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Abstract. Let H be an atomic monoid. For k 2N let VkðHÞ denote the set of all m2N with
the following property: There exist atoms (irreducible elements) u1; . . . ; uk; v1; . . . ; vm 2H with
u1 � . . . � uk ¼ v1 � . . . � vm. We show that for a large class of noetherian domains satisfying some natural
finiteness conditions, the sets VkðHÞ are almost arithmetical progressions. Suppose that H is a
Krull monoid with finite cyclic class group G such that every class contains a prime (this includes
the multiplicative monoids of rings of integers of algebraic number fields). We show that, for every
k2N, maxV2kþ1ðHÞ ¼ kjGj þ 1 which settles Problem 38 in [4].
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1. Introduction

Let H be an atomic monoid. This means a commutative cancellative semigroup
with unit element such that every non-unit may be written as a finite product
of atoms (irreducible elements) of H. The main examples we have in mind are
the multiplicative monoids of non-zero elements of noetherian domains. If an
element a2H has a factorization of the form a ¼ u1 � . . . � uk, where k2N and
u1; . . . ; uk 2H are atoms, then k is called the length of the factorization, and the set
LðaÞ of all possible lengths is called the set of lengths of a. Sets of lengths (and all
invariants derived from them, as the elasticity or the set of distances) are the most
investigated invariants in factorization theory.

In many natural settings (so for example if H is the multiplicative monoid of
non-zero elements of a noetherian domain) all sets of lengths are finite, and a
straightforward argument shows that either all sets of lengths are singletons or that
for every N 2N there is an element a2H such that jLðaÞj5N. The Structure
Theorem for Sets of Lengths states that all sets of lengths in a given monoid
are almost arithmetical multiprogressions with universal bounds for all parameters
(roughly speaking, these are finite unions of arithmetical progressions having the
same difference). In the meantime it is well known that this Structure Theorem
holds true for a great variety of monoids satisfying suitable finiteness conditions



(which, among others, are satisfied for orders in algebraic number fields, see [13,
Section 4.7] for an overview).

In 1990, Chapman and Smith [5] introduced, for every k2N, the unions
VkðHÞ of all sets of lengths containing k (see Definition 3.1), and let �kðHÞ2
N [ f1g denote the supremum of VkðHÞ. Obviously, unions of sets of lengths
have a simpler structure than sets of lengths themselves. If H is a Krull monoid
such that every class contains a prime, then all sets VkðHÞ are intervals (see [10,
Theorem 4.2]). Such a result cannot be expected in general, not even for finitely
generated monoids. In Theorem 4.2 we present a structure theorem for unions of
sets of lengths under very mild finiteness assumptions: these unions are arithmeti-
cal progressions apart from possible gaps in their beginning and end part, provided
that either, �kðHÞ ¼ 1 for some k2N, or that there is an M2N such that
�kðHÞ � �k�1ðHÞ4M for all k5 2. In Section 3 we verify this assumption among
others for Krull monoids with finite Davenport constant (Corollary 3.6) and for
C-monoids (Theorem 3.10).

In Section 4 we study Krull monoids H with finite cyclic class group G such
that every class contains a prime (this setting includes rings of integers in algebraic
number fields, and more generally holomorphy rings in global fields). The problem
to determine �3ðHÞ was first tackled in [7, Section 5] where the bound �3ðHÞ4
ð4jGj � 1Þ=3 was established. Furthermore, it was observed that �3ðHÞ ¼ jGj þ 1
for jGj 2 ½3; 8�. Theorem 5.3 shows that �2kþ1ðHÞ ¼ kjGj þ 1 for all k2N which
settles Problem 38 in [4]. The proof is based on recent results by Savchev and
Chen [21, Proposition 10] and by Pingzhi Yuan [23, Theorem 3.1].

2. Preliminaries

Our notation and terminology is consistent with [13]. We briefly gather some
key notions. Let N denote the set of positive integers, and put N0 ¼ N [ f0g. For
integers a; b2Z we set ½a; b� ¼ fx2Z j a4 x4 bg. Let A;B � Z be subsets. Then
Aþ B ¼ faþ b j a2A; b2Bg is their sumset. We denote by �ðAÞ the set of
(successive) distances of A, that is the set of all d2N for which there exists
l2A such that A \ ½l; lþ d� ¼ fl; lþ dg. The set A is called an arithmetical
progression with difference d if �ðAÞ � fdg. Note that �ð;Þ ¼ ; and that an
arithmetical progression may be empty, finite or infinite. If A � N, we call

�ðAÞ ¼ sup

�
m

n

���� m; n2A

�
¼ supA

minA
2Q5 1 [ f1g

the elasticity of A, and we set �ðf0gÞ ¼ 1.
By a monoid we mean a commutative semigroup with unit element which

satisfies the cancellation laws. Let H be a monoid. We denote by H � the set of
invertible elements of H, by Hred ¼ H=H � ¼ faH � j a2Hg the associated re-
duced monoid, and by qðHÞ a quotient group of H.

A monoid F is called free (with basis P � FÞ if every a2F has a unique
representation in the form

a ¼
Y
p 2 P

pvpðaÞ with vpðaÞ2N0 and vpðaÞ ¼ 0 for almost all p2P:
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In this case, F is (up to canonical isomorphism) uniquely determined by P (and
conversely P is uniquely determined by F). We set F ¼ FðPÞ, and if a is as above,
then we call

jaj ¼
X
p 2 P

vpðaÞ the length of a:

The monoid H is called a Krull monoid if it is v-noetherian and complete-
ly integrally closed (equivalently, Hred is a saturated submonoid of a free
monoid F, that is Hred ¼ F \ qðHredÞ). If H is a Krull monoid, then its class
group is denoted by CðHÞ (see [13, Definition 2.4.9]). For all the terminology
used in the theory of Krull monoids we refer to one of the monographs [13],
[17], [18].

Next we recall some basic arithmetical notions from factorization theory.
We denote by AðHÞ the set of atoms of H, and we call ZðHÞ ¼ FðAðHredÞÞ
the factorization monoid of H. Further, � : ZðHÞ ! Hred denotes the natural
homomorphism. For a2H the set ZðaÞ ¼ ZHðaÞ ¼ ��1ðaH � Þ � ZðHÞ is called
the set of factorizations of a, LðaÞ ¼ LHðaÞ ¼ fjzj j z2ZðaÞg � N0 is called the set
of lengths of a and LðHÞ ¼ fLðaÞja2Hg is called the system of sets of lengths
of H.

H is said to be atomic if ZðaÞ 6¼ ; for all a2H (equivalently, every non-unit of
H may be written as a finite product of atoms of H). H is said to be factorial if one
of the following equivalent statements is satisfied:

� jZðaÞj ¼ 1 for all a2H.
� Every non-unit of H may be written as a finite product of primes of H.
� Hred is a free monoid.
� H is a Krull monoid with trivial class group.

For the rest of this section we suppose that H is atomic. If H is v-noetherian,
then all sets of lengths are finite (see [13, Theorem 2.2.9]), and arithmetical
invariants describing sets of lengths are well investigated. We need the following
two notions. For an element a2H we call �ðaÞ ¼ �ðLðaÞÞ the elasticity of a.
Furthermore,

�ðHÞ ¼ supf�ðLÞjL2LðHÞg2R51 [ f1g
is the elasticity of H, and the set of distances of H is defined by

�ðHÞ ¼
[

L 2LðHÞ
�ðLÞ:

We recall the concept of the distance of two factorizations and the concept of
local tameness, which is a basic finiteness property in factorization theory. Let
z; z0 2ZðHÞ. Then we can write

z ¼ u1 � . . . � ulv1 � . . . � vm and z0 ¼ u1 � . . . � ulw1 � . . . � wn;

where l; m; n2N0, u1; . . . ; ul; v1; . . . ; vm; w1; . . . ;wn2AðHredÞ such that

fv1; . . . ; vmg \ fw1; . . . ;wng ¼ ;:
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We call dðz; z0Þ ¼ maxfm; ng2N0 the distance of z and z0. For a factorization
x2ZðHÞ and a2H we define the tame degree tða; xÞ to be the smallest N 2
N0 [ f1g with the following property:

If ZðaÞ \ xZðHÞ 6¼ ; and z2ZðaÞ, then there exists some factorization
z0 2ZðaÞ \ xZðHÞ such that dðz; z0Þ4N.

We set tðH; xÞ ¼ supftða; xÞ j a2Hg. The monoid H is called locally tame if
tðH; uÞ<1 for all u2AðHredÞ, and it is called tame if

tðHÞ ¼ supftðH; uÞ j u2AðHredÞg<1:

Block monoids over subsets of abelian groups are a crucial tool for the inves-
tigation of Krull monoids. Let G be an additive, abelian group, G0 � G a subset
and FðG0Þ the free monoid with basis G0. According to the tradition of combina-
torial number theory, the elements of FðG0Þ are called sequences over G0. If
S2FðG0Þ, then

S ¼ g1 � . . . � gl ¼
Y
g2G0

gvgðSÞ;

where vgðSÞ is the g-adic value of S (also called the multiplicity of g in S), and
vgðSÞ ¼ 0 for all g2G0nfg1; . . . ; glg. Then jSj ¼ l ¼

P
g 2G0

vgðSÞ is the length of
S, and we set �S ¼ ð�g1Þ � . . . � ð�glÞ. We call supp ðSÞ ¼ fg1; . . . ; glg the sup-
port and �ðSÞ ¼ g1 þ � � � þ gl the sum of S. The monoid

BðG0Þ ¼ fS2FðG0Þ j �ðSÞ ¼ 0g
is called the block monoid over G0, and we have BðG0Þ ¼ BðGÞ \FðG0Þ. It is a
Krull monoid, its elements are called zero-sum sequences over G0, and its atoms
are the minimal zero-sum sequences (that is, zero-sum sequences without a proper
zero-sum subsequence).

For every arithmetical invariant �ðHÞ defined for a monoid H, we write
�ðG0Þ instead of �ðBðG0ÞÞ. In particular, we set AðG0Þ ¼ AðBðG0ÞÞ, �ðG0Þ ¼
�ðBðG0ÞÞ and �ðG0Þ ¼ �ðBðG0ÞÞ. We define the Davenport constant of G0 by

DðG0Þ ¼ supfjUj j U 2AðG0Þg2N0 [ f1g;
which is a central invariant in zero-sum theory (see [12]).

3. On the difference �kðHÞ � �k�1ðHÞ
Definition 3.1. Let H be an atomic monoid and k2N.

1. Let VkðHÞ denote the set of all m2N for which there exist u1; . . . ;
uk; v1; . . . ; vm2AðHÞ with u1 � . . . � uk ¼ v1 � . . . � vm.

2. If H ¼ H � , we set �kðHÞ ¼ �kðHÞ ¼ k, and if H 6¼H � , then we define

�kðHÞ ¼ supVkðHÞ2N [ f1g and �kðHÞ ¼ minVkðHÞ2 ½1; k�:
The invariants �kðHÞ were introduced in [16], and the sets VkðHÞ were first

studied in [5]. It was proved only recently that a v-noetherian monoid with
�kðHÞ<1 for all k2N is locally tame (see [15, Corollary 4.3]). In this section
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we study the growth rate (in k) of the invariants �kðHÞ. We prove that tame
monoids, products of finitely primary monoids and C-monoids satisfy the follow-
ing property:

Either, �kðHÞ ¼ 1 for some k2N (and then clearly �lðHÞ ¼ 1 for all l5 k),
or there is an M2N such that �kðHÞ � �k�1ðHÞ4M for all k5 2.

This is the crucial assumption in the structure theorem for unions of sets of
lengths in Section 4.

We start with a lemma which gathers some elementary properties of the
VkðHÞ sets and of �kðHÞ and �kðHÞ which will be used throughout without further
mentioning.

Lemma 3.2. Let H be an atomic monoid with H 6¼H � and k; l2N.

1. V1ðHÞ ¼ f1g, k2VkðHÞ and

VkðHÞ ¼
[

k 2 L;L 2LðHÞ
L:

2. �kðHÞ ¼ supfsupL jL2LðHÞ; k2Lg ¼ supfsupL jL2LðHÞ; minL4kg.
3. �kðHÞ ¼ minfminL jL2LðHÞ; k2Lg.
4. VkðHÞ þVlðHÞ � VkþlðHÞ and

�kþlðHÞ4�kðHÞ þ �lðHÞ4 k þ l4 �kðHÞ þ �lðHÞ4 �kþlðHÞ:

5. We have l2VkðHÞ if and only if k2VlðHÞ.
Proof. The second equality in 2. follows from [13, Proposition 1.4.2.2], and all

remaining statements are straightforward. &

We would like to thank Guy Barat for the crucial argument in the proof of the
following limit assertion.

Lemma 3.3. Let H be an atomic monoid with H 6¼H � .

1. We have

�ðHÞ ¼ sup

�
�kðHÞ
k

���� k2N

�
¼ lim

k!1

�kðHÞ
k

and

1

�ðHÞ ¼ inf

�
�kðHÞ

k

���� k2N

�
¼ lim

k!1

�kðHÞ
k

;

with the usual convention that 1=�ðHÞ ¼ 0 if �ðHÞ ¼ 1.
2. Let �ðHÞ<1 and M2N such that k�ðHÞ � �kðHÞ4M for all k2N.

Then �kðHÞ � �k�1ðHÞ4M þ �ðHÞ for all k5 2.
3. If there is some a2H such that �ðaÞ ¼ �ðHÞ<1, then there is an M2N

such that k�ðHÞ � �kðHÞ4M for all k2N.

Proof. 1. The first assertion follows from [13, Proposition 1.4.2].
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To verify the second one, let k2N be given. By definition of �ðHÞ, we have
k4�kðHÞ�ðHÞ, and hence it suffices to verify the limit assertion. We distinguish
two cases.

Case 1. �mðHÞ<1 for all m2N. Let l2N be maximal such that �lðHÞ4 k.
Then k ¼ �lðHÞ þ j with j2 ½0; �lþ1ðHÞ � �lðHÞÞ, and we obtain that

1

�ðHÞ4
�kðHÞ

k
4

��lðHÞðHÞ þ �jðHÞ
�lðHÞ þ j

4
lþ j

�lðHÞ þ j

4
lþ ð�lþ1ðHÞ � �lðHÞÞ

�lðHÞ þ ð�lþ1ðHÞ � �lðHÞÞ ¼
l

�lþ1ðHÞ þ 1 � �lðHÞ
l

l

�lþ1ðHÞ :

Since the right hand side tends to 1=�ðHÞ if l tends to infinity, the assertion follows.

Case 2. There is an m2N such that �mðHÞ ¼ 1. We set VmðHÞ \N5m ¼
fG1;G2; . . .g where m ¼ G1 <G2 < . . ., and let G0 ¼ 1. Let N 2N0 be maximal
with GN 4 k. Then k has a unique representation in the form

k ¼
XN
i¼0

aiGi; and we set SðkÞ ¼
XN
i¼0

ai;

where a0; . . . ; aN 2N0, aN > 0, and starting with aN , the elements aN ; aN�1; . . .
are chosen to be maximal possible. This implies that, for all l2 ½1;N þ 1�,Pl�1

i¼0 aiGi<Gl and hence

SðkÞ ¼
X
i< l

ai þ
X
i5 l

ai 4
X
i< l

aiGi þ
1

Gl

X
i5 l

aiGi 4Gl þ
k

Gl

:

Therefore for every "> 0 there is an l2N such that 1=Gl<"=2, and thus for all
n> 2Gl=" we have

SðnÞ
n

4
Gl

n
þ 1

Gl

<";

hence

lim
n!1

SðnÞ
n

¼ 0:

Since VmðHÞ \N5m ¼ fG1;G2; . . .g and k ¼
PN

i¼0 aiGi, there is a product of k
atoms which has a factorization of length

a0 þ m
XN
i¼1

ai4mSðkÞ;

hence

�kðHÞ4mSðkÞ and 04 lim
n!1

�nðHÞ
n

4 lim
n!1

mSðnÞ
n

¼ 0:

2. If k5 2, then 1. implies that �kðHÞ4 k�ðHÞ and since ðk � 1Þ�ðHÞ�
�k�1ðHÞ4M, we obtain the assertion.
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3. By [13, Proposition 1.4.2.3], there exists some N 2N such that �iNðHÞ ¼
iN�ðHÞ for all i2N. Let k ¼ iN þ j with i2N0 and j2 ½1;N�. Then

iN�ðHÞ þ j4 �iNðHÞ þ �jðHÞ4 �iNþjðHÞ

and hence

ðiN þ jÞ�ðHÞ � Nð�ðHÞ � 1Þ4 ðiN þ jÞ�ðHÞ � jð�ðHÞ � 1Þ4 �iNþjðHÞ:

Thus the assertion holds with M ¼ Nð�ðHÞ � 1Þ. &

A subset U � H is called an almost generating set of H if U \ H � ¼ ; and
if there exists some n2N such that ðHnH � Þn � UH. We denote by MðUÞ the
smallest n2N with this property. Let U � H be an almost generating set.
We shall need the following simple fact. If a2HnUH and k ¼ maxLðaÞ, then
ðHnH � ÞMðUÞ � UH implies that k<MðUÞ.

Lemma 3.4. Let H be an atomic monoid such that �kðHÞ<1 for all k2N.
Suppose that there exist an almost generating set U � HnH � and constants
M1;M2 2N such that the following two properties are satisfied:

(a) supfsup LðuÞju2Ug4M1.
(b) For all a2UH and all z2ZðaÞ there are u2U, u2ZðuÞ and z0 2uZðHÞ \

ZðaÞ such that dðz; z0Þ4M2 and min Lðu�1aÞ< min LðaÞ.
Then �kðHÞ � �k�1ðHÞ4 maxfMðUÞ � 2;M1 þM2g for all k5 2.

Proof. Let k5 2. If �kðHÞ4MðUÞ � 1, then �kðHÞ � �k�1ðHÞ4 �kðHÞ�
14MðUÞ � 2. Suppose that �kðHÞ5MðUÞ. We choose an element a2H
with minLðaÞ4 k, max LðaÞ ¼ �kðHÞ and a factorization z2ZðaÞ with jzj ¼
maxLðaÞ. Since max LðaÞ5MðUÞ, there exist u2U, u2ZðuÞ, y2ZðHÞ and
z0 ¼ uy2ZðaÞ such that dðz; z0Þ4M2 and min Lðu�1aÞ< minLðaÞ. Therefore
we obtain that

�kðHÞ � �k�1ðHÞ4 jzj � jyj ¼ jzj � juyj þ juj4dðz; z0Þ þ juj4M1 þM2:
&

Theorem 3.5. Let H be a tame monoid. Then �ðHÞ is finite, �ðHÞ4
maxf1; tðHÞg and �kðHÞ � �k�1ðHÞ4 1 þ tðHÞ for all k5 2. If, in particular,

(a) H is factorial, then �ðHÞ ¼ 1 and 1 ¼ �kðHÞ � �k�1ðHÞ ¼ 1 þ tðHÞ ¼ 1
for all k5 2.

(b) Hred is finitely generated, then there is an M2N such that k�ðHÞ �
�kðHÞ4M for all k2N.

Proof. We may suppose that H is reduced. Then �ðHÞ is finite by [13,
Theorems 1.6.3 and 1.6.7]. We set U ¼ AðHÞ. Then U is an almost generating
set of H with MðUÞ ¼ 1. We verify the two properties of Lemma 3.4. Clearly,
Property ðaÞ holds with M1 ¼ 1. Let a2HnH � and a ¼ u1 � . . . � us with s ¼
min LðaÞ and u1; . . . ; us2U. Then min Lðu2 � . . . � usÞ ¼ s� 1, and there is some
z0 2 u1ZðHÞ \ ZðaÞ such that dðz; z0Þ4 tðH; u1Þ4 tðHÞ. Thus Property ðbÞ holds
with M2 ¼ tðHÞ.
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Suppose that H is factorial. Then by definition we have �ðHÞ ¼ 1 and
tðHÞ ¼ 0, and thus the assertion follows.

Suppose that Hred is finitely generated. Then by [13, Theorem 3.1.4] there
is some a2H such that �ðaÞ ¼ �ðHÞ<1. Thus the assertion follows from
Lemma 3.3.3. &

In the following corollary we deal with Krull monoids. Recall that an integral
domain R is a Krull domain if and only if its multiplicative monoid Rnf0g is a
Krull monoid. Furthermore, for every finite subset G0 of any abelian group G the
Davenport constant DðG0Þ is finite, but the converse does not hold (see [13,
Theorem 3.4.2 and Example 3.4.3]).

Corollary 3.6. Let H be a Krull monoid with class group G and let GP � G
denote the set of classes containing primes. If DðGPÞ<1, then �ðHÞ is finite
and

�kðHÞ � �k�1ðHÞ4 2 þ DðGPÞðDðGPÞ � 1Þ
2

for all k5 2:

Proof. Suppose that DðGPÞ<1. Then [13, Theorem 3.4.10.6] implies that

tðHÞ4 1 þ DðGPÞðDðGPÞ � 1Þ
2

:

Thus H is a tame monoid, and the assertion follows from Theorem 3.5. &

We recall the concepts of finitely primary monoids and of weakly Krull
domains. Details may be found in [13, Sections 2.9 and 2.10]. The monoid H is
called finitely primary if there exist s; �2N such that H is a submonoid of a
factorial monoid F ¼ F�� ½p1; . . . ; ps� with s pairwise non-associated prime ele-
ments p1; . . . ; ps satisfying

HnH � � p1 � . . . � psF and ðp1 � . . . � psÞ�F � H:

If this is the case, then we say that H is finitely primary of rank s and exponent �.
The significance of finitely primary monoids stems from their appearance in ring
theory.

A domain R is called a weakly Krull domain if it is v-noetherian and v-
maxðRÞ ¼ XðRÞ (see [13, Definition 2.10.11], and [18, Chapters 22 and 24.5]
for a more general notion of weakly Krull domains). Let R be a one-dimensional
noetherian domain. Then R is a weakly Krull domain and the monoid of v-invert-
ible v-ideals with v-multiplication coincides with the monoid of invertible ideals
with usual ideal multiplication. If moreover its integral closure R is a finitely
generated R-module, then ðR : bRRÞ 6¼ f0g and, for every non-zero prime ideal
p � R, the multiplicative monoid H ¼ Rpnf0g is finitely primary.

Theorem 3.7. Let H be a finite product of finitely primary monoids. Then�ðHÞ
is finite, and either, �kðHÞ ¼ 1 for some k2N, or there is an M2N such that
�kðHÞ � �k�1ðHÞ4M for all k5 2.

Proof. Suppose that H ¼ D1 �D2 with submonoids D1;D2 of H. By
[13, Proposition 1.4.5], the set �ðHÞ is finite if and only if �ðD1Þ and �ðD2Þ
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are both finite, and LðHÞ ¼ fL1 þ L2 jL1 2LðD1Þ; L2 2LðD2Þg. Therefore, set-
ting �0ðD1Þ ¼ �0ðD2Þ ¼ 0, we obtain that

�kðHÞ ¼ supf�k�iðD1Þ þ �iðD2Þji2 ½0; k�g
for all k2N. Thus it suffices to show the assertion for finitely primary monoids.

Let D be a finitely primary monoid of rank s and exponent �. If s ¼ 1, then D is
tame by [13, Theorem 3.1.5], and hence the assertion follows from Theorem 3.5.
If s5 2, then �ðDÞ is finite and minLðaÞ4 2� for all a2D (again by [13,
Theorem 3.1.5]), which implies that �2�ðDÞ ¼ 1. &

Corollary 3.8. Let R be a weakly Krull domain, f ¼ ðR : bRRÞ 6¼ f0g and H ¼
ðI�

v ðRÞ; �vÞ the monoid of v-invertible v-ideals with v-multiplication. Then�ðHÞ is
finite, and either, �kðHÞ ¼ 1 for some k2N, or there is an M2N such that
�kðHÞ � �k�1ðHÞ4M for all k5 2.

Proof. By [13, Theorem 3.7.1], �ðHÞ is finite, and H ffi FðPÞ�T where T is a
finite product of finitely primary monoids. Thus the assertion follows from
Theorem 3.7. &

We recall the concept of C-monoids (see [13, Sections 2.9 and 2.11] for some
background information and [14] for recent progress). The monoid H is called a
C-monoid if it is a submonoid of a factorial monoid F ¼ F��FðPÞ such that
H \ F� ¼ H � and the class semigroup C�ðH;FÞ is finite. If this is the case, then
there exist some �2N such that

q2�F \ H ¼ q�ðq�F \ HÞ for all q2FnF� :

We refer to these properties by saying that H is defined in F with exponent
�. A subset E � P is called H-essential if there is some x2HnF� such
that E ¼ fp2P j vpðxÞ> 1g. H is called simple (in F) if every minimal H-
essential subset of P is a singleton. To point out a crucial example for
C-monoids, let R be a Mori domain with complete integral closure bRR such
that the conductor f ¼ ðR : bRRÞ is non-zero and the ring R=f and the v-class
group of bRR are both finite. Then the multiplicative monoid Rnf0g is a C-
monoid (see [13, Theorem 2.11.9]). Note that these finiteness assumptions
are satisfied for all orders in algebraic number fields and for a large number
of higher-dimensional finitely generated algebras over Z (see [19], [20] for
details).

Proposition 3.9. Let H be a reduced C-monoid defined in a factorial monoid
F ¼ F��FðPÞ with exponent �2N such that P and F� are finite.

1. Let u2AðHÞ, p2P and n2N0.

(a) If vpðuÞ � n�5 2�, then up�n�2AðHÞ.
(b) If vpðuÞ5 4�, then upn�2AðHÞ.

2. Let a2H and z2ZðaÞ with jzj> 2jPj. Then there exist an u2AðHÞ with
vpðuÞ< 4� for all p2P and some z0 2uZðHÞ \ ZðaÞ such that dðz; z0Þ4 2.

Proof. 1. See [9, Lemma 4.3].

On products of k atoms



2. Let z ¼ u1 � . . . � uk with k> 2jPj and u1; . . . ; uk 2AðHÞ. Since k> 2jPj,
there are distinct i; j2 ½1; k�, say i ¼ 1 and j ¼ 2, such that

vpðu1Þ5 4� if and only if vpðu2Þ5 4� for all p2P:

Let Q � P denote the set of all p2P with vpðu1Þ5 4�. If Q ¼ ;, then u ¼ u1 and
z0 ¼ z have the required properties.

Suppose that Q 6¼ ;. For p2Q let np2N0 be maximal such that vpðu1Þ�
np�5 2�. Then np 5 2 and vpðu1Þ � np�< 3�4 4�. By 1., we infer that

u ¼ u01 ¼ u1

Y
p 2Q

p�np�2AðHÞ and u02 ¼ u2

Y
p 2Q

pnp�2AðHÞ:

Then u01u
0
2 ¼ u1u2, z0 ¼ u01u

0
2u3 � . . . � uk 2uZðHÞ \ ZðaÞ and dðz; z0Þ ¼ 2. &

Theorem 3.10. Let H be a C-monoid.

1. The set �ðHÞ is finite, and the following statements are equivalent:

(a) H is simple.
(b) �ðHÞ<1.
(c) �kðHÞ<1 for all k2N.

2. If H is simple, then there exists an M2N such that �kðHÞ � �k�1ðHÞ4M
for all k5 2.

Proof. 1. By [13, Theorems 3.3.4 and 1.6.3] the set of distances �ðHÞ is finite.

(a) ) (b) This follows from [13, Theorem 3.3.1.2].
(b) ) (c) This follows from Lemma 3.3.1.
(c) ) (a) If H is not simple, then the proof of [13, Theorem 3.3.1.2] shows that

there is some k4 ð3�� 1ÞjsuppPðaÞj such that �kðHÞ ¼ 1.

2. Suppose that H is simple. By [13, Theorem 3.3.4], there is a transfer homo-
morphism to a reduced C-monoid eHH defined in a factorial monoid F ¼
F� �FðPÞ where P and F� are finite. Since �kðHÞ ¼ �kðeHHÞ for all k2N, it
suffices to study eHH. We write H instead of eHH. Suppose that H has exponent � and
observe that the assumptions of Proposition 3.9 are satisfied.

Since P is finite, H has a finite almost generating set U0 (see [13, Proposition
2.9.15.4]), and hence

U ¼ U0 [ fb2HnH � jmax LðbÞ4 2jPj�ðHÞg
is an almost generating set of H. We verify the two properties of Lemma 3.4.
Then the assertion follows from Lemma 3.4. Clearly, Property ðaÞ of Lemma 3.4
holds.

To verify Property ðbÞ, let a2UH be given. If min LðaÞ4 2jPj, then
maxLðaÞ4 2jPj�ðHÞ whence a2U. Thus Property ðbÞ holds with u ¼ a
and u ¼ z. Suppose that min LðaÞ> 2jPj, and let y2ZðaÞ with jyj ¼ min LðaÞ.
By Proposition 3.9.2 there exists an u2AðHÞ � U with

P
p 2 P vpðuÞ<

4�jPj and a factorization y0 ¼ uu2 � . . . � uk 2uZðHÞ \ ZðaÞ with dðy; y0Þ4 2
where k2N and u2; . . . ; uk 2AðHÞ. Then it follows that jy0j ¼ jyj ¼ min LðaÞ
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and minLðu�1aÞ ¼ k � 1< k ¼ min LðaÞ. Since H is locally tame ([13,
Theorem 3.3.3]), it follows that for every z2ZðaÞ there is a factorization
z0 2uZðHÞ \ ZðaÞ such that dðz; z0Þ4 tðH; uÞ. By [13, Proposition 3.3.2], it fol-
lows that

tðH; uÞ4 jPjðð2�� 1Þð4�jPj þ d þ 1Þ þ �Þ þ max LðuÞ;
where d ¼ dðC�ðH;FÞÞ is the Davenport constant of the class semigroup. Since
C�ðH;FÞ is finite, we get d<1 by [13, Proposition 2.8.13], and hence Property
ðbÞ of Lemma 3.4 holds with

M2 ¼ jPjðð2�� 1Þð4�jPj þ d þ 1Þ þ �Þ þ 1: &

4. The structure of unions of sets of lengths

Definition 4.1. Let d2N and M2N0. A subset L � Z is called an almost
arithmetical progression (AAP for short) with difference d and bound M if

L ¼ yþ ðL0 [ L� [ L00Þ � yþ dZ

where L� is a non-empty arithmetical progression with difference d such that
minL� ¼ 0, L0 � ½�M;�1�, L00 � supL� þ ½1;M� (with the convention that
L00 ¼ ; if L� is infinite) and y2Z.

By definition, an AAP is a non-empty subset of Z, and for finite subsets of Z,
Definition 4.1 coincides with [13, Definition 4.2.1]. If a subset L � Z is an AAP
with difference d2N and some bound M2N, then it is an AAP with difference d
and bound M� for all M�5M. Furthermore, a non-empty subset L � N0 is an
arithmetical progression (with difference d) if and only if it is an AAP (with
difference d) and bound M ¼ 0.

In Theorem 4.2 we show that – under mild assumptions – unions of sets of
lengths are AAPs (under much more restrictive assumptions unions of sets of
lengths may even turn out to be arithmetical progressions, see [10, Theorems
3.7 and 4.2]). In finitely primary monoids even sets of lengths are AAPs
(see [13, Theorem 4.3.6]). However, already in Krull monoids with finite class
group, sets of lengths need not be AAPs but have a more general structure
(see [13, Section 4.7] and [22]). We point out that only in very special cases
the sets VkðHÞ have been written down explicitly. In [1, Theorem 2.6] this
is done for numerical monoids generated by an arithmetical progression. In
[13, Section 7.3], the systems of sets of lengths LðGÞ are explicitly de-
termined for some small groups G, from which it is easy to obtain the
VkðGÞ sets.

The asymptotic formula in Theorem 4.2.2 was first proved for Dedekind
domains with finite class group such that every class contains a prime ideal
(see [6, Theorem 6]), and then for atomic monoids with j�ðHÞj ¼ 1 (see [2,
Corollary 7]).

Theorem 4.2. Let H be an atomic monoid with finite non-empty set of distances
�ðHÞ and d ¼ min�ðHÞ. Suppose that either, �kðHÞ ¼ 1 for some k2N, or that
there is an M2N such that �kðHÞ � �k�1ðHÞ4M for all k5 2.
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1. There exist constants k� and M� 2N such that for all k5 k�, VkðHÞ is an
AAP with difference d and bound M�. Moreover, if �kðHÞ<1 for all k2N, then
the assertion holds for k� ¼ 1.

2. We have

lim
k!1

jVkðHÞj
k

¼ 1

d

�
�ðHÞ � 1

�ðHÞ

�
:

Proof. 1. Since VkðHÞ � �kðHÞ þ dN0 for all k2N (see [10, Lemma 3.6.1]),
it remains to show that there exist constants k�;M� 2N such that, for all k5 k�,

VkðHÞ \ ½k; �kðHÞ �M�� and VkðHÞ \ ½�kðHÞ þM�; k�
are arithmetical progressions with difference d (recall that by our conventions, the
empty set is an arithmetical progression, and if �kðHÞ ¼ 1, then ½k; �kðHÞ�
M�� ¼ N5 k).

1. (a) Since d2�ðHÞ, there is an element a2H and m2N such that
fm;mþ dg � LðaÞ. Since min�ðHÞ ¼ gcd�ðHÞ (see [13, Proposition 1.4.5]),
 ¼ �ð�ðHÞÞ � 12N. Then V� ¼ fk0; k0 þ d; . . . ; k0 þ  dg � Lða Þ where
k0 ¼  m. Therefore we have V� � Vk0

ðHÞ, say

Vk0
ðHÞ ¼ V 0 [ V� [ V 00;

where minV 0 ¼ �k0
ðHÞ, maxV 0< k0, k0 þ  d< minV 00 and supV 00 ¼ �k0

ðHÞ.
Now we pick some k�5 2k0, and if there is some l2N with �lðHÞ ¼ 1, let l0

denote the smallest such l2N, and we suppose further that k� � k0 5 l0.
Pick k5 k�. Then

ðV 0 þVk�k0
ðHÞÞ [ ðV� þVk�k0

ðHÞÞ [ ðV 00 þVk�k0
ðHÞÞ

¼ Vk0
ðHÞ þVk�k0

ðHÞ � VkðHÞ:
Clearly, we have k2V� þVk�k0

ðHÞ. Since max�ðVk�k0
ðHÞÞ4 max�ðHÞ and

�ðVk�k0
ðHÞÞ � dN (see [10, Lemma 3.6]), it follows that V� þVk�k0

ðHÞ is
an arithmetical progression with difference d. If there is some l2N such that
�lðHÞ ¼ 1, then �k�k0

ðHÞ ¼ �kðHÞ ¼ 1 and

ðV� þVk�k0
ðHÞÞ \N5 k ¼ k þ dN0 ¼ VkðHÞ \N5 k:

Suppose that �lðHÞ<1 for all l2N. Then

maxVkðHÞ � maxðV� þVk�k0
ðHÞÞ ¼ �kðHÞ � maxV� � �k�k0

ðHÞ4 k0M;

and hence

ðV� þVk�k0
ðHÞÞ \ ½k; �kðHÞ � k0M� ¼ VkðHÞ \ ½k; �kðHÞ � k0M�

is an arithmetical progression with difference d. Thus the assertion follows with
M� ¼ k0M.

1. (b) By 1.(a), there are k�;M� 2N such that for all k5 k�, the set
VkðHÞ \ ½k; �kðHÞ �M�� is an arithmetical progression with difference d. With-
out restriction we may suppose that M�5 k�.
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Let k5 k� and l ¼ �kðHÞ. We show that VkðHÞ \ ½lþM�; k� is an arith-
metical progression with difference d. Let m2 ½lþM�; k� such that k � m is a
multiple of d. In order to show that m2VkðHÞ, we verify that k2VmðHÞ.
Since

k4 �lðHÞ and lþM�4m;

it follows that k4 �lðHÞ4 �m�M�ðHÞ and hence

k þM�4 �m�M�ðHÞ þM�4 �m�M�ðHÞ þ �M�ðHÞ4 �mðHÞ:
Since k2mþ dN0 with k4 �mðHÞ �M� and VmðHÞ \ ½m; �mðHÞ �M�� is an
arithmetical progression with difference d (because m5 lþM�5 k�), it follows
that k2VmðHÞ.

1. (c) Suppose that �kðHÞ<1 for all k2N, and that the assertion holds with
the constants k� and M� 2N. Since for all k2 ½1; k� � 1�,

VkðHÞ ¼ ð½�kðHÞ; k � 1� \VkðHÞÞ [ fkg [ ð½k þ 1; �kðHÞ� \VkðHÞÞ

is an AAP with bound M0 ¼ maxfk � �kðHÞ; �kðHÞ � kjk2 ½1; k� � 1�g, it follows
that for all k2N the sets VkðHÞ are AAPs with difference d and boundeMM ¼ maxfM�;M0g.

2. If there is some k2N such that �kðHÞ ¼ 1, then both the left and the right
hand side of the asserted equation are infinite (see Lemma 3.3.1). Suppose that
�kðHÞ<1 for all k2N. By 1. there are k� 2N and M� 2dN such that, for all
k5 k�, VkðHÞ \ ½�kðHÞ þM�; �kðHÞ �M�� is an arithmetical progression with
difference d. Thus for all k5 k� we obtain that

ð�kðHÞ �M�Þ � ð�kðHÞ þM�Þ þ d

dk
4

jVkðHÞj
k

4
�kðHÞ � �kðHÞ þ d

dk
:

Since, by Lemma 3.3.1,

lim
k!1

�kðHÞ
k

¼ �ðHÞ and lim
k!1

�kðHÞ
k

¼ 1

�ðHÞ ;

the assertion follows. &

5. Krull monoids with cyclic class groups

In Krull monoids with class group G all invariants dealing with lengths of
factorizations can be studied in the associated block monoid (this is the monoid
of zero-sum sequences) over the set of divisor classes GP � G containing primes.
This monoid is the link – which is closest if GP ¼ G – between factorization
theory on the one side and additive group theory and combinatorial number theory
on the other side. Results from these areas are fundamental for precise arithmetical
results in Krull monoids in contrast to abstract finiteness results for more general
noetherian domains.

Let H be a Krull monoid with finite class group G such that every class
contains a prime, and let k2N. Then one easily gets (see [13, Section 6.3]) that
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�kðHÞ ¼ k if jGj4 2, and that in case jGj5 3

�2kðHÞ ¼ kDðGÞ and kDðGÞ þ 14 �2kþ1ðHÞ4 kDðGÞ þ
�
DðGÞ

2

�
:

The only precise results so far show that – in certain types of groups –
�2kþ1ðHÞ attains the upper bound, and this is always done by explicit construc-
tions. It was first observed by Chapman and Smith that in case of cyclic class
groups the situation should be different. They conjecture that �3ðHÞ equals the
lower bound, that is �3ðHÞ ¼ jGj þ 1, and they verify this if jGj 2 ½3; 8� (see
[7], [4]). Theorem 5.3 settles their conjecture. Our approach is based on a
recent result on the structure of long minimal zero-sum sequences over cyclic
groups, which was achieved independently by Savchev and Chen [21] and by
Yuan [23].

We start with the definition of the index of a zero-sum sequence (see [3], [11],
[8]), and then we state the crucial structural result.

Definition 5.1. Let G be an abelian group.

1. Let g2G be a non-zero element with ordðgÞ ¼ n<1. For a sequence

S ¼ ðn1gÞ � . . . � ðnlgÞ; where l2N0 and n1; . . . ; nl2 ½1; n�;

we define

kSkg ¼
n1 þ � � � þ nl

n
:

2. Let S be a zero-sum sequence for which hsuppðSÞi � G is a finite cyclic
group. Then we call

indexðSÞ ¼ minfkSkgjg2G with hsuppðSÞi ¼ hgig2N0

the index of S.
3. If G is finite cyclic, then let lðGÞ denote the smallest integer l2N such

that every minimal zero-sum sequence S2FðGÞ of length jSj5 l satisfies
indexðSÞ ¼ 1.

If G is a finite cyclic group and S2BðGÞ, then obviously

indexðSÞ ¼ minfkSkgjg2G with suppðSÞ � hgig
¼ minfkSkgjg2G with G ¼ hgig:

Proposition 5.2. Let G be a cyclic group of order n5 1. If n2f1; 2; 3; 4; 5; 7g,
then lðGÞ ¼ 1, and otherwise we have lðGÞ ¼

�
n
2

	
þ 2.

Proof. See [23, Theorem 3.1] or [21, Proposition 10]. &

Theorem 5.3. Let H be a Krull monoid with cyclic class group G of order
jGj5 3. Then for every k2N we have

�2kðHÞ4 kjGj and �2kþ1ðHÞ4 kjGj þ 1:

Moreover, if every class contains a prime, then equality holds.
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Proof. Without restriction we may suppose that H is reduced. Then there
is a free monoid F ¼ FðPÞ such that H ,!F is a divisor theory and G ¼
qðFÞ=qðHÞ. Let GP � G denote the set of classes containing primes, and let
k2N. Then [13, Theorem 3.4.10] implies that �kðHÞ ¼ �kðGPÞ4 �kðGÞ. It
is straightforward that �2kðGÞ ¼ kjGj, and that �kðGÞ ¼ 1 whenever G is infi-
nite and k5 2 (see [13, Proposition 6.3.1] for details). Suppose G is finite.
Since kjGj þ 1 ¼ �2kðGÞ þ �1ðGÞ4 �2kþ1ðGÞ, it is sufficient to prove that
�2kþ1ðGÞ4 kjGj þ 1.

We set n ¼ jGj and assume to the contrary that there is some k2N such that
�2kþ1ðGÞ5 knþ 2. Let k2N be minimal with this property whence �2k�1ðGÞ ¼
ðk � 1Þnþ 1 and �2kþ1ðGÞ5 knþ 2. Then there exists a B2BðGÞ and minimal
zero-sum sequences U1; . . . ;U2kþ1;V1; . . . ;V� with � ¼ �2kþ1ðGÞ and

B ¼ U1 � . . . � U2kþ1 ¼ V1 � . . . � V�: ð�Þ
We may suppose that jBj is maximal such that an equation (�) holds. Furthermore,
we may suppose that jU1j5 � � � 5 jU2kþ1j, and since �2kðGÞ ¼ kn, it follows that
0 -B whence jU2kþ1j5 2.

Suppose there is some h2G such that ð�hÞhjB, say hjV1 and ð�hÞjV2. Then

V1V2 ¼ ðð�hÞhÞV 0
2 with V 0

2 2AðGÞ:
Thus we may suppose that there is an ‘2N0 such that jV1j ¼ � � � ¼ jV‘j ¼ 2,
34 jV‘þ1j4 � � � 4 jV�j and there is no h2G with ð�hÞhjV‘þ1 � . . . � V�. If
‘ ¼ 0, then

�4
jU1 � . . . � U2kþ1j

3
4 knþ 1;

a contradiction. Thus we have ‘5 1.
Suppose there is some i2 ½1; 2k þ 1� such that indexðUiÞ ¼ 1. Then there

is some g2G with ordðgÞ ¼ n such that Ui ¼ ða1gÞ � . . . � ðasgÞ with s ¼ jU1j,
a1; . . . ; as2 ½1; n� and kUikg ¼ 1. Assume to the contrary that s< n. Then there
is some �2 ½1; s�, say � ¼ 1, with a1 5 2, and there is some j2 ½1; �� such that
ða1gÞjVj. Then

U 0
i ¼ ða1gÞ�1

gðða1 � 1ÞgÞUi2BðGÞ; V 0
j ¼ ða1gÞ�1

gðða1 � 1ÞgÞVj2BðGÞ

and

B0 ¼ Ui
�1U0

iU1 � . . . � U2kþ1 ¼ Vj
�1V 0

j V1 � . . . � V�:

Since kUikg ¼ kU0
ikg ¼ 1, it follows that U0

i 2AðGÞ. Since � ¼ �2kþ1ðGÞ, it
follows that V 0

j 2AðGÞ. But this is a contradiction to the maximality of jBj.
Thus s ¼ n and Ui ¼ gn.

If jU2kj4
�
n
2

	
þ 1, then

�4
jU1 � . . . � U2k�1U2kU2kþ1j

2

4
1

2

�
ð2k � 1Þnþ

�
n

2

�
þ 1 þ

�
n

2

�
þ 1

�
4 knþ 1;

On products of k atoms



a contradiction. Thus jU1j5 � � � 5 jU2kj5
�
n
2

	
þ 2, and Proposition 5.2 implies

that indexðU1Þ ¼ � � � ¼ indexðU2kÞ ¼ 1. Therefore, for all i2 ½1; 2k�, we have
Ui ¼ gni where gi2G with ordðgiÞ ¼ n.

Suppose there are distinct i; j2 ½1; 2k þ 1� such that Ui ¼ gn and Uj ¼ ð�gÞn
for some g2G. Then ‘5 n, and after renumbering if necessary we may suppose
that V1 ¼ � � � ¼ Vn ¼ ð�gÞg. Since ðUiUjÞ�1

U1 � . . . � U2kþ1 ¼ Vnþ1 � . . . � V�, it
follows that ðk � 1Þnþ 1 ¼ �2k�1ðGÞ5 ðk � 1Þnþ 2, a contradiction. Thus there
are no two Ui;Uj of such a form and hence ‘4 jU2kþ1j.

Suppose that indexðU2kþ1Þ ¼ 1. Then U2kþ1 ¼ gn2kþ1 for some g2kþ1 2G with
ordðg2kþ1Þ ¼ n. Since ‘5 1, it follows that g2kþ1 2f�g1; . . . ;�g2kg, a contradic-
tion. Thus indexðU2kþ1Þ5 2. Now Proposition 5.2 implies that

jU2kþ1j4
�
n

2

�
þ 1;

and therefore we obtain that

�4 ‘þ jBj � 2‘

3
¼ jBj þ ‘

3
¼ 2knþ jU2kþ1j þ ‘

3

4
2knþ 2jU2kþ1j

3
4

2knþ nþ 2

3
4 knþ 2

3
;

a contradiction. &
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