My = |P|(20— 1)(4alP| +d + 1) + o) + 1. 0

4. The structure of unions of sets of lengths

Definition 4.1. Let de N and M €Ny. A subset L C Z is called an almost
arithmetical progression (AAP for short) with difference d and bound M if

L=y+(L'UL*Uul") Cy+dz

where L* is a non-empty arithmetical progression with difference d such that
minL* =0, L' C[-M,—1], L” CsupL* +[1,M] (with the convention that
L" = () if L* is infinite) and y € Z.

By definition, an AAP is a non-empty subset of Z, and for finite subsets of Z,
Definition 4.1 coincides with [13, Definition 4.2.1]. If a subset L C Z is an AAP
with difference d € N and some bound M € N, then it is an AAP with difference d
and bound M* for all M* > M. Furthermore, a non-empty subset L C N is an
arithmetical progression (with difference d) if and only if it is an AAP (with
difference d) and bound M = 0.

In Theorem 4.2 we show that — under mild assumptions — unions of sets of
lengths are AAPs (under much more restrictive assumptions unions of sets of
lengths may even turn out to be arithmetical progressions, see [10, Theorems
3.7 and 4.2]). In finitely primary monoids even sets of lengths are AAPs
(see [13, Theorem 4.3.6]). However, already in Krull monoids with finite class
group, sets of lengths need not be AAPs but have a more general structure
(see [13, Section 4.7] and [22]). We point out that only in very special cases
the sets 7"x(H) have been written down explicitly. In [1, Theorem 2.6] this
is done for numerical monoids generated by an arithmetical progression. In
[13, Section 7.3], the systems of sets of lengths #(G) are explicitly de-
termined for some small groups G, from which it is easy to obtain the
771(G) sets.

The asymptotic formula in Theorem 4.2.2 was first proved for Dedekind
domains with finite class group such that every class contains a prime ideal
(see [6, Theorem 6]), and then for atomic monoids with |A(H)| =1 (see [2,
Corollary 7]).

Theorem 4.2. Let H be an atomic monoid with finite non-empty set of distances
A(H) and d = min A(H). Suppose that either, py(H) = oo for some k € N, or that
there is an M € N such that py(H) — px—1(H) < M for all k > 2.
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1. There exist constants k™ and M* € N such that for all k > k*, ¥ " (H) is an
AAP with difference d and bound M*. Moreover, if pr(H) < oo for all k € N, then
the assertion holds for k* = 1.

2. We have
. 7H) 1 1
1 =— H) —— ).
ok a\"H) =2

Proof. 1. Since V" (H) C \(H) + dN for all k€ N (see [10, Lemma 3.6.1]),
it remains to show that there exist constants k™, M™* € N such that, for all k > k™,

P (H) 0 [k, pe(H) = M*] and #"%(H) 0 [\ (H) + M K]

are arithmetical progressions with difference d (recall that by our conventions, the
empty set is an arithmetical progression, and if px(H) = oo, then [k, px(H)—
M *] — N > k).

1. (a) Since d€A(H), there is an element a€H and meN such that
{m,m+d} C L(a). Since min A(H) = gcd A(H) (see [13, Proposition 1.4.5]),
Y =p(A(H)) —1€N. Then V* = {ko,ko+d,... ko+d} CL(a¥) where
ko = 1m. Therefore we have V* C v (H), say

Vi (H) =V UV u v

where min V' = A\ (H), max V' <ko, ko + 1d < min V" and sup V"' = py, (H).
Now we pick some k* > 2k, and if there is some /€ N with p,(H) = oo, let [
denote the smallest such /€ N, and we suppose further that k* — ko > .
Pick k > k*. Then

(V' 4+ 7 kty (H) U (VE A+ S iy (H)) U (V" 4V gy (H))
=7"t(H) + 7 k=1, (H) C V"((H).
Clearly, we have k€ V* + ¥, (H). Since max A(¥ s, (H)) < max A(H) and
A(Y i, (H)) C dN (see [10, Lemma 3.6]), it follows that V* + ¥4 (H) is

an arithmetical progression with difference d. If there is some /€N such that
pi(H) = oo, then py—k,(H) = px(H) = oo and

(V*+ 9 4 (H) NN sy =k +dNg =74 (H) NN 5.
Suppose that p;(H) < oo for all /€ N. Then
max ¥y (H) — max(V* + 7" 4, (H)) = pe(H) — max V* — pi 4 (H) < koM,
and hence
(V¥ + 9 4o (H)) O [k, pi(H) — koM = "« (H) O [k, px(H) — koM]

is an arithmetical progression with difference d. Thus the assertion follows with
M* = koM.

1. (b) By 1.(a), there are k*,M* €N such that for all k> k*, the set
¥ (H) N [k, pr(H) — M*] is an arithmetical progression with difference d. With-
out restriction we may suppose that M* > k*.
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Let k> k™ and [ = \(H). We show that ¥ ", (H) N[l +M*, k] is an arith-
metical progression with difference d. Let m €[l + M™ k| such that k —m is a
multiple of d. In order to show that me ¥ (H), we verify that k€ ¥",,(H).
Since

k<p(H) and [+M*" <m,
it follows that k < p;(H) < p,_,,+(H) and hence
k+M* <p, o H)+M" <p, ox(H)+ py(H) < pu(H).

Since k€m + dNg with k < p,(H) — M* and ¥",,(H) N [m, p,(H) — M*] is an
arithmetical progression with difference d (because m > [ + M* > k*), it follows
that ke 7v",,,(H).

1. (c) Suppose that p;(H) < oo for all k€ N, and that the assertion holds with
the constants k* and M™ € N. Since for all k€ [1,k* — 1],

7w(H) = ((Me(H), k= 1] 077 (H)) ULk} U ([k + 1, pe(H)] 077 (H))

is an AAP with bound M’ = max{k — A\¢(H), px(H) — k|k € [1, k™ — 1]}, it follows
that for all k€N the sets 7 "x(H) are AAPs with difference d and bound
M = max{M* M'}.

2. If there is some k € N such that py(H) = oo, then both the left and the right
hand side of the asserted equation are infinite (see Lemma 3.3.1). Suppose that
pr(H) < oo for all k€N. By 1. there are k* € N and M* € dN such that, for all
k= k*, v (H) N [M(H) +M*, pp(H) — M*] is an arithmetical progression with
difference d. Thus for all k > k™ we obtain that

(p(H) = M*) — (M (H) + M*) +d < 17 W(H)] _ Pk(H)_)\k(H)+d_

NS

dk k dk
Since, by Lemma 3.3.1,
pu(H) () 1
e ) and i =y
the assertion follows. O

5. Krull monoids with cyclic class groups

In Krull monoids with class group G all invariants dealing with lengths of
factorizations can be studied in the associated block monoid (this is the monoid
of zero-sum sequences) over the set of divisor classes Gp C G containing primes.
This monoid is the link — which is closest if Gp = G — between factorization
theory on the one side and additive group theory and combinatorial number theory
on the other side. Results from these areas are fundamental for precise arithmetical
results in Krull monoids in contrast to abstract finiteness results for more general
noetherian domains.

Let H be a Krull monoid with finite class group G such that every class
contains a prime, and let k € N. Then one easily gets (see [13, Section 6.3]) that



W. Gao and A. Geroldinger

pr(H) =k if |G| < 2, and that in case |G| > 3

pu(H) = kD(G) and kD(G) + 1 < pau1 (H) < kD(G) + {@J

The only precise results so far show that — in certain types of groups —
pax+1(H) attains the upper bound, and this is always done by explicit construc-
tions. It was first observed by Chapman and Smith that in case of cyclic class
groups the situation should be different. They conjecture that p3(H) equals the
lower bound, that is p3(H) = |G| + 1, and they verify this if |G| €[3,8] (see
[7], [4]). Theorem 5.3 settles their conjecture. Our approach is based on a
recent result on the structure of long minimal zero-sum sequences over cyclic
groups, which was achieved independently by Savchev and Chen [21] and by
Yuan [23].

We start with the definition of the index of a zero-sum sequence (see [3], [11],
[8]), and then we state the crucial structural result.

Definition 5.1. Let G be an abelian group.
1. Let g€ G be a non-zero element with ord(g) = n < oo. For a sequence
S=(mg)-...-(mg), whereleNy and ny,...,n€[l,n],
we define

nttn
ISly = —=———-

2. Let S be a zero-sum sequence for which (supp(S)) C G is a finite cyclic
group. Then we call

index(S) = min{|[S]|,|g € G with (supp(S)) = (g)} € No

the index of S.

3. If G is finite cyclic, then let I(G) denote the smallest integer /€ N such
that every minimal zero-sum sequence S€ .7 (G) of length |S| > satisfies
index(S) = 1.

If G is a finite cyclic group and S € %(G), then obviously
index(S) = min{||S||,|g € G with supp(S) C (g)}
= min{||S|,[g € G with G = (g)}.

Proposition 5.2. Let G be a cyclic group of order n = 1. If n€{1,2,3,4,5,7},
then |(G) = 1, and otherwise we have |(G) = | %] + 2.

Proof. See [23, Theorem 3.1] or [21, Proposition 10]. O

Theorem 5.3. Let H be a Krull monoid with cyclic class group G of order
|G| = 3. Then for every k€ N we have

p(H) < k|G| and pye+1(H) < k|G| + 1.

Moreover, if every class contains a prime, then equality holds.
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Proof. Without restriction we may suppose that H is reduced. Then there
is a free monoid F = % (P) such that H— F is a divisor theory and G =
q(F)/q(H). Let Gp C G denote the set of classes containing primes, and let
ke N. Then [13, Theorem 3.4.10] implies that pr(H) = pr(Gp) < pi(G). It
is straightforward that py(G) = k|G|, and that p(G) = co whenever G is infi-
nite and k > 2 (see [13, Proposition 6.3.1] for details). Suppose G is finite.
Since k|G| + 1 = pu(G) + p1(G) < pu+1(G), it is sufficient to prove that
p2u+1(G) < k|G| + 1.

We set n = |G| and assume to the contrary that there is some k € N such that
p2u+1(G) = kn + 2. Let k€ N be minimal with this property whence pa—;(G) =
(k—1)n+1 and py+1(G) = kn + 2. Then there exists a B € #(G) and minimal
zero-sum sequences Uy, ..., Uxy1, Vi, ..., V, with p = py1(G) and

B:Ul'...'U2k+1:Vl'...'Vp. (*)
We may suppose that |B| is maximal such that an equation (x) holds. Furthermore,
we may suppose that |Uj| = -+ = |Uxy1/|, and since py(G) = kn, it follows that

01 B whence |Uyy1| = 2.
Suppose there is some h € G such that (—h)h|B, say h|V, and (—h)|V,. Then

ViVa = ((=h)h)VS  with V}e./(G).

Thus we may suppose that there is an /€ N such that [Vi| =---=|V/| =2,
3<|Vip| < -+ <1|V,| and there is no heG with (=h)h|Viyy-...-V,. If
¢ = 0, then
U -...- U
p < |13—2k+1| < kn+ ]7

a contradiction. Thus we have £ > 1.

Suppose there is some i€ [1,2k + 1] such that index(U;) = 1. Then there
is some g€ G with ord(g) = n such that U; = (a1g) - ... (a,g) with s =|U;|,
ai,...,as€[l,n] and ||Ui||, = 1. Assume to the contrary that s <n. Then there
is some v€([l,s], say v = 1, with a; > 2, and there is some j€ [1, p] such that
(ai1g)|V;. Then

U= (mg) 'g((a1 = )g)Ui € #(G), V] = (amig) 'g((a1 — 1)g)V;€ #(G)
and
B =U"UjU ... - Uy =V, ViV -V,

Since [|Uil|, = ||[U][|, = 1, it follows that U;€ .«/(G). Since p = py+1(G), it
follows that V/ € ./(G). But this is a contradiction to the maximality of |B|.
Thus s = n and U; = g".
If [Uy| < [ %] + 1, then
Ui - ... U1 Un Uy
2

1 n n
< - (2k—1 —|+1+]|z|+1)< L,
2(( k )n+L2J+ +{2J+ ) kn +

N

p
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a contradiction. Thus |U;| = - = |Ux| = | 4| + 2, and Proposition 5.2 implies
that index(U,) = - -- = index(Uy) = 1. Therefore, for all i€ [l,2k], we have
U; = g! where g; € G with ord(g;) = n.

Suppose there are distinct i,j € [1,2k + 1] such that U; = g" and U; = (—g)"
for some g€ G. Then ¢ > n, and after renumbering if necessary we may suppose
that Vi =--- =V, = (—g)g. Since (UiU;) 'Ui-... - Ugysr = Vus1-...-V,, it
follows that (k — 1)n+ 1 = py—1(G) = (k — 1)n + 2, a contradiction. Thus there
are no two U;, U; of such a form and hence ¢ < |Up 1.

Suppose that index(Uzy1) = 1. Then Uiy = &y for some gy 1 € G with
ord(ga+1) = n. Since £ > 1, it follows that g1 € {—g1,..., —gx}, a contradic-
tion. Thus index(Upy..1) = 2. Now Proposition 5.2 implies that

n
|Uny1] < LEJ +1,

and therefore we obtain that

+‘B|—2£: |B|+€:2kn+|U2k+1|+€

</
P 3 3 3
< 2kﬂ+2|U2k+1| < 2kn+n+2 <kn+%,
3 3 3
a contradiction. O]
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