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Abstract

In this paper we introduce weakly C-monoids as a new class of v-noetherian monoids. Weakly C-monoids
generalize C-monoids and make it possible to study multiplicative properties of a wide class of Mori do-
mains, e.g., rings of generalized power series with coefficients in a field and exponents in a finitely generated
monoid. The main goal of the paper is to study the question when a weakly C-monoid is locally tame. After
having proved a classification theorem for local tameness, we use it to show that every locally tame weakly
C-monoid whose complete integral closure has finite class group has finite catenary degree and finite set of
distances.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let R be an atomic integral domain. By definition, R is factorial if and only if, given irre-
ducible elements u1, . . . , un, v1, . . . , vm in R with

u1 · . . . · un = v1 · . . . · vm,

then n = m, and there exists a permutation π : {1, . . . , n} → {1, . . . , n} and units εi such that
uπ(i) = εivi for all i, 1 � i � n. The main objective of factorization theory is to investigate non-
uniqueness of factorizations in atomic domains and monoids that fail to be factorial. The theory
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has its origin in algebraic number theory, where non-unique factorizations were first observed in
rings of algebraic integers. Later, the investigations were extended to larger classes of domains
(see the conference proceedings [1,9,11,16] and the monograph [23]), and in the present paper
we focus on the study of multiplicative properties of Mori domains and monoids. Mori domains
were introduced in the 1970s [38,39] and attracted a lot of attention since that time (see the works
of V. Barucci, S. Gabelli, E. Houston, T.G. Lucas, M. Roitman and others [4–6,37,42]).

The main approach to investigate the multiplicative arithmetic of domains is to pass—in a first
step—to suitable auxiliary monoids. Then the arithmetic of these monoids is studied in detail,
and finally the results are shifted back to the domains of original interest by means of transfer
principles. Apart from methodical advantages, this approach opened the door to unexpected ap-
plications of the theory to problems in additive number theory (see [21], [23, Chapter 5]) as well
as to quantitative investigations of non-unique direct-sum decompositions of finitely generated
modules over one-dimensional local rings (see [15,30]). In the early stage of the development
of the theory, the investigations were restricted to Krull domains and monoids. Later, also non-
integrally closed domains such as orders in algebraic number fields were tackled. Only recently
C-monoids were introduced in literature (see [17–19,22,28,29]). This class of monoids includes
Krull monoids as well as congruence monoids in Krull domains satisfying natural finiteness
conditions. For instance, if R is a Mori domain with complete integral closure R̂ such that the
conductor f = (R : R̂) is non-zero and the ring R/f and the v-class group of R̂ are both finite,
then the multiplicative monoid R \ {0} is a C-monoid (see [23, Theorem 2.11.9]). We note that
these finiteness assumptions are satisfied for all orders in algebraic number fields and for a large
number of higher-dimensional finitely generated algebras over Z (see [29,33] for details).

In this paper we generalize the notion of C-monoids by introducing weakly C-monoids as
v-noetherian monoids satisfying several natural finiteness conditions (Definition 4.1). The sig-
nificance of this new class of monoids is twofold. First, as the name already indicates, weakly
C-monoids generalize C-monoids (see Proposition 4.8). This generalization makes it possible
to study Mori domains which could not be treated before (all our applications of the theory to
multiplicative monoids of domains and the monoid of v-invertible v-ideals of domains are gath-
ered in the second part of Section 6; see in particular Theorem 6.7 and Corollary 6.8). Second,
weakly C-monoids comprise various types of auxiliary monoids which had to be treated sepa-
rately before (see Propositions 4.7, 4.8, 6.4 and 6.5). An additional benefit of looking at weakly
C-monoids is that this class of monoids is—in contrast to C-monoids—closed under taking finite
products (cf. Proposition 4.6).

The ostensible goal of this paper is to study when a weakly C-monoid is locally tame. Local
tameness (cf. Definition 5.1) is an important finiteness property in the theory of non-unique
factorizations (see, e.g., [23] for a detailed description of the significance of this invariant). Our
main result, formulated in Theorem 5.3, provides an explicit algebraic characterization of local
tameness. Its proof occupies the whole section, and it is performed in such a way that we obtain
explicit, homogeneous bounds for the local tame degrees. This allows us to give a very simple
proof of the finiteness of the catenary degree and the set of distances (see Theorem 6.3).

2. Preliminaries

Our notation and terminology is consistent with [23]. By a semigroup we mean a commu-
tative semigroup with neutral element, and by a monoid we mean a semigroup satisfying the
cancellation law. All (semigroup and monoid) homomorphisms are assumed to respect the neu-
tral element.
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We denote by N the set of positive integers, and we put N0 = N ∪ {0}. For integers a, b ∈ Z
we set [a, b] = {x ∈ Z | a � x � b}, and we define sup∅ = max∅ = min∅ = 0. In the following
subsections we briefly recall some key notions needed in the sequel.

Throughout this paper H denotes a monoid.

Basic notions on monoids

We denote by H× the set of invertible elements of H , by Hred = H/H× = {aH× | a ∈ H }
the associated reduced monoid, and by q(H) the quotient group of H . Furthermore,

H̃ = {
x ∈ q(H)

∣∣ xn ∈ H for some n ∈ N
}

denotes the root closure of H , and

Ĥ = {
x ∈ q(H)

∣∣ there exists c ∈ H such that cxn ∈ H for all n ∈ N
}

denotes the complete integral closure of H . Both H̃ and Ĥ are monoids, and we have H ⊂ H̃ ⊂
Ĥ ⊂ q(H).

For a, b ∈ H with b ∈ aH we write as usual a |H b or, when there is no danger of confusion,
we simply write a | b. An element u ∈ H is called an atom of H if u /∈ H× and, for all a, b ∈ H ,
u = ab implies a ∈ H× or b ∈ H×. We denote by A(H) the set of all atoms of H , and we
call the monoid H atomic if every a ∈ H \ H× is a product of atoms. An element p ∈ H is
called a prime element of H if H \ pH is a submonoid of H , and H is called factorial if every
a ∈ H \H× decomposes into a product of primes. Every prime element is an atom, and a monoid
is factorial if and only if it is atomic, and every atom is a prime. If H is atomic and p ∈ H is a
prime, then every a ∈ q(H) has a representation a = pnbc−1, where b, c ∈ H , p � bc, and n ∈ Z.
The exponent n is uniquely determined, and we call vp(a) = n the p-adic value of a. The map
vp : q(H) → Z is a surjective group homomorphism, called the p-adic valuation of q(H).

For a set P we denote by F(P ) the free (abelian) monoid generated by P . Let a, b ∈ F(P ).
Then a has a unique representation of the form

a =
∏
p∈P

pνp , where νp ∈ N0 and νp = 0 for all but finitely many p ∈ P,

and we have νp = vp(a) for all p ∈ P . We call

|a| = |a|F(P ) =
∑
p∈P

vp(a) ∈ N0

the length of a, and, with c = gcd(a, b), we call

d(a, b) = dF(P )(a, b) = max
{∣∣c−1a

∣∣, ∣∣c−1b
∣∣} ∈ N0

the distance of a and b.
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Let F be a factorial monoid and P a maximal set of pairwise non-associated prime elements
of F . Then F = F× ×F(P ). For x ∈ F we call supp(x) = suppP (x) = {p ∈ P | vp(x) �= 0} the
support of x (with respect to P ). For a subset S ⊂ F we set

supp(S) = suppP (S) = {
supp(x)

∣∣ x ∈ S
}
,

and, if Q ⊂ P , we define

vQ(x) =
∑
p∈Q

vp(x).

Ideal theory of monoids

In this subsection we recall some basic ideal-theoretic terminology for monoids (see [23] or
[27] for more details). A subset X ⊂ H is called an s-ideal of H if XH = X. By definition, ∅ and
H are s-ideals of H . An s-ideal X ⊂ H is called prime if H \X is a submonoid of H . We denote
by s-spec(H) the set of all prime s-ideals of H , and we denote by X(H) the set of all minimal
non-empty prime s-ideals of H . The monoid H is called a G-monoid if the intersection of all
non-empty prime s-ideals of H is non-empty. Thus, if s-spec(H) is finite, then H is a G-monoid.
For subsets X,Y ⊂ q(H) we set

(Y : X) = {
a ∈ q(H)

∣∣ aX ⊂ Y
}
, X−1 = (H : X), and Xv = (

X−1)−1
.

We say that X is a v-ideal of H if X ⊂ H and Xv = X. We denote by v-spec(H) the set of
all v-ideals of H that are prime. The monoid H is called v-noetherian if it satisfies the ascend-
ing chain condition on v-ideals. We denote by I∗

v (H) the monoid of v-invertible v-ideals with
v-multiplication.

The set (H : Ĥ ) = {x ∈ q(H) | xĤ ⊂ H } is called the conductor of H . The monoid H is
said to be a Krull monoid if H is v-noetherian and H = Ĥ . If R is an integral domain, then
R• = R \ {0} is a monoid, and a subset X ⊂ R• is a v-ideal of R• if and only if X ∪ {0} is a
divisorial ideal of R. In particular, R• is v-noetherian if and only if R is a Mori domain. It can
be shown [25, Section 2] that this extends to Mori rings having non-trivial zerodivisors. Rings of
that kind were introduced in [35].

The monoid H is said to be primary if H �= H× and s-spec(H) = {∅,H \ H×} (equivalently,
H �= H×, and, for all a, b ∈ H \H×, there exists n ∈ N such that a | bn). The monoid H is called
a discrete valuation monoid if Hred ∼= (N0,+) (equivalently, H is a primary Krull monoid, see
[23, Theorem 2.3.8] and [26, Lemma 3.1.1]).

Let T ⊂ H be a subset. We denote by [T ] = [T ]H the smallest submonoid of H containing T .
We say that T is a divisor-closed subset of H if b |H a implies b ∈ T for all a ∈ T , b ∈ H . Thus
T is a divisor-closed subset of H if and only if H \T is an s-ideal of H , and T is a divisor-closed
submonoid of H if and only if H \ T is a prime s-ideal of H . We denote by �T � = �T �H the
smallest divisor-closed submonoid of H containing T (that is, �T � denotes the set of all a ∈ H

dividing some c ∈ [T ]). For a ∈ H we set �a�= �{a}�. The monoid H is a G-monoid if and only
if there exists a ∈ H such that H = �a�, cf. [23, Definition 2.7.6 and Lemma 2.7.7].

Let S ⊂ H be a submonoid. We say that S ⊂ H is cofinal if, for every a ∈ H , there exists
b ∈ S such that a |H b. Furthermore, S ⊂ H is called saturated if q(S) ∩ H ⊂ S (and then
q(S) ∩ H = S). If S is a divisor-closed submonoid of H , then S ⊂ H is saturated.
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Class groups, class semigroups, and C-monoids

Let D be a monoid, and suppose that H ⊂ D is a submonoid. In this paper we call

q(D)

q(H)D× (1)

the class group of H ⊂ D. Consider the map

ϕ :H → D/D×,

defined by ϕ(a) = aD× for all a ∈ H . The group q(D)/D× is the quotient group of D/D×, and
q(H)D×/D× is the quotient group of ϕ(H) = D×H/D×. Since we have a natural isomorphism(

q(D)/D×)/(
q(H)D×/D×) ∼= q(D)/q(H)D×,

the class group of H ⊂ D defined in (1) is nothing else but the class group of ϕ in the sense of
[23, Section 2.4].

Let D be a monoid and H ⊂ D a submonoid. Two elements y, y′ ∈ D are called (H,D)-
equivalent if y−1H ∩ D = y′−1

H ∩ D (that is, ya ∈ H if and only if y′a ∈ H for all a ∈ D).
(H,D)-equivalence is a congruence relation on D, i.e., (H,D)-equivalence is compatible with
the semigroup operation on D. For y ∈ D we denote by [y]DH the (H,D)-equivalence class of y.
The semigroup

C(H,D) = {[y]DH
∣∣ y ∈ D

}
is called the class semigroup of H in D, and

C∗(H,D) = {[y]DH
∣∣ y ∈ (

D \ D×) ∪ {1}}
is called the reduced class semigroup of H in D.

The monoid H is called a C-monoid if it is a submonoid of a factorial monoid F such that
F× ∩ H = H× and C∗(H,F ) is finite. In this case we say that H is a C-monoid defined in F .
As already pointed out in the introduction, if R is a Mori domain with complete integral closure
R̂ such that the conductor f = (R : R̂) is non-zero and the ring R/f and the v-class group of R̂

are both finite, then the multiplicative monoid R \ {0} is a C-monoid (see [23, Theorem 2.11.9]).
Next we introduce a generalized Davenport constant and recall the concept of block monoids.

Suppose that H is a submonoid of a factorial monoid F = F× ×F(P ) such that F× ∩H = H×.
For a subset E ⊂ P we define

DE(H) = sup
{
vE(u)

∣∣ u ∈A(H)
} ∈ N0 ∪ {∞}.

Then vE(a) � min L(a)DE(H) for every a ∈ H .
Let G be an additively written abelian group and G0 ⊂ G a subset (in our applications G

will be the class group of a containment H ⊂ D of monoids, and G0 will be the set of classes
containing prime elements of D). Following the tradition of combinatorial number theory, the
elements of F(G0) are called sequences over G0. Let S = g1 · . . . · gl be a sequence over G0.
Then |S| = l ∈ N0 is called the length of S, the quantity σ(S) = g1 + · · · + gl ∈ G is called the
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sum of S, and suppG0
(S) = supp(S) = {g1, . . . , gl} ⊂ G is called the support of S. S is called a

zero-sum sequence if σ(S) = 0. The set of all zero-sum sequences, denoted by B(G0), and also
called the block monoid over G0, is a saturated submonoid of F(G0). Thus B(G0) is a Krull
monoid (cf. Lemma 2.2.1), and

D(G0) = DG0

(
B(G0)

) = sup
{|S| ∣∣ S is an atom of B(G0)

} ∈ N0 ∪ {∞}
is called the Davenport constant of G0 (see [21] and [23, Section 5.1]).

In the following lemma we put together some easy facts about the relationship between class
groups and class semigroups. For the definition of transfer homomorphisms see, e.g., [23, Sec-
tion 3.2].

Lemma 2.1. Let D be a monoid, and suppose that H ⊂ D is a cofinal submonoid. Consider the
maps

θ :C(H,D) → q(D)/q(H) and θ∗ :C∗(H,D) → q(D)/q(H)D×,

given by θ([y]DH ) = yq(H) for all y ∈ D, and θ∗([y]DH ) = yq(H)D× for all y ∈ (D \D×)∪ {1}.

1. θ and θ∗ are epimorphisms, and H ⊂ D is saturated if and only if θ is an isomorphism.
2. If H ⊂ D is saturated, then θ ′ :C(HD×,D) → q(D)/q(H)D×, given by θ ′([a]D

HD×) =
aq(H)D× for all a ∈ D, is an isomorphism.

3. Suppose that D = D× × F(P ) is factorial and H ⊂ D is saturated. Put GP = {[p]D
HD× |

p ∈ P } ⊂ C(HD×,D). Then the map β :H → B(GP ), given by

β(a) =
l∏

i=1

[pi]DHD×,

where a = εp1 · . . . · pl ∈ H with ε ∈ D×, l ∈ N and p1, . . . , pl ∈ P,

is a transfer homomorphism, and

D(GP ) = sup
{
vP (u)

∣∣ u ∈ A(H)
}
.

Proof. The proof of 1. is straightforward and can be found in [23, Proposition 2.8.7]. If H ⊂ D

is saturated, then HD× ⊂ D is saturated and cofinal, whence 2. follows from 1. It remains to
show 3. Put G′

P = {pq(H)D× | p ∈ P } ⊂ q(D)/q(H)D×, and let β ′ :HD×/D× → B(G′
P ) be

defined by

β ′(aD×) =
l∏

i=1

piq(H)D×,

where a = εp1 · . . . · pl ∈ H with l ∈ N, ε ∈ D× and p1, . . . , pl ∈ P.

Since HD×/D× ↪→ D/D× is cofinal and saturated, β ′ is a transfer homomorphism [23, Propo-
sition 3.4.8.2], and

D
(
G′ ) = sup

{
vP (u)

∣∣ u ∈A
(
HD×/D×)}
P
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[23, Proposition 3.4.5.3]. Since the natural map H → HD×/D× is a transfer homomorphism
and θ ′ in 2. induces an isomorphism B(G′

P ) → B(GP ), the assertion follows. �
In the following lemma we gather some properties of Krull monoids which will be used tacitly

throughout the paper.

Lemma 2.2.

1. The following statements are equivalent:
(a) H is a Krull monoid.
(b) H is a saturated submonoid of a factorial monoid.
(c) H splits in the form H = H× ×H0, where H0 ∼= Hred and H0 is a saturated submonoid

of a free monoid F0 = F(P ) such that every a ∈ F0 can be written as a = gcdF0
(E) for

some subset E ⊂ H0.
2. Let H = H× ×H0 and H0 ⊂ F0 = F(P ) be as in 1.(c). Then the map

ϕ :F0 → I∗
v (H), defined by ϕ(a) = (aF0 ∩ H)v,

is an isomorphism satisfying ϕ(P ) = X(H) and ϕ(a) = aH for all a ∈ H . Moreover, ϕ in-
duces an isomorphism

ϕ : q(F0)/q(H0) → q
(
I∗

v (H)
)
/q

(
ϕ(H)

) = Cv(H)

of the class group of H0 ⊂ F0 onto the v-class group Cv(H) of H , and ϕ maps the set
GP = {pq(H0) | p ∈ P } ⊂ q(F0)/q(H0) of all classes containing primes onto the set of all
v-ideal classes in Cv(H) containing prime v-ideals.

If H is a Krull monoid, then C(H) = Cv(H) is briefly called the class group of H .
Next we summarize some basic algebraic properties of C-monoids (for a proof see [23, Sec-

tion 2.9]).

Theorem 2.3. Let F = F× ×F(P ) be a factorial monoid, and suppose that H ⊂ F is a sub-
monoid with H ∩ F× = H×.

1. Suppose that H is a C-monoid defined in F . Then H is v-noetherian, (H : Ĥ ) �= ∅, and
C(Ĥ ) is finite. Moreover, every divisor-closed submonoid of H is a C-monoid.

2. Suppose that P is finite. Then the following statements are equivalent:
(a) H is a C-monoid defined in F .
(b) There exist α ∈ N and a subgroup V ⊂ F× such that (F× : V ) | α, V · (H \ H×) ⊂ H ,

and a ∈ H if and only if pαa ∈ H for all p ∈ P and all a ∈ pαF .
If the equivalent statements (a) and (b) hold, then H is a G-monoid.

Basic notions from factorization theory

Suppose that H is atomic, and put A = A(Hred). The monoid Z(H) = F(A) is called the
factorization monoid of H . Let π = πH : Z(H) → Hred be the canonical homomorphism. For
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x, y ∈ Z(H) the integer d(x, y) = dZ(H)(x, y) is called the distance of x and y, and we call
|x| = |x|Z(H) the length of x. For a ∈ H the set

Z(a) = ZH (a) = π−1(aH×) ⊂ Z(H)

is called the set of factorizations of a, and

L(a) = LH (a) = {|z| ∣∣ z ∈ Z(a)
} ⊂ N0

is called the set of lengths of a. H is called a BF-monoid if L(a) is a finite set for all a ∈ H .
All v-noetherian monoids are BF-monoids. For more refined arithmetical notions such as local
tameness and the catenary degree see Definitions 5.1 and 6.1.

3. v-Noetherian monoids: algebraic properties

Suppose that D is a monoid and H ⊂ D is a submonoid. In this section we study whether
certain ideal-theoretic properties of D are preserved when passing to H . For instance, if H ⊂ D is
saturated and D is v-noetherian or has non-empty conductor, does H inherit these properties? We
start with a key result regarding the structure of the complete integral closure of a v-noetherian
monoid with non-empty conductor (see [23, Theorems 2.6.5 and 2.7.9]).

Theorem 3.1. Suppose that H is v-noetherian and (H : Ĥ ) �= ∅. Then Ĥ is a Krull monoid. If,
moreover, H is a G-monoid, then H is finitary, s-spec(H) and s-spec (Ĥ ) are both finite, and
Ĥred is finitely generated.

Lemma 3.2. Suppose that D is a monoid such that H ⊂ D is a saturated submonoid. Let T ⊂ H

be a divisor-closed submonoid.

1. T = H ∩ �T �D , and T ⊂ �T �D is saturated and cofinal.
2. The homomorphism ι : q(�T �D)/q(T )D× → q(D)/q(H)D×, defined by αq(T )D× 
→

αq(H)D×, is injective.
3. The class group of Ĥ ⊂ D̂ is a homomorphic image of the class group of H ⊂ D.

Proof. 1. Suppose a ∈ H ∩ �T �D . Then there exists b ∈ T such that a |D b. Since H ⊂ D

is saturated it follows that a |H b, and since T ⊂ H is divisor-closed, we obtain a ∈ T . Thus
T = H ∩ �T �D . We have

T ⊂ �T �D ∩ q(T ) ⊂ D ∩ q(H) ∩ q(T ) = H ∩ q(T ) = T

from which it follows that T ⊂ �T �D is saturated. By the very definition of �T �D we see that
T ⊂ �T �D is cofinal.

2. We show that q(H)D× ∩ q(�T �D) = q(T )D×. For, let x = ab−1 ∈ q(H)D× ∩ q(�T �D),
with a, b ∈ �T �D . Without loss of generality we may suppose that b ∈ T . Then xb = a ∈
q(H)D× ∩ �T �D , and there exists ε ∈ D× such that

εxb ∈ q(H) ∩ �T �D = q(H) ∩ D ∩ �T �D = H ∩ �T �D = T .

It follows that x ∈ q(T )D×.
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3. Clearly, the natural homomorphism

q(D)/q(H)D× → q(D)/q(H)D̂× = q(D̂)/q(Ĥ )D̂×

is surjective. �
Lemma 3.3. Suppose that S ⊂ H is a saturated and cofinal submonoid.

1. Ŝ ⊂ Ĥ is saturated.
2. If (H : Ĥ ) �= ∅, then (S : Ŝ) �= ∅.

Proof. 1. We shall prove that Ĥ ∩ q(S) ⊂ Ŝ. Let x ∈ Ĥ ∩ q(S). Then there exists d ∈ H such
that dxn ∈ H for all n ∈ N. If c ∈ H such that cd ∈ S, then (cd)xn ∈ H ∩ q(S) = S for all n ∈ N,
and thus x ∈ Ŝ.

2. Let f ∈ (H : Ĥ ) and c ∈ H such that cf ∈ S. Then cf ∈ (H : Ĥ ) and cf Ŝ ⊂ cf Ĥ ∩q(S) ⊂
H ∩ q(S) = S. It follows that cf ∈ (S : Ŝ). �

In 3. of the following lemma we prove that lying-over holds for arbitrary prime s-ideals in
almost integral extensions of v-noetherian monoids (cf. [7, Proposition 1.1 and Theorem 1.4]).

Lemma 3.4. Suppose that H is v-noetherian.

1. Let x = c−1b ∈ Ĥ , with b, c ∈ H . Then there exists m ∈ N such that cmxn ∈ H for all n ∈ N.
In particular, Ĥ× ∩ H = H×.

2. Let S ⊂ H be a submonoid. Then S−1H is v-noetherian and Ŝ−1H = S−1Ĥ . If (H : Ĥ ) �= ∅,

then (S−1H : Ŝ−1H) = S−1(H : Ĥ ).
3. For every p ∈ s-spec(H) there exists p̂ ∈ s-spec(Ĥ ) such that p̂ ∩ H = p. Moreover, if p ∈

X(H) and Ĥ is v-noetherian, then there exists p̂ ∈ v-spec (Ĥ ) such that p̂ ∩ H = p.

Proof. 1. Since x ∈ Ĥ there exists d ∈ H such that dxn ∈ H for all n ∈ N. Thus the set {xn | n ∈
N0} is H -fractional, and by [23, Proposition 2.1.10] there exists m ∈ N such that{

xn
∣∣ n ∈ N0

}
v
= {

xn
∣∣ n ∈ [0,m]}

v
.

Since cmxn ∈ H for all n ∈ [0,m] it follows that{
cmxn

∣∣ n ∈ N0
} ⊂ cm

{
xn

∣∣ n ∈ N0
}
v
= {

cmxn
∣∣ n ∈ [0,m]}

v
⊂ H.

Clearly, we have H× ⊂ Ĥ× ∩ H . Conversely, pick a ∈ Ĥ× ∩ H . Then there exists m ∈ N such
that am(a−1)n ∈ H for all n ∈ N, and hence a−1 = am(a−1)m+1 ∈ H .

2. S−1H is v-noetherian by [23, Proposition 2.2.8.4], and [23, Theorem 2.3.5] implies that

Ŝ−1H = S−1Ĥ . Using [23, Theorem 2.2.8.1], we infer that

(
S−1H : Ŝ−1H

) = (
S−1H : S−1Ĥ

) = S−1(H : Ĥ ).
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3. Without loss of generality we may suppose that p ∈ s-spec(H) \ {∅}. By 1. and 2. it follows
that Hp is v-noetherian and Ĥp

× ∩ Hp = Hp
×. Since Hp �= H×

p , we get Ĥp �= Ĥp
×

. Hence

Ĥp \ Ĥp
× ∈ s-spec(Ĥp) \ {∅},

p̂ = (
Ĥp \ Ĥp

×) ∩ Ĥ ∈ s-spec(Ĥ ),

and

p̂ ∩ H = (
Ĥp \ Ĥp

×) ∩ Hp ∩ H = (
Hp \ H×

p

) ∩ H = pHp ∩ H = p.

Suppose that p ∈ X(H) and that Ĥ is v-noetherian. Then Ĥp = ̂(H \ p)−1H = (H \ p)−1Ĥ

is v-noetherian by 2., and since Ĥp �= Ĥp
×

, there exists q ∈ v-spec(Ĥp) \ {∅}. Then q ∩ Hp ∈
s-spec(Hp) = {∅,pHp}, and by [23, Proposition 2.3.4.2] we have q ∩ Hp �= ∅. Since q ∈ Ĥp =
(H \ p)−1Ĥ , [23, Proposition 2.2.8.3] implies that p̂ = q ∩ Ĥ is a v-ideal of Ĥ . Thus it follows
that p̂ ∈ v-spec(Ĥ ), and clearly

p̂ ∩ H = q ∩ Hp ∩ H = pHp ∩ H = p. �
Lemma 3.5. Suppose that H is v-noetherian and S ⊂ H is a saturated submonoid.

1. S is v-noetherian, and Ŝ ⊂ Ĥ is saturated.
2. If (H : Ĥ ) �= ∅, then (S : Ŝ) �= ∅.
3. Assume that Ĥ is a Krull monoid. Then Ŝ is a Krull monoid. If, further, C(Ĥ ) and the class

group of S ⊂ H are both finite, then C(Ŝ) is finite.

Proof. 1. S is v-noetherian by [23, Proposition 2.4.4.2], and it remains to verify that q(S)∩ Ĥ ⊂
Ŝ. Let x = c−1b ∈ q(S) ∩ Ĥ , with b, c ∈ S. Then Lemma 3.4.1 implies that there exists m ∈ N
such that cmxn ∈ H ∩ q(S) = S for all n ∈ N. It follows that x ∈ Ŝ.

2. We have Ŝ ⊂ S−1H ∩ Ĥ ⊂ Ĥ , and if (H : Ĥ ) �= ∅, then these three sets are H -fractional.
By [23, Proposition 2.1.10] there exists a finite set E ⊂ S−1H ∩ Ĥ such that Ev = (S−1H ∩ Ĥ )v .
Then

Ev ⊃ S−1H ∩ Ĥ ⊃ Ŝ.

If t ∈ S with tE ⊂ H , then t Ŝ ⊂ tEv ∩ q(S) = (tE)v ∩ q(S) ⊂ H ∩ q(S) = S, and we see that
t ∈ (S : Ŝ).

3. Let F be a factorial monoid such that Ĥ ⊂ F is saturated and q(F )/q(H)F× = C(Ĥ ).
By 1. Ŝ ⊂ Ĥ is saturated, and hence Ŝ ⊂ F is saturated. Since the class group of S ⊂ H is finite,
the class group of Ŝ ⊂ Ĥ is finite by Lemma 3.2.3, and thus the class group of Ŝ ⊂ F is finite.
Now [23, Theorem 2.4.7] implies that C(Ŝ) is finite. �

Suppose that H is v-noetherian and S ⊂ H is a divisor-closed submonoid. Then Ŝ ⊂ Ĥ is
saturated but need not be divisor-closed any more, as the following example shows. Suppose that

H = (
N2 \ {

(2k + 1,0)
∣∣ k ∈ N0

}
,+) ⊂ (

N2,+) = F
0 0
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and

S = {
(2k,0)

∣∣ k ∈ N0
} ⊂ H.

Then, by Theorem 2.3, H is a C-monoid defined in F , Ĥ = F , and (1,1) + F ⊂ H . Moreover,
Ŝ = S ⊂ H is divisor-closed but Ŝ ⊂ Ĥ is not divisor-closed.

The following lemma generalizes [32, Lemmas 2 and 3].

Lemma 3.6. Suppose that H is v-noetherian and T ⊂ H is a divisor-closed submonoid.

1. T̂ = (T −1H)× ∩ Ĥ and q(T ) = (T −1H)×.
2. T = �T �Ĥ ∩ H and q(�T �Ĥ ) = (T −1Ĥ )×.
3. T̂ ⊂ �T �Ĥ is saturated. Further, if F is a monoid such that Ĥ ⊂ F is saturated, then �T �Ĥ ⊂

�T �F is saturated.

Proof. 1. Since T ⊂ H is saturated it follows that T = H ∩q(T ). An easy calculation shows that
q(T ) = T −1T = (T −1H)×. Obviously we have T̂ ⊂ q(T )∩ Ĥ = (T −1H)× ∩ Ĥ . Conversely, let
x = t−1s ∈ (T −1H)× ∩Ĥ , with s, t ∈ T . By Lemma 3.4.1 there exists m ∈ N such that tmxn ∈ H

for all n ∈ N. It follows that tmxn ∈ H ∩ (T −1H)× = T for all n ∈ N, and therefore x ∈ T̂ .
2. Clearly, we have T ⊂ �T �Ĥ ∩ H . Conversely, let x ∈ �T �Ĥ ∩ H . Then there exists z ∈ Ĥ

such that xz = t ∈ T . Since z = x−1t , Lemma 3.4.1 implies that there exists m ∈ N such that
xmzn ∈ H for all n ∈ N. From this we see that

xmzm+1 = xm tm+1

xm+1
= tm+1

x
∈ H,

and hence we obtain x ∈ �t�H ⊂ T . To prove that q(�T �Ĥ ) = (T −1Ĥ )× put M = �T �Ĥ . Clearly,
M is a divisor-closed submonoid of Ĥ . Therefore the same argument as in the proof of 1. shows
that q(M) = M−1M = (M−1Ĥ )×. The assertion now follows since M−1Ĥ = T −1Ĥ .

3. By Lemma 3.5.1 the inclusion T̂ ⊂ Ĥ is saturated. Clearly, T̂ is contained in �T �Ĥ . Thus
we obtain

T̂ ⊂ q(T ) ∩ �T �Ĥ ⊂ q(T ) ∩ Ĥ = T̂ ,

and it follows that T̂ ⊂ �T �Ĥ is saturated. Lemma 3.2.1 (applied to the monoids �T �Ĥ ⊂ Ĥ ⊂ F )
implies that �T �Ĥ ⊂ �T �F is saturated. �
Lemma 3.7. Suppose that H is v-noetherian and F = F× ×F(P ) is a factorial monoid such
that Ĥ ⊂ F is saturated.

1. Let a, b ∈ H . Then b ∈ �a�H if and only if supp(b) ⊂ supp(a).
2. Let T ⊂ H be a divisor-closed submonoid and Q = {p ∈ P | pF ∩ T �= ∅}.

(a) T = {a ∈ H | supp(a) ⊂ Q} and �T �F = F× ×F(Q).
(b) If T ′ ⊂ H is a divisor-closed submonoid and Q′ = {p ∈ P | pF ∩ T ′ �= ∅}, then T ′ ⊂ T

if and only if Q′ ⊂ Q.
(c) T̂ ⊂ F× ×F(Q) is saturated and cofinal.
(d) T̂ is a discrete valuation monoid if and only if |supp(T̂ \ T̂ ×)| = 1.
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Proof. 1. If b ∈ �a�H , then there exists n ∈ N such that b | an in H . This implies that b | an in F ,
whence supp(b) ⊂ supp(an) = supp(a). Conversely, suppose that supp(b) ⊂ supp(a). Then there
exists n ∈ N such that b | an in F . Since Ĥ ⊂ F is saturated, we have b | an in Ĥ , and thus
b−1an ∈ Ĥ . Lemma 3.4.1 implies that there exists m ∈ N such that bm(b−1an)k ∈ H for all
k ∈ N. For k = m + 1 it follows that b−1an(m+1) ∈ H . Therefore b | an(m+1) in H , and it follows
that b ∈ �a�H .

2.(a) If a ∈ T and p ∈ supp(a), then pF ∩ T �= ∅. Thus supp(a) ⊂ Q. Conversely, let a ∈ H

with supp(a) ⊂ Q. Then, for every p ∈ supp(a), there is bp ∈ T with p | bp , and thus there exists
b ∈ T with supp(a) ⊂ supp(b). Therefore 1. implies that a ∈ �b�H ⊂ T .

Since T ⊂ F× ×F(Q) and F× ×F(Q) is a divisor-closed submonoid of F it follows that
�T �F ⊂ F× ×F(Q). Conversely, since F× ⊂ �T �F and Q ⊂ �T �F , we obtain F× ×F(Q) ⊂
�T �F .

2.(b) This follows immediately from 2.(a).
2.(c) Since T̂ ⊂ Ĥ is saturated by Lemma 3.5.1, we infer that

T̂ = q(T ) ∩ Ĥ = q(T ) ∩ (
q(H) ∩ F

) = q(T ) ∩ F.

If F0 = F× ×F(Q), then F0 = q(F0) ∩ F , and we get

q(T̂ ) ∩ F0 = q(T ) ∩ q(F0) ∩ F = q(T ) ∩ F = T̂ ,

whence T̂ ⊂ F0 is saturated. Since T ⊂ �T �F = F0 is cofinal, T̂ ⊂ F0 is cofinal.
2.(d) By 2.(c) T̂ is a Krull monoid, and hence it is a discrete valuation monoid if and only if

it is primary. Suppose that | supp(T̂ \ T̂ ×)| = 1. Then supp(a) = Q for all a ∈ T̂ \ T̂ ×. Thus, for
all a, b ∈ T̂ \ T̂ ×, there exists n ∈ N such that a | bn in F0. This implies that a | bn in T̂ , and
therefore T̂ is primary. Conversely, suppose that T̂ is primary, and let a, b ∈ T̂ \ T̂ ×. Then there
are m,n ∈ N such that a | bm, b | an, and hence supp(a) = supp(b) by 1. �
Lemma 3.8. Suppose that H is a submonoid of a factorial monoid F = F× ×F(P ), where P is
a finite set, and assume that Ĥ ⊂ F is saturated. Then the following statements are equivalent:

(a) H̃ is a C-monoid defined in F .
(b) The class group of Ĥ ⊂ F is finite, and H̃ = {a ∈ Ĥ | ∅ �= supp(a) ∈ supp(H)} ∪ H̃×.

Proof. Since Ĥ ⊂ F is saturated Ĥ is a Krull monoid, and thus Ĥ ⊂ ̂̃H ⊂ ̂̂H = Ĥ . Let G denote
that class group of Ĥ ⊂ F .

(a) ⇒ (b) Suppose that H̃ is a C-monoid defined in F , where the parameter α ∈ N and
the subgroup V ⊂ F× satisfy the conditions in Theorem 2.3.2.(b). Since H̃ is a C-monoid
defined in F , the reduced class semigroup C∗(H̃ ,F ) is finite. The natural homomorphism
C∗(H̃ ,F ) → C( ̂̃HF×,F ) = C(ĤF×,F ) is surjective (apply Lemma 4.2.1.(a) with D = ĤF×).
By Lemma 2.1.2 it now follows that G is finite.

Clearly, we have H̃ ⊂ {a ∈ Ĥ | ∅ �= supp(a) ∈ supp(H)}. Conversely, let

a = ε
∏

pkp ∈ Ĥ , where ε ∈ F×,Q ⊂ P and kp ∈ N,
p∈Q
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and suppose that ∅ �= Q ∈ supp(H). Then it follows by [23, Proposition 2.9.6.2.(b)] that εα ∈ V

and aα = εα
∏

p∈P pαkp ∈ H̃ . Since H̃ is root-closed, we see that a ∈ H̃ .

(b) ⇒ (a) It follows directly from the assumptions that F× ∩ H̃ = H̃×. Next we verify condi-
tion 2.(b) of Theorem 2.3, where we put V = F× and α = exp(G). If a ∈ Ĥ \ Ĥ× and ε ∈ Ĥ×,
then supp(a) = supp(εa). Therefore we have V · (H̃ \ H̃×) ⊂ H̃ . Let p ∈ P , and suppose that
a ∈ pαF . Since Ĥ ⊂ F is saturated and α = exp(G) it follows that a ∈ ĤF× if and only
if pαa ∈ ĤF×. Furthermore, supp(a) = supp(pαa). Hence we see that a ∈ H̃ if and only if
pαa ∈ H̃ . �
Lemma 3.9. Suppose that H is v-noetherian, (H : Ĥ ) �= ∅, and assume that F = F× ×F(P ) is
a factorial monoid such that Ĥ ⊂ F is saturated.

1. If p ∈ P ∩ H̃ , then there exists α ∈ N such that, for all a ∈ pαF , we have a ∈ H if and only
if pαa ∈ H .

2. If q(�a�Ĥ )/q(�a�H ) is a torsion group for every a ∈ H , then

H̃ = {
a ∈ Ĥ

∣∣ supp(a) ∈ supp(H)
}
.

Proof. 1. Pick f ∈ (H : Ĥ ), and let k ∈ N such that b = pk ∈ H . For all m ∈ N we have(
H : bm

) = {
x ∈ q(H)

∣∣ bmx ∈ H
} ∈ Fv(H),

and since (H : Ĥ ) �= ∅, [23, Theorem 2.3.5] implies that am = (H : bm) ∩ Ĥ ∈Fv(H). Then

f a1 ⊂ f a2 ⊂ · · ·
is an ascending chain of v-ideals in H , and hence there exists n ∈ N such that f an = f an+m for
all m ∈ N0. We set α = kn and let a = pαx ∈ pαF , with x ∈ F . Suppose that a ∈ H . Then pαa ∈
H since pα ∈ H . Conversely, suppose that pαa = p2αx = b2nx ∈ H . Then x ∈ F ∩ q(H) = Ĥ

and x ∈ (H : b2n) = (H : bn). This implies that a = pαx = bnx ∈ H .
2. If a ∈ H̃ , then there exists n ∈ N such that an ∈ H . Thus supp(a) = supp(an) ∈ supp(H).

Conversely, let a ∈ Ĥ , and suppose that a′ ∈ H such that supp(a′) = supp(a). By Lemma 3.7.1
it follows that �a�Ĥ = �a′�Ĥ , and by Lemma 3.5.2 there exists

f ∈ (
�a′�H : �̂a′�H

) ⊂ �̂a′�H ⊂ �a′�Ĥ = �a�Ĥ .

There exists n ∈ N such that f | an in Ĥ , and since q(�a′�Ĥ )/q(�a′�H ) is a torsion group, we
may choose n in such a way that

an ∈ q
(
�a′�H

) ∩ Ĥ = �̂a′�H .

The last equal sign holds since �̂a′�H ⊂ Ĥ is saturated (Lemma 3.5.1). It follows that f divides

an in �̂a′�H , and then

an = f
(
f −1an

) ∈ f �̂a′�H ⊂ �a′�H ⊂ H,

showing that a ∈ H̃ . �
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4. Weakly C-monoids: definition and algebraic properties

In this section we introduce weakly C-monoids. We first give their definition, and then we
discuss and justify conditions (C1) and (C2).

Definition 4.1. The monoid H is called a weakly C-monoid if it is a submonoid of a factorial
monoid F = F× ×F(P ) such that the following two conditions are satisfied:

(C1) H is v-noetherian, (H : Ĥ ) �= ∅ and Ĥ ⊂ F is saturated and cofinal.
(C2) There exist an equivalence relation ∼ on P and a constant λ ∈ N such that

• P/∼ is finite, and
• for all p1,p

′
1, . . . , pλ,p

′
λ ∈ P with p1 ∼ p′

1 ∼ · · · ∼ pλ ∼ p′
λ there exists ε ∈ F× such

that [p1 · . . . · pλ]FH = [εp′
1 · . . . · p′

λ]FH .

We refer to these properties by saying that H is a weakly C-monoid defined in F with equivalence
relation ∼ and parameter λ.

In this paper we are interested in arithmetical finiteness properties of v-noetherian monoids.
To make conditions (C1) and (C2) of Definition 4.1 plausible, we consider two extreme cases
of v-noetherian monoids that are intended to be weakly C-monoids. First, suppose that H

is v-noetherian and completely integrally closed, that is, H is a Krull monoid. If its class
group C(H) is infinite, then it is well known that H may fail to be locally tame. More pre-
cisely, if every class of C(H) contains a prime, then H is locally tame if and only if C(H) is
finite [25, Theorem 4.4]. If H is a weakly C-monoid, then—roughly speaking—the finiteness
of P/∼ implies that the class group C(Ĥ ) of Ĥ is finitely generated (see Proposition 4.4.2). To
obtain our arithmetical main result (Theorem 5.3) we need to assume, in addition, that C(Ĥ ) is
even finite. A second extreme case of v-noetherian monoids we want to describe are primary
monoids, that is, monoids which have only a single non-empty prime s-ideal. If the conductor
(H : Ĥ ) of such a monoid H is empty, then H may fail to be locally tame (examples of such
monoids can be found in [26]). Therefore it is natural to claim, in Definition 4.1, that H has
non-empty conductor.

Suppose now that H is v-noetherian and (H : Ĥ ) �= ∅. Then Ĥ is a Krull monoid, and hence
there exists a factorial monoid F such that Ĥ ⊂ F is saturated and cofinal. Thus (C1) holds.

Condition (C2) is necessary to enforce a “uniform” behavior of the prime elements of F in
the case there are infinitely many, e.g., if H is a C-monoid or if H is the multiplicative monoid
of a higher-dimensional domain described in Theorem 6.7. Note that, if H is a G-monoid, and
F is a factorial monoid such that (C1) is satisfied, then F has only finitely many pairwise non-
associated primes. In this case condition (C2) is necessarily satisfied.

The main examples of weakly C-monoids we have in mind are

• v-noetherian G-monoids with (H : Ĥ ) �= ∅ (cf. Proposition 4.7); the equivalence relation ∼
is equality,

• C-monoids (cf. Proposition 4.8); the equivalence relation ∼ is (H,F )-equivalence,
• the monoid of non-zero elements and the monoid of v-invertible v-ideals of Mori domains

satisfying certain finiteness conditions (cf. Theorem 6.7 and Corollary 6.8).
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After having proved several technical results gathered in the following lemmas and propo-
sitions, we show that there is a canonical choice for the monoid F occurring in Definition 4.1
in the case C(Ĥ ) is finite (Proposition 4.5). Then we show that weakly C-monoids are stable
under algebraic standard operations such as taking finite products or passing to divisor-closed
submonoids (Proposition 4.6). After that we study v-noetherian G-monoids, and we show that
all finitely generated monoids are weakly C-monoids. Further, we characterize all Krull monoids
that are weakly C-monoids (Propositions 4.7 and 4.8).

Lemma 4.2. Assume that H is a submonoid of a monoid F .

1. Let D ⊂ F be a saturated submonoid.
(a) Suppose that H ⊂ D ⊂ q(H) and (H : D) �= ∅. If x, y ∈ F and [x]FH = [y]FH , then

[x]FD = [y]FD .
(b) If x, y ∈ D, then [x]FH = [y]FH if and only if [x]DH = [y]DH .

2. If S ⊂ H is a saturated submonoid, f ∈ (S : Ŝ), and x ∈ S with [x]FH = [f ]FH , then x ∈
(S : Ŝ).

3. If x, y ∈ F with [x]FH = [y]FH , then [x]F
H̃

= [y]F
H̃

.

Proof. 1.(a) Let f ∈ (H : D), and suppose that x, y ∈ F are (H,F )-equivalent. If z ∈ F with
xz ∈ D, then xzf ∈ H , and thus yzf ∈ H . This implies that yz ∈ q(H) ∩ F = D, and hence x, y

are (D,F )-equivalent.
1.(b) Let x, y ∈ D. If x, y are (H,F )-equivalent, then they are (H,D)-equivalent. Conversely,

suppose that [x]DH = [y]DH . If z ∈ F with zx ∈ H , then z = x−1(zx) ∈ q(D) ∩ F = D. Thus
[x]DH = [y]DH implies that zy ∈ H , and it follows that [x]FH = [y]FH .

2. If z ∈ Ŝ, then f z ∈ S ⊂ H , and hence xz ∈ q(S) ∩ H = S. This implies that xŜ ⊂ S, and it
follows that x ∈ (S : Ŝ).

3. Let x, y ∈ F such that [x]FH = [y]FH , and suppose that z ∈ F with xz ∈ H̃ . Then there exists
n ∈ N such that xnzn ∈ H . Since [x]FH = [y]FH it follows that xn−νyνzn ∈ H for all ν ∈ [0, n].
Thus we have ynzn ∈ H , and therefore yz ∈ H̃ . �
Lemma 4.3. Suppose that H is a weakly C-monoid defined in F = F× ×F(P ) with equivalence
relation ∼ and parameter λ.

1. Let k ∈ N with k � λ and p1,p
′
1, . . . , pk,p

′
k ∈ P with p1 ∼ p′

1 ∼ · · · ∼ pk ∼ p′
k . Then there

exists ε ∈ F× such that [p1 · . . . · pk]FH = [εp′
1 · . . . · p′

k]FH .
2. Let a, b ∈ F with vτ (a) = vτ (b) ∈ N�λ ∪ {0} for every τ ∈ P/∼. Then there exists ε ∈ F×

such that [a]FH = [εb]FH . Moreover, if a, b ∈ Ĥ , then ε ∈ Ĥ×.
3. The equivalence relation ∼ can be extended to a congruence relation on F (again denoted

by ∼) such that F/∼ ∼= F(P/∼) and such that, for all a, b ∈ F , the following conditions
are satisfied:
(a) a ∼ b if and only if vτ (a) = vτ (b) for all τ ∈ P/∼.
(b) If a ∼ b, then [a]F

ĤF× = [b]F
ĤF× and aq(H)F× = bq(H)F×.

4. Let m ∈ N0 and a, b1, . . . , bm ∈ F such that vτ (b1 · . . . · bm) � vτ (a) and vτ (bi) ∈ λN0 for
all i ∈ [1,m] and all τ ∈ P/∼. Then there exist b′

1, . . . , b
′
m ∈ F such that b′

1 · . . . · b′
m |F a,

[b′
i]FH = [bi]FH , and vτ (b

′
i ) = vτ (bi) for all τ ∈ P/∼ and all i ∈ [1,m].
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Proof. 1. We proceed by induction on k. If k = λ, then the assertion follows directly from (C2).
Suppose that k > λ, and assume the assertion holds for all l ∈ [λ, k −1]. Then there exist ε1, ε2 ∈
F× such that

[p1 · . . . · pk]FH = [p1 · . . . · pk−1]FH + [pk]FH
= [

ε1p
′
1 · . . . · p′

k−1

]F
H

+ [pk]FH = [
ε1p

′
1 · . . . · p′

k−1pk

]F
H

= [
ε1p

′
1

]F
H

+ [
p′

2 · . . . · p′
k−1pk

]F
H

= [
ε1p

′
1

]F
H

+ [
ε2p

′
2 · . . . · p′

k−1p
′
k

]F
H

= [
ε1ε2p

′
1 · . . . · p′

k

]F
H

.

2. By 1. there exists some ε ∈ F× such that [a]FH = [εb]FH . Suppose that a, b ∈ Ĥ and pick
f ∈ (H : Ĥ ). Then f a ∈ H , f b ∈ H , f εb ∈ H and ε = (f b)−1f εb ∈ q(H) ∩ F× ∈ Ĥ×.

3. Let μ :F → F(P/∼) be the unique homomorphism satisfying μ(ε) = 1 for all ε ∈ F× and
μ(p) = [p]∼ ∈ P/∼ for all p ∈ P and define, for all a, b ∈ F ,

a ∼ b if and only if μ(a) = μ(b).

Then ∼ is a congruence relation on F , F/∼ ∼= F(P/∼), and for a, b ∈ F we have a ∼ b if and
only if vτ (a) = vτ (b) for all τ ∈ P/∼.

Let a, b ∈ F with a ∼ b. Clearly, there is an element c ∈ F such that vτ (ac) = vτ (bc) ∈ N�λ ∪
{0} for all τ ∈ P/∼. By 2. there exists ε ∈ F× such that [ac]FH = [εbc]FH . Then Lemma 4.2.1.(a)
implies that [ac]F

Ĥ
= [εbc]F

Ĥ
, and hence [ac]F

ĤF× = [bc]F
ĤF× .

Since Ĥ ⊂ F is saturated and cofinal, ĤF× ⊂ F is saturated and cofinal. By Lemma 2.1.2
the map C(ĤF×,F ) → q(F )/q(H)F×, defined by [z]F

ĤF× 
→ zq(H)F× for all z ∈ F , is an

isomorphism. Thus C(ĤF×,F ) is a group, and therefore [ac]F
ĤF× = [bc]F

ĤF× implies that

[a]F
ĤF× = [b]F

ĤF× and aq(H)F× = bq(H)F×.
4. We proceed by induction on m. If m = 0 there is nothing to do. Suppose that m � 1 and

b1, . . . , bm ∈ F with vτ (b1 · . . . · bm) � vτ (a). Then vτ (b1 · . . . · bm−1) � vτ (a), and by the in-
duction hypothesis there exist b′

1, . . . , b
′
m−1 ∈ F such that b′

1 · . . . · b′
m−1 |F a, [b′

i]FH = [bi]FH ,
and vτ (b

′
i ) = vτ (bi) for all τ ∈ P/∼ and all i ∈ [1,m − 1]. We set a′ = (b′

1 · . . . · b′
m−1)

−1a.
Then there exists b′′

m ∈ F with b′′
m |F a′ and vτ (b

′′
m) = vτ (bm) for all τ ∈ P/∼. By 3. there exists

ε ∈ F× such that [bm]FH = [εb′′
m]FH . Therefore the assertion follows if we set b′

m = εb′′
m. �

Proposition 4.4. Suppose that H is a weakly C-monoid defined in F = F× ×F(P ) with equiv-
alence relation ∼ and parameter λ.

1. H is a BF-monoid and H ∩ F× = H×.
2. The set GP = {pq(H)F× | p ∈ P } ⊂ q(F )/q(H)F× is finite, D(GP ) = sup{vP (u) | u ∈

A(Ĥ )} < ∞, and in particular the group q(F )/q(H)F× is finitely generated.
3. Ĥ is a Krull monoid and the set of classes g ∈ C(Ĥ ) containing primes p ∈ X(Ĥ ) is finite.

In particular, C(Ĥ ) is finitely generated.



A. Geroldinger, W. Hassler / Journal of Algebra 319 (2008) 3419–3463 3435
Proof. 1. Since Ĥ ⊂ F is saturated, it follows that Ĥ ∩ F× = Ĥ×. Since H is v-noetherian and
(H : Ĥ ) �= ∅, [23, Theorem 2.3.5] implies that H ∩ Ĥ× = H×. Thus we obtain

H× = H ∩ Ĥ× = H ∩ F×.

Since H is v-noetherian it is a BF-monoid [23, Theorem 2.2.9].
2. GP is finite by Lemma 4.3.3.(b), and clearly GP generates q(F )/q(H)F×. Since the Dav-

enport constant of finite subsets of abelian groups is finite [23, Theorem 3.4.2], it follows that
D(GP ) < ∞. It follows from Lemma 2.1.3 (with H = Ĥ and D = F ) that D(GP ) = sup{vP (u) |
u ∈A(Ĥ )}.

3. Ĥ is a Krull monoid by Theorem 3.1. Since Ĥ ⊂ F is saturated and cofinal, there is a
cofinal divisor homomorphism ϕ : Ĥ → F(P ). For a ∈ F(P ) we set [a]ϕ = aq(ϕ(Ĥ )). By [23,
Theorem 2.4.7]

F0 = {
gcd

(
ϕ(X)

) ∣∣ ∅ �= X ⊂ Ĥ
} ⊂ F(P ) and C0 = {[a]ϕ

∣∣ a ∈ F0
} ⊂ q

(
F(P )

)
/q

(
ϕ(Ĥ )

)
are submonoids. Furthermore, there are epimorphisms ϕ∗ :F0 → I∗

v (Ĥ ) and ϕ :C0 → Cv(Ĥ ),
given by

ϕ∗(a) = ϕ−1(aF )v and ϕ
([a]ϕ

) = [
ϕ−1(aF )v

]
for all a ∈ F0,

and for x ∈ Ĥ we have ϕ∗ ◦ ϕ(x) = xĤ . Clearly, there is an isomorphism

ψ : q(F )/q(H)F× → q
(
F(P )

)
/q

(
ϕ(Ĥ )

)
,

and for G0 = {[p]ϕ | p ∈ P } ⊂ C0 we have ψ(GP ) = G0. In particular, G0 is finite and D(G0) =
D(GP ) < ∞.

If p ∈ X(Ĥ ), then there exists u ∈ F0 such that p = ϕ∗(u). Since ϕ∗ maps non-units to non-
units and p ∈ I∗

v (Ĥ ) is a prime, u must be an atom of F0. We shall prove that the set {[u]ϕ | u ∈
A(F0)} is finite.

Let c ∈ Ĥ and u ∈ F0 such that ϕ(c) | u in F(P ). We assert that ϕ(c) | u in F0. Let ∅ �= X ⊂ Ĥ

such that u = gcd(ϕ(X)). Since ϕ(c)−1 gcd(ϕ(X)) ∈F(P ), it follows that ϕ(c)−1ϕ(X) ⊂ F(P ),
and we see that c−1X ⊂ Ĥ . Thus gcd(ϕ(c−1X)) ∈ F0 and u = gcd(ϕ(X)) = ϕ(c)gcd(ϕ(c−1X)).

Let u ∈A(F0), k ∈ N and p1, . . . , pk ∈ P such that u = p1 · . . . ·pk . We assert that k � D(G0).
Assume to the contrary that k > D(G0). By [23, Theorem 5.1.5] there exists I ⊂ [1, k], say
I = [1, l], such that l � D(G0) and c = p1 · . . . · pl ∈ ϕ(Ĥ ). Then c | u in F(P ) and hence in F0,
and since c−1u = pl+1 · . . . · pk �= 1, we get a contradiction to u ∈ A(F0). Therefore we obtain

A(F0) ⊂ {
p1 · . . . · pk

∣∣ p1, . . . , pk ∈ P, k � D(G0)
}

and {[u]ϕ
∣∣ u ∈A(F0)

} ⊂ {
g1 + · · · + gk

∣∣ g1, . . . , gk ∈ G0, k � D(G0)
}
. �

Next we focus on the role of the monoid F in Definition 4.1. First we show that the imposi-
tion that Ĥ ⊂ F be cofinal can be dropped without loss of generality (in Definition 4.1 we claim
cofinality of Ĥ ⊂ F to simplify technical arguments). Suppose that H is a weakly C-monoid.
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Then H is a weakly C-monoid defined in a factorial monoid F such that F× = Ĥ× (see Propo-
sition 4.6.2). If C(Ĥ ) is finite, then H is a weakly C-monoid defined in a factorial monoid F

such that F ∼= Ĥ× ×I∗
v (Ĥ ) (see Proposition 4.5.2).

Proposition 4.5. Suppose that H is v-noetherian with (H : Ĥ ) �= ∅, and assume that F = F× ×
F(P ) is a factorial monoid such that Ĥ ⊂ F is saturated.

1. Suppose there exist an equivalence relation ∼ on P and λ ∈ N such that (C2) is fulfilled.
Then there exists P ′ ⊂ P such that H is a weakly C-monoid defined in F ′ = F× × F(P ′)
with equivalence relation ∼′ and parameter λ′, where ∼′ is the restriction of ∼ to P ′ and
λ′ = λ.

2. Suppose that H is a weakly C-monoid and that the class group of Ĥ ⊂ F is finite. Then
H is a weakly C-monoid defined in F . In particular, if C(Ĥ ) is finite, then H is a weakly
C-monoid defined in a factorial monoid isomorphic to Ĥ× ×I∗

v (Ĥ ).

Proof. 1. Lemma 3.7.2 (applied with T = H ) implies that there exists P ′ ⊂ P such that Ĥ ⊂
F ′ = F× × F(P ′) is saturated and cofinal. Thus H ⊂ F ′ satisfies (C1), and to verify (C2) it
suffices to show that

[x]FH = [y]FH if and only if [x]F ′
H = [y]F ′

H

for all x, y ∈ F ′. But this follows from Lemma 4.2.1.(b).
2. First we deduce the “In particular . . . ” statement from the main statement. Let Ĥ =

Ĥ× ×H0 ⊂ F0 = Ĥ× ×F(P0) such that H0 ∼= Ĥred and H0 ↪→ F(P0) is a divisor theory (see
Lemma 2.2.2). Then F(P0) ∼= I∗

v (Ĥ ), and the class group of Ĥ ⊂ F0 is isomorphic to C(Ĥ ).
Now we prove the main statement. Suppose that H is a weakly C-monoid defined in F ′ =

F ′× × F(P ′) with equivalence relation ∼′ and parameter λ′. By Lemma 4.3.3 we can extend
∼′ to a congruence relation on F ′ (again denoted by ∼′) such that F ′/∼′ ∼= F(P ′/∼′). We let
e denote the exponent of the class group of Ĥ ⊂ F , and we put GP = {πq(H)F× | π ∈ P } ⊂
q(F )/q(H)F×. We define an equivalence relation ∼ on F by setting x ∼ y if and only if

• xq(H)F× = yq(H)F×,
• dx ε ∼′ dy η for all d ∈ F and all ε, η ∈ F× such that dx ε, dy η ∈ Ĥ .

Clearly, ∼ is an equivalence relation on F , and we denote its restriction to P again by ∼.
We assert that ∼ is even a congruence relation on F . Indeed, if x, y, z ∈ F and x ∼ y, then
xq(H)F× = yq(H)F× implies xzq(H)F× = yzq(H)F×. If d ∈ F and ε, η ∈ F× such that
dx zε, dy zη ∈ Ĥ , then (dz)xε ∼′ (dz)yη, and therefore xz ∼ yz.

We continue by proving the following three assertions.

A1. For all x ∈ F× we have x ∼ 1.
A2. For all x, y ∈ Ĥ we have x ∼ y if and only if x ∼′ y.
A3. P/∼ is finite.

Proof of A1. Let x ∈ F×. Then xq(H)F× = q(H)F×. Let d ∈ F and ε, η ∈ F× such that
dx ε, dη ∈ Ĥ . Then x−1ε−1η = (dx ε)−1(dη) ∈ q(H) ∩ F× = Ĥ×, x−1ε−1η ∼′ 1 and dx ε ∼′
dx ε(x−1ε−1η) = dη. �
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Proof of A2. Let x, y ∈ Ĥ . Then xq(H)F× = yq(H)F× = q(H)F×, and thus x ∼ y if and
only if dx ε ∼′ dy η for all d ∈ F , ε, η ∈ F× for which dx ε, dy η ∈ Ĥ . Let d ∈ F , ε, η ∈ F×
such that dx ε, dy η ∈ Ĥ . Since x, y ∈ Ĥ , we get dε, dη ∈ q(H)∩F = Ĥ and ε−1η ∈ Ĥ×. Since
∼′ is a cancellative congruence relation, it follows that (dε)x ∼′ dy η = (dε)(ε−1η)y if and only
if x ∼′ y. Thus the assertion follows. �
Proof of A3. Since GP is finite, it suffices to prove that, for every π ∈ P , the set {[p]∼ | p ∈
πq(H)F× ∩P } is finite. Thus let π ∈ P , and fix some f ∈ π−1q(H)F× ∩F . If p ∈ πq(H)F× ∩
P , then there exists ε ∈ F× such that pf ε ∈ Ĥ , and we obtain max LĤ (pf ε) � vP (pf ε) =
1 + vP (f ). Next we decompose pf ε in F ′. By Proposition 4.4.2

G′ = {
p′q(H)F ′× ∣∣ p′ ∈ P ′} ⊂ q(F ′)/q(H)F ′×

is finite, and therefore we obtain

vP ′(pf ε) � max LĤ (pf ε)D(G′) �
(
1 + vP (f )

)
D(G′),

whence ∣∣{[pf ε]∼′
∣∣ p ∈ πq(H)F× ∩ P

}∣∣ � |P ′/∼′|(1+vP (f ))D(G′).

Thus, in order to complete the proof of A3, it suffices to show that the relation p1f ε ∼′ p2f η

implies p1 ∼ p2 for all p1,p2 ∈ πq(H)F× ∩ P and ε, η ∈ F× for which p1f ε,p2f η ∈ Ĥ .
Let p1,p2 ∈ πq(H)F× ∩ P and ε, η ∈ F× such that p1f ε,p2f η ∈ Ĥ and p1f ε ∼′ p2f η.

Since p1q(H)F× = p2q(H)F×, we must prove that dp1 α ∼′ dp2 β for all d ∈ F and all α,β ∈
F× for which dp1α,dp2β ∈ Ĥ . If dp1α,dp2β ∈ Ĥ , then

(p1f ε)(dp1 α) ∼′ (p2f η)(dp1 α) = (p1f ε)
(
ε−1β−1ηα

)
(dp2 β).

Since

ε−1β−1ηα = (dp1 α)(p2f η)(p1f ε)−1(dp2 β)−1 ∈ F× ∩ q(H) = Ĥ×,

and since F ′/∼′ is cancellative, it follows that dp1α ∼′ dp2β . �
Now we prove that H is a weakly C-monoid defined in F with equivalence relation ∼ and

parameter λ = λ′eD(GP ).
Let p1, . . . , pλ,p

′
1, . . . , p

′
λ ∈ P such that p1 ∼ · · · ∼ pλ ∼ p′

1 ∼ · · · ∼ p′
λ. Then e | λ implies

that there exist ε, η ∈ F× such that εp1 · . . . · pλ, ηp′
1 · . . . · p′

λ ∈ Ĥ . Since ∼ is a congruence
relation, it follows that εp1 · . . . ·pλ ∼ ηp′

1 · . . . ·p′
λ. Thus, by A2, we get εp1 · . . . ·pλ ∼′ ηp′

1 · . . . ·
p′

λ, and Lemma 4.3.3.(a) implies that vτ (εp1 · . . . · pλ) = vτ (ηp
′
1 · . . . · p′

λ) for all τ ∈ P ′/∼′. We
assert that vτ (εp1 · . . . ·pλ) ∈ N�λ′ ∪{0} for all τ ∈ P ′/∼′. Suppose that εp1 · . . . ·pλ = u1 · . . . ·ut ,
with t ∈ N and u1, . . . , ut ∈ A(Ĥ ). Then t � D(GP )−1λ � λ′, u1 ∼ · · · ∼ ut , and hence u1 ∼′
· · · ∼′ ut . Therefore [u1]∼′ = · · · = [ut ]∼′ ∈ F ′/∼′ ∼= F(P ′/∼′), and for every τ ∈ P ′/∼′ it
follows that

vτ (εp1 · . . . · pλ) = vτ

([u1]t ′
) ∈ N�t ∪ {0}.
∼
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Hence, by Lemma 4.3.2, there exists γ ∈ Ĥ× such that [εp1 · . . . · pλ]F ′
H = [γ ηp′

1 · . . . · p′
λ]F

′
H ,

and we assert that [εp1 · . . . · pλ]FH = [γ ηp′
1 · . . . · p′

λ]FH . If f ∈ F and f εp1 · . . . · pλ ∈ H , then

f = (εp1 · . . . · pλ)
−1f εp1 · . . . · pλ ∈ q(H) ∩ F = Ĥ ⊂ F ′, and hence f γ ηp′

1 · . . . · p′
λ ∈ H .

Conversely, if f ∈ F and f γ ηp′
1 · . . . · p′

λ ∈ H , then f = (γ ηp′
1 · . . . · p′

λ)
−1f γ ηp′

1 · . . . · p′
λ ∈

q(H) ∩ F = Ĥ ⊂ F ′, and thus f εp1 · . . . · pλ ∈ H . �
Proposition 4.6.

1. If H is a weakly C-monoid and T ⊂ H is a divisor-closed submonoid, then T is a weakly
C-monoid. More precisely, if H is defined in F = F× ×F(P ) with equivalence relation ∼,
then T is a weakly C-monoid defined in F× ×F(Q), where Q = {p ∈ P | pF ∩T �= ∅}, and
the equivalence relation on Q is the restriction of ∼ to Q.

2. H is a weakly C-monoid if and only if Hred is a weakly C-monoid. Moreover, if H is a
weakly C-monoid, then H is a weakly C-monoid defined in a factorial monoid F such that
F× = Ĥ×.

3. Let H1 and H2 be submonoids of H such that H = H1 ×H2. Then H is a weakly C-monoid
if and only if H1 and H2 are weakly C-monoids.

4. If H is a weakly C-monoid and H̃ is v-noetherian, then H̃ is a weakly C-monoid.

Proof. 1. Suppose that H is defined in F = F× ×F(P ) with equivalence relation ∼ and pa-
rameter λ. If T ⊂ H is a divisor-closed submonoid, then T is v-noetherian, (T : T̂ ) �= ∅, and
T̂ ⊂ �T �F is saturated by Lemmas 3.5 and 3.6. By Lemma 3.7.2 we have �T �F = F× ×F(Q),
with Q = {p ∈ P | pF ∩ T �= ∅}. Clearly, Q/∼ ⊂ P/∼ is finite, and in order to prove the asser-
tion it is enough to verify that

[x]FH = [y]FH implies [x]�T �F

T = [y]�T �F

T for all x, y ∈ �T �F .

Let x, y ∈ �T �F such that [x]FH = [y]FH , and let z ∈ �T �F with xz ∈ T . Then Lemma 3.6.2
implies that

yz ∈ H ∩ �T �F = H ∩ Ĥ ∩ �T �F = H ∩ �T �Ĥ = T ,

and thus [x]�T �F

T = [y]�T �F

T .
2. H is v-noetherian if and only if Hred = H/H× is v-noetherian. Further, Ĥred = Ĥ /H×

[23, Proposition 2.3.4.1]. We have(
H/H× : Ĥ /H×) = {

f H× ∣∣ f ∈ (H : Ĥ )
}
,

and hence (H : Ĥ ) �= ∅ if and only if (Hred : Ĥred) �= ∅. If H is v-noetherian and (H : Ĥ ) �= ∅,
then Ĥ and Ĥred are Krull monoids with C(Ĥ ) = Cv(Ĥ ) = Cv(Ĥ /H×) = C(Ĥred).

If F = F× ×F(P ) is factorial and Ĥ ⊂ F is saturated and cofinal, then Ĥred = Ĥ /H× ⊂
F/H× ×F(P ) is saturated and cofinal. For all x, y ∈ F we have

[x]FH = [y]FH if and only if
[
xH×]F/H×

H/H× = [
yH×]F/H×

H/H× .

Thus, since H ⊂ F satisfies (C2), it follows that H/H× ⊂ F/H× satisfies (C2).
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Conversely, suppose that Hred is a weakly C-monoid defined in F , say

H/H× ⊂ Ĥ /H× ⊂ F = F× ×F(P ).

Let

π : q(H) = q(Ĥ ) → q(H)/H× = q
(
H/H×) = q

(
Ĥ /H×)

denote the canonical epimorphism, and let θ :F → F(P ) be defined by θ(εa) = a for all ε ∈
F× and all a ∈ F(P ). Since Ĥ is a Krull monoid, Lemma 2.1 implies that Ĥ = Ĥ× ×H0. It
follows that q(H) = Ĥ× ×q(H0), and hence there is an epimorphism λ : q(H) → Ĥ× which is
the identity on Ĥ×. Therefore the map

ι : Ĥ → F = Ĥ× ×F(P ) defined by ι(a) = (
λ(a), θ

(
π(a)

))
is an injective divisor homomorphism. Clearly, it is sufficient to show that ι(H) is a weakly
C-monoid defined in F . For, it remains to verify the following assertion.

A. Let a, b ∈ F(P ) and ε ∈ F× such that [a]FHred
= [εb]FHred

. Then there exists ε ∈ Ĥ× such that

[(1, a)]Fι(H) = [(ε, b)]Fι(H).

Proof of A. Lemma 4.2.1.(a) implies that [a]F
Ĥ/H× = [εb]F

Ĥ/H× , and hence aq(H)/H× =
εbq(H)/H× by Lemma 2.1. Thus there exists u ∈ q(H) such that a = εbπ(u), and we assert
that ε = λ(u)−1 ∈ Ĥ× has the required property. We pick (s, c) ∈ F and proceed in two steps.

Suppose that (1, a)(s, c) ∈ ι(H), say (s, ac) = ι(h) = (λ(h), θ(π(h))) for some h ∈ H . If γ ∈
F× such that π(h) = γ θ(π(h)), then γ ca = π(h) ∈ H/H×. This implies that γ cεb ∈ H/H×,
say γ cεb = π(h′) for some h′ ∈ H , and then θ(π(h′)) = bc. Since

π(h) = γ ac = γ εbπ(u)c = π(h′)π(u) = π(h′u),

there is σ ∈ H× with h = h′uσ , and hence λ(h) = λ(h′)λ(u)σ = λ(h′)ε−1σ . Thus we obtain
that

ι
(
h′σ−1) = (

λ(h′), θ
(
π(h′)

)) = (
λ(h)ε, bc

) = (εs, bc) = (ε, b)(s, c).

Conversely, suppose that (ε, b)(s, c) ∈ ι(H), say (εs, bc) = ι(h) = (λ(h), θ(π(h))) for some
h ∈ H . If γ ∈ F× such that π(h) = γ θ(π(h)), then π(h) = γ bc = γ ε−1c(εb) ∈ H/H×. This
implies that γ ε−1ca ∈ H/H×, say γ ε−1ca = π(h′) for some h′ ∈ H , and hence θ(π(h′)) = ac.
Since

π(h′) = γ ε−1ca = γ ε−1cεbπ(u) = π(h)π(u) = π(hu),

there is σ ∈ H× with h′ = huσ , and hence λ(h′) = λ(h)λ(u)σ = λ(h)ε−1σ . Thus we obtain that

ι
(
h′σ−1) = (

λ(h′), θ
(
π(h′)

)) = (
λ(h)ε−1, ac

) = (s, ac) = (1, a)(s, c). �
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3. By 2. we may suppose that H1 and H2 are both reduced. If H is a weakly C-monoid,
then, for every i ∈ [1,2], the submonoid Hi ⊂ H is divisor-closed, and it follows by 1. that Hi

is a weakly C-monoid. Conversely, suppose that, for every i ∈ [1,2], Hi is a weakly C-monoid
defined in Fi = F×

i × F(Pi) with equivalence relation ∼i and parameter λi . Set F = F1 × F2
and λ = max{λ1, λ2}. Then F = F× × F(P ), where P is the disjoint union of P1 and P2. We
define ∼ on P by p ∼ q if and only if

(p, q ∈ P1 and p ∼1 q) or (p, q ∈ P2 and p ∼2 q).

We claim that H is a weakly C-monoid defined in F with equivalence relation ∼ and parameter λ.
Clearly, H is v-noetherian, (H : Ĥ ) �= ∅, and Ĥ = Ĥ1 × Ĥ2 ⊂ F = F1 × F2 is saturated and
cofinal. Furthermore, it is easy to see that for all p1,p

′
1, . . . , pλ,p

′
λ ∈ P with p1 ∼ p′

1 ∼ · · · ∼
pλ ∼ p′

λ there exists ε ∈ F× such that [p1 · . . . · pλ]FH = [εp′
1 · . . . · p′

λ]FH .
4. Suppose that H is defined in F = F× ×F(P ) with equivalence relation ∼ and parameter λ.

Since Ĥ is a Krull monoid, we infer that ̂̃H = Ĥ . If f ∈ (H : Ĥ ), then f Ĥ ⊂ H ⊂ H̃ . Hence
we see that (H̃ : ̂̃H) �= ∅. Now Lemma 4.2.3 implies that H̃ is a weakly C-monoid defined in F

with equivalence relation ∼ and parameter λ. �
We do not know whether or not it is necessary to impose, in 4., that H̃ be v-noetherian. It

might be true that the root closure of a weakly C-monoid is always v-noetherian, though, we
have not been able to work out a proof of this.

Next we consider v-noetherian G-monoids. This class of monoids represents the prototype
of auxiliary monoids in factorization theory (cf. [23, Section 2.7]). In the following proposition
we consider some algebraic properties of G-monoids (for results concerning their arithmetic see
Propositions 6.4 and 6.5).

Let H be a v-noetherian G-monoid. Then s-spec(H) is finite by Theorem 3.1, H has only
finitely many divisor-closed submonoids, and for every divisor-closed submonoid T ⊂ H there
exists a ∈ T such that T = �a�H [23, Lemma 2.2.1].

Proposition 4.7.

1. The following statements are equivalent:
(a) H is a v-noetherian G-monoid with (H : Ĥ ) �= ∅.
(b) H is a weakly C-monoid where the equivalence relation ∼ can be chosen to be equality.

2. Suppose that H is a v-noetherian G-monoid with (H : Ĥ ) �= ∅.
(a) Every saturated submonoid S ⊂ H is a v-noetherian G-monoid with (S : Ŝ) �= ∅.

(b) Assume that Ĥ×/H× is finite and that, for all a ∈ H , the class group of �̂a�H ⊂ �a�Ĥ
is finite. Then H̃ is a C-monoid if and only if C(Ĥ ) is finite.

Proof. 1. (a) ⇒ (b) By Theorem 3.1 Ĥred is a finitely generated Krull monoid, and therefore
there exists a factorial monoid F = Ĥ× ×F(P ), where P is finite, such that Ĥ ⊂ F is saturated
and cofinal. For two primes p,p′ ∈ P we define p ∼ p′ if and only if p = p′. Then (C2) holds
for λ = 1.

(b) ⇒ (a) Let H be a weakly C-monoid defined in F = F× ×F(P ) with equivalence re-
lation being equality. Then (C1) implies that H is v-noetherian with (H : Ĥ ) �= ∅, and (C2)
implies that P is finite. Therefore Ĥred is finitely generated, and thus Ĥ is a G-monoid [23, The-
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orem 2.7.13]. It follows from [23, Theorem 2.7.9] that s-spec(Ĥ ) is finite. By Lemma 3.4.3 we
see that s-spec(H) is finite, and hence H is a G-monoid.

2.(a) Let S ⊂ H be a saturated submonoid. Then S is a v-noetherian G-monoid by [23, Theo-
rem 2.7.9], and Lemma 3.5.2 implies that (S : Ŝ) �= ∅.

2.(b) By Theorem 3.1 there exists a finite set P such that Ĥ ⊂ F = Ĥ× ×F(P ) is sat-
urated. Let a ∈ H . Since Ĥ×/H× and q(�a�Ĥ )/Ĥ×q(�a�H ) are both finite it follows that
q(�a�Ĥ )/q(�a�H ) is finite. Now the assertion follows from Lemmas 3.8 and 3.9.2. �

The monoid H is said to be seminormal if x2, x3 ∈ H implies x ∈ H for all x ∈ q(H) (cf. [3,
10,36]). Thus every root-closed monoid is seminormal. If H is a seminormal G-monoid, then
(H : Ĥ ) �= ∅ by [24, Proposition 4.8], and hence every seminormal v-noetherian G-monoid is
a weakly C-monoid. We do not know if all assumptions on H in Proposition 4.7.2.(b) are nec-
essary. In the special case of a primary v-noetherian monoid H with (H : Ĥ ) �= ∅, the root
closure of H is a weakly C-monoid if and only if C(Ĥ ) is finite (see [26, Theorem 3.5]). The
next proposition sheds light on the relationship between weakly C-monoids on the one hand, and
C-monoids, Krull monoids and finitely generated monoids on the other hand.

Proposition 4.8.

1. Every C-monoid is a weakly C-monoid.
2. Suppose that H is a Krull monoid with class group C(H).

(a) H is a weakly C-monoid if and only if the set of classes in C(H) containing primes is
finite.

(b) H is a C-monoid if and only if C(H) is finite.
3. Suppose that Hred is finitely generated.

(a) H is a weakly C-monoid.
(b) H is a C-monoid if and only if C(Ĥ ) is finite.

Proof. 1. Assume that H is a C-monoid. By [23, Theorem 2.9.11] there exists a factorial monoid
F = F× ×F(P ) such that H is a C-monoid defined in F and Ĥ ⊂ F is saturated with finite
class group. By Theorem 2.3 (C1) is satisfied. We define the equivalence relation ∼ on P as
the restriction of the (H,F )-equivalence. Then P/∼ ⊂ C∗(H,F ) is finite, and (C2) holds with
parameter λ = 1.

2.(a) Suppose that H = Ĥ = H× ×H0 ⊂ H× ×F(P ) = F such that C(H) = q(F(P ))/q(H)

and {pq(H0) | p ∈ P } is finite (see Lemma 2.2.2). We define an equivalence relation ∼ on P

by setting p ∼ p′ if and only if pq(H0) = p′q(H0). Since C(H) = q(F )/q(H), Lemma 2.1.1
implies that, for all p,p′ ∈ P , we have p ∼ p′ if and only if [p]FH = [p′]FH . Thus H is a weakly
C-monoid defined in F with equivalence relation ∼ and parameter λ = 1.

Conversely, if H is a weakly C-monoid, then the set of classes of C(Ĥ ) = C(H) containing
primes is finite by Proposition 4.4.3.

2.(b) This follows from [23, Theorem 2.9.12] and Theorem 2.3.
3.(a) H is a v-noetherian G-monoid with (H : Ĥ ) �= ∅ by [23, Theorem 2.7.13], and hence it

is a weakly C-monoid by Proposition 4.7.1.
3.(b) If H is a C-monoid, then C(Ĥ ) is finite by Theorem 2.3. Conversely, suppose that C(Ĥ )

is finite. By [23, Proposition 2.7.11 and Theorem 2.7.13] H is a v-noetherian G-monoid, Ĥ =
H̃ , (H : Ĥ ) �= ∅, and Ĥ /H× is finitely generated. Moreover, P = X(Ĥ ) is finite, and Ĥ ⊂
F = Ĥ× ×F(P ) is saturated with class group isomorphic to C(Ĥ ). We verify the condition
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in Theorem 2.3.2.(b). Since Ĥ /H× is finitely generated it follows that H̃×/H× is a finitely
generated torsion group. Hence H̃×/H× is finite. Since P is finite there exists, by Lemma 3.9.1,
an integer α ∈ N such that, for all p ∈ P and a ∈ pαF , we have a ∈ H if and only if pαa ∈ H .
Without loss of generality we may choose α to be a multiple of (H̃× : H×). Now the condition
in Theorem 2.3.2.(b) is satisfied with α and V = H×. �
5. Weakly C-monoids: arithmetic properties

We open this section with the definition of the local tame degrees t(H, ·) and the associated
invariants ω(H, ·) and τ(H, ·). For general information on local tameness and its relevance in
factorization theory we refer to [23]. Recent results can be found in [2,8,12,13,25,26]. The main
result of this paper is Theorem 5.3 which states that a weakly C-monoid H for which the class
group C(Ĥ ) is finite is locally tame if and only if the algebraic condition we call (C3) is fulfilled
(a simple example where (C3) fails is given in Example 6.11). The proof of Theorem 5.3 is based
on the following two recent results [25, Theorems 3.6 and 4.2]:

• An atomic monoid H is locally tame if and only if ω(H,u) < ∞ and τ(H,u) < ∞ for all
u ∈A(H).

• If H is v-noetherian, then ω(H,b) < ∞ for all b ∈ H .

Therefore it suffices to show that the τ(H, ·) invariants are finite if and only if (C3) holds. The
proof occupies the whole section, and the crucial steps are Propositions 5.8 and 5.9. The explicit
upper bounds given in Theorem 5.3 are essential for proving the finiteness of the catenary degree
(see Theorem 6.3).

Definition 5.1. Suppose that H is atomic.

1. For b ∈ H let ω(H,b) denote the smallest N ∈ N0 ∪ {∞} having the following property:
For all n ∈ N and a1, . . . , an ∈ H , if b | a1 · . . . · an, then there exists a subset Ω ⊂ [1, n]
such that |Ω| � N and

b

∣∣∣ ∏
ν∈Ω

aν.

2. For b ∈ H we define

τ(H,b) = sup
{
min L

(
b−1a

) ∣∣ a = u1 · . . . · uk ∈ bH with k ∈ N, u1, . . . , uk ∈ A(H),

and b � u−1
i a for all i ∈ [1, k]}.

3. For a ∈ H and x ∈ Z(H) let t(a, x) ∈ N0 ∪ {∞} denote the smallest N ∈ N0 ∪ {∞} with the
following property:

If Z(a) ∩ xZ(H) �= ∅ and z ∈ Z(a), then there exists z′ ∈ Z(a) ∩ xZ(H) such that
d(z, z′) � N .

For subsets H ′ ⊂ H and X ⊂ Z(H) we define
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t(H ′,X) = sup
{
t(a, x)

∣∣ a ∈ H ′, x ∈ X
} ∈ N0 ∪ {∞}.

H is called locally tame if t(H,u) < ∞ for all u ∈ A(Hred).

Definition 5.2. Suppose that H is a weakly C-monoid defined in F = F× ×F(P ) with equiva-
lence relation ∼ and parameter λ.

1. For x ∈ F we set

supp∼(x) = {[p]∼
∣∣ p ∈ P with vp(x) > 0

} ⊂ P/∼,

and for a subset S ⊂ F we set

supp∼(S) = {
supp∼(x)

∣∣ x ∈ S
}
.

2. An element p ∈ P is called H -essential if there exists a ∈ H with supp∼(p) = supp∼(a).
We denote by E(H) the set of all H -essential primes.

3. A submonoid T ⊂ H is called support-closed if supp∼(b) ⊂ supp∼(a) implies b ∈ T for all
a ∈ T and b ∈ H (obviously, a support-closed submonoid is divisor-closed).

In Theorem 5.3 we need the generalized Davenport constant DE(H) introduced prior to

Lemma 2.1. Note that, by Proposition 4.5.2, if H is a weakly C-monoid such that C(Ĥ ) is fi-
nite, then H is a weakly C-monoid defined in a factorial monoid F such that the class group of
Ĥ ⊂ F is finite.

Theorem 5.3 (Main Theorem). Suppose that H is a weakly C-monoid defined in F = F× ×F(P )

with equivalence relation ∼ and parameter λ. Assume that the class group of Ĥ ⊂ F is finite.
Then H is locally tame if and only if the following condition is fulfilled:

(C3) For every support-closed submonoid T ⊂ H with | supp∼(T̂ \ T̂ ×)| = 1 the class group of
T̂ ⊂ �T �Ĥ is finite.

More precisely, if (C3) is fulfilled and E = E(H) ⊂ P is the set of H -essential primes, then there
exist K1 ∈ N (K1 is the same constant as in Proposition 5.8) such that, for all u ∈ A(H) and all
k ∈ N,

τ(H,u) � ω(H,u)DE (H) + K1,

and, for every f ∈ (H : Ĥ ),

t
(
H,uH×)

�
(
vP (u) + ω(H,f )

)
max

{
DE (H),1

} + K1 + 1.

In the following lemma we show, among other things, that for weakly C-monoids our defini-
tion of an H -essential prime is consistent with [23, Definition 2.9.5].

Lemma 5.4. Suppose that H is a submonoid of a factorial monoid F = F× ×F(P ), and put
E = {p ∈ P | there exists n ∈ N such that pn ∈ HF×}.
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1. Suppose that H ∩ F× = H×, (H : Ĥ ) �= ∅ and Ĥ ⊂ F is saturated.
(a) If f ∈ (H : Ĥ ), p ∈ E and c ∈ H with supp(c) = {p}, then vp(u) � vp(c)(ω(H,f ) + 1)

for every u ∈A(H).
(b) If E is finite, then DE (H) < ∞.

2. Suppose that H is a weakly C-monoid defined in F with equivalence relation ∼ and para-
meter λ.
(a) E is the set of H -essential primes.
(b) DE (H) < ∞.

Proof. 1.(a) Let u ∈ A(H) and assume to the contrary that vp(u) > vp(c)(ω(H,f ) + 1). Then
cω(H,f )+1 | u (in F and hence in Ĥ ), b = c−ω(H,f )−1u ∈ Ĥ and cω(H,f )+1b ∈ H . Clearly,
vp(b) > 0 implies that b /∈ H×. By [25, Lemma 3.4.2.(a)] there exists k ∈ [0,ω(H,f )] such
that ckb ∈ H . Thus u = (ckb)cω(H,f )+1−k is a product of two non-units of H , a contradiction.

1.(b) For p ∈ E let cp ∈ H with supp(cp) = {p}, and let M = max{vp(cp) | p ∈ E}. If f ∈
(H : Ĥ ) and u ∈A(H), then 1. implies that

vE (u) =
∑
p∈E

vp(u) � |E |M(
ω(H,f ) + 1

)
.

2.(a) If p ∈ E , then there are n ∈ N and ε ∈ F× such that pnε ∈ H . Since supp∼(p) =
{[p]∼} = supp∼(pnε), the prime p is H -essential. Conversely, suppose that p ∈ P is H -
essential. Then there exists a = εp1 · . . . ·pn ∈ H , where ε ∈ F×, n ∈ N and p1, . . . , pn ∈ P , such
that supp∼(p) = supp∼(a) = supp∼(pi) for all i ∈ [1, n]. It follows that p ∼ p1 ∼ · · · ∼ pn, and
by Lemma 4.3.2 there is an η ∈ F× such that [aλ]FH = [ηpλn]FH . Since aλ ∈ H it follows that
ηpλn ∈ H , and hence p ∈ E .

2.(b) Let f ∈ (H : Ĥ ) and put m = ω(H,f )+1. For every σ ∈ E/∼ we fix an element aσ ∈ H

such that supp∼(aσ ) = {σ } and vσ (aσ ) ∈ λN. Let u ∈ A(H). We assert that vσ (u) � mvσ (aσ )

for all σ ∈ E/∼. If this is proved, then we obtain

vE (u) =
∑

σ∈E/∼
vσ (u) � m

∑
σ∈E/∼

vσ (aσ ).

Assume to the contrary that there exists σ ∈ E/∼ such that vσ (u) > mvσ (aσ ). Then vτ (a
m
σ ) �

vτ (u) and vτ (aσ ) ∈ λN0 for all τ ∈ P/∼. By Lemma 4.3.4 there exist b1, . . . , bm ∈ F such that

(a) vτ (b1) = · · · = vτ (bm) = vτ (aσ ) for all τ ∈ P/∼,
(b) [b1]FH = · · · = [bm]FH = [aσ ]FH , and
(c) b1 · . . . · bm | u (in F and hence in Ĥ ).

Therefore u = b1 · . . . · bmu′, where b1, . . . , bm ∈ [aσ ]FH ⊂ H and u′ = (b1 · . . . · bm)−1u ∈ Ĥ .
Moreover, vσ (b1) > 0, . . . , vσ (bm) > 0, vσ (u′) > 0 implies that {b1, . . . , bm,u′} ∩ H× = ∅. By
[25, Lemma 3.4.2.(a)] there exists a proper subset Ω � [1,m] such that

( ∏
bj

)
u′ ∈ H.
j∈Ω
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Thus

u =
( ∏

j∈[1,m]\Ω
bj

)(
u′ ∏

j∈Ω

bj

)

is a product of two non-units of H , a contradiction. �
Definition 5.5. Suppose that H is a weakly C-monoid defined in F = F× ×F(P ) with equiva-
lence relation ∼ and parameter λ.

1. For a support-closed submonoid S ⊂ H we denote by ψ∼(S) the number of non-trivial
support-closed submonoids. (Observe that ψ∼(H×) = 0 and that ψ∼(H) < ∞ because P/∼
is finite.)

2. For a subset U ⊂ H we denote by �U�∼ the set of all a ∈ H with supp∼(a) ⊂ supp∼(c) for
some c ∈ [U ]. Then �U�∼ is the smallest support-closed submonoid of H containing U . For
a ∈ H we set �a�∼ = �{a}�∼.

The following technical lemma is invoked in the proof of Proposition 5.7.

Lemma 5.6. Let G be an abelian group, G0 ⊂ G a finite subset, and A,C ∈ B(G0) with ∅ �=
supp(A) � supp(C) = G0. Then there exists B ∈ B(G0) with supp(A) \ supp(B) �= ∅, supp(B) \
supp(A) �= ∅, and supp(AB) = G0.

Proof. We set G0 = {g1, . . . , gt }, C = g
m1
1 · . . . ·gmt

t and A = g
l1
1 · . . . ·gls

s , where t, l1, . . . , ls ,m1,

. . . ,mt ∈ N and s ∈ [1, t − 1]. Put l = lcm(l1, . . . , ls), and let ki ∈ N such that liki = lmi for all
i ∈ [1, s]. After a suitable renumbering of the indices, we may suppose that k1 = min{k1, . . . , ks}.
We assert that

B = A−k1Cl

has the required properties. For every i ∈ [1, s] we have

vgi
(B) = −k1li + lmi � −ki li + lmi = 0,

whence B ∈ B(G0). Clearly, vg1(B) = 0, and thus {gs+1, . . . , gt } ⊂ supp(B) ⊂ {g2, . . . , gt }. It
follows that g1 ∈ supp(A) \ supp(B), gt ∈ supp(B) \ supp(A), and supp(AB) = {g1, . . . , gt } =
G0. �

The following proposition will serve as the induction basis in the proof of Proposition 5.8.
Proposition 5.8 is the crucial ingredient for proving that (C3) implies local tameness.

Proposition 5.7. Suppose that H is a weakly C-monoid defined in F = F× ×F(P ) with equiv-
alence relation ∼ and parameter λ, and assume that H contains no proper support-closed
submonoid. Put GP = {pq(H)F× | p ∈ P } ⊂ q(F )/q(H)F×, and let D(GP ) be the Davenport
constant of this set.
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1. If | supp∼(Ĥ \ Ĥ×)| = 1, then

max L(a) � vτ (a) � vP

(
f 2)D(GP )min L(a)

for all a ∈ H , τ ∈ P/∼, and all f ∈ (H : Ĥ ) satisfying vσ (f ) ∈ λN for each σ ∈ P/∼.
2. If | supp∼(Ĥ \ Ĥ×)| > 1, then

sup
{
min L(a)

∣∣ a ∈ H
}

< ∞.

Proof. Since Ĥ ⊂ F is cofinal, for every p ∈ P there exists a ∈ Ĥ with vp(a) > 0. If a, b ∈ Ĥ ,
then supp∼(ab) = supp∼(a) ∪ supp∼(b). Thus there exists a ∈ Ĥ with supp∼(a) = P/∼. If
f ∈ (H : Ĥ ), then f a ∈ H and supp∼(f a) = P/∼. Since H contains no proper support-closed
submonoid, it follows that supp∼(b) = P/∼ for all b ∈ H \ H×. This implies that max L(b) �
vτ (b) for each τ ∈ P/∼ and all b ∈ H \ H×.

1. By assumption we have supp∼(v) = P/∼ for all v ∈ Ĥ \ Ĥ×. Let u ∈ A(H), and let
f ∈ (H : Ĥ ) with vτ (f ) ∈ λN for all τ ∈ P/∼. Suppose that u = v1 · . . . · vt , with t ∈ N and
v1, . . . , vt ∈A(Ĥ ). Then it follows that

t �
t∑

i=1

vτ (vi) = vτ (u) for all τ ∈ P/∼. (2)

We continue with the following assertion.

A1. t � min{vτ (u) | τ ∈ P/∼} < 2 max{vτ (f ) | τ ∈ P/∼} � vP (f 2).

Proof of A1. The first inequality follows from (2), and the last inequality is obvious. To prove the
intermediate one, assume to the contrary that min{vτ (u) | τ ∈ P/∼} � 2 max{vτ (f ) | τ ∈ P/∼}.
This implies that

vτ (u) � vτ

(
f 2) for all τ ∈ P/∼.

By Lemma 4.3.4 there exist f ′, f ′′ ∈ F with f ′f ′′ |F u, [f ′]FH = [f ]FH = [f ′′]FH and vτ (f
′) =

vτ (f ) = vτ (f
′′) for all τ ∈ P/∼. It follows that f ′, f ′′ ∈ (H : Ĥ ) (apply Lemma 4.2.2 with S =

H ), b = (f ′f ′′)−1u ∈ Ĥ and f ′b ∈ H , and therefore u = f ′′(f ′b) is a non-trivial decomposition
of u. This is a contradiction to u ∈A(H). �

By A1 and Lemma 2.1.3 we obtain

max
{
vτ (u)

∣∣ τ ∈ P/∼}
� t max

{
vτ (v)

∣∣ τ ∈ P/∼, v ∈A(Ĥ )
}

< vP

(
f 2)D(GP ).

Now let a ∈ H , a = u1 · . . . · ul with u1, . . . , ul ∈ A(H), and τ ∈ P/∼. Then
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l � vτ (a) =
l∑

i=1

vτ (ui) � lvP

(
f 2)D(GP ),

and hence max L(a) � vτ (a) � vP (f 2)D(GP )min L(a).
2. We start with two assertions.

A2. There exist elements a, b ∈ Ĥ such that supp∼(a) ∪ supp∼(b) = P/∼, supp∼(a) \
supp∼(b) �= ∅, and supp∼(b) \ supp∼(a) �= ∅.

A3. Let a ∈ Ĥ with supp∼(a) = P/∼. Then there exists n ∈ N such that an ∈ (H : Ĥ ).

Proof of A2. We distinguish two cases.
Case 1. The congruence relation ∼ and the (ĤF×,F )-equivalence do not coincide on P .
Then Lemma 4.3.3.(b) implies that there exist p1,p2 ∈ P with [p1]∼ �= [p2]∼ and [p1]FĤF× =

[p2]FĤF× . Put τi = [pi]∼ for i ∈ [1,2], and let c ∈ Ĥ with supp∼(c) = P/∼. Let a′ denote the
element arising from c after replacing (in the factorization of c in F ) all primes q ∈ τ2 by p1.
Since [q]F

ĤF× = [p2]FĤF× = [p1]FĤF× , we have a′ ∈ ĤF×, and by construction it follows that
vτ2(a

′) = 0 and vτ (a
′) � vτ (c) for all τ ∈ P/∼\ {τ2}. Similarly, let b′ denote the element arising

from c after replacing (in the factorization of c in F ) all primes q ∈ τ1 by p2. By construction,
there exist units ε, η ∈ F× such that a = εa′ ∈ Ĥ and b = ηb′ ∈ Ĥ . Then a and b have the
required properties.

Case 2. The congruence relation ∼ and the (ĤF×,F )-equivalence coincide on P .
Let β : Ĥ → B(GP ) denote the block homomorphism of Ĥ defined in Lemma 2.1.3. Then

supp∼(h) = supp(β(h)) for every h ∈ Ĥ , and thus the assertion follows from Lemma 5.6. �
Proof of A3. Let f ∈ (H : Ĥ ) with vτ (f ) ∈ λN0 for all τ ∈ P/∼. Since supp∼(a) = P/∼, there
exists n ∈ N such that

vτ

(
f 2) � vτ

(
an

)
for all τ ∈ P/∼.

By Lemma 4.3.4 there exist f ′, f ′′ ∈ F with [f ′]FH = [f ]FH = [f ′′]FH , vτ (f
′) = vτ (f ) = vτ (f

′′)
for all τ ∈ P/∼, and f ′f ′′ | an. Since f ∈ (H : Ĥ ) it follows that f ′, f ′′ ∈ (H : Ĥ ) ⊂ H , and
we obtain (f ′f ′′)−1an ∈ Ĥ ,

f ′′((f ′f ′′)−1an
) ∈ H, and an = f ′f ′′((f ′f ′′)−1an

) ∈ f ′H ⊂ (H : Ĥ ). �
Let a, b ∈ Ĥ be as in A2, and suppose that σ ∈ supp∼(a) \ supp∼(b) and � ∈ supp∼(b) \

supp∼(a). Replacing a and b by a suitable power if necessary, A3 shows that we may assume
that f = ab ∈ (H : Ĥ ) and that vτ (a), vτ (b) ∈ N�λ ∪ {0} for all τ ∈ P/∼.

Let c ∈ H , and let l ∈ N0 be maximal such that

vτ

(
f l

)
� vτ (c) for all τ ∈ P/∼.

Then there exists τ ∈ P/∼ such that vτ (f
l+1) > vτ (c). If l � 3, then

min L(c) � max L(c) � vτ (c) < vτ

(
f 4) � vP

(
f 4).
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Suppose that l � 4. By Lemma 4.3.4 there exist a1, . . . , al, b1, . . . , bl ∈ F such that a1 · . . . ·alb1 ·
. . . · bl |F c, [ai]FH = [a]FH , [bi]FH = [b]FH , vτ (ai) = vτ (a) and vτ (bi) = vτ (b) for all i ∈ [1, l] and
all τ ∈ P/∼. Lemma 4.2.1.(a) implies that ai ∈ [ai]FĤ = [a]F

Ĥ
⊂ Ĥ , bi ∈ [bi]FĤ = [b]F

Ĥ
⊂ Ĥ and

that fi = aibi ∈ (H : Ĥ ) for all i ∈ [1, l]. Then c′ = (f1 · . . . · fl)
−1c ∈ Ĥ , flc

′ ∈ H , and we
consider the product decomposition

c = f1 · . . . · fl−1(flc
′).

If τ ∈ P/∼ with vτ (f
l+1) > vτ (c), then

vP

(
f 2) � vτ

(
f 2) > vτ (flc

′) � max L(flc
′).

We have f1 · . . . · fl−1 = g′g′′, where

g′ = fl−2a1 · . . . · al−4bl−3 ∈ H and g′′ = fl−1b1 · . . . · bl−4al−3 ∈ H.

By construction we have

max L(g′) � v�(g′) = v�(fl−2bl−3) � v�

(
f 2),

max L(g′′) � vσ (g′′) = vσ (fl−1al−3) � vσ

(
f 2),

and hence

min L(f1 · . . . · fl−1) � vP

(
f 2).

Putting all together we obtain

min L(c) � min L(f1 · . . . · fl−1) + max L(flc
′) � vP

(
f 2) + vP

(
f 2) = vP

(
f 4). �

Proposition 5.8. Suppose that H is a weakly C-monoid defined in F = F× ×F(P ) with equiv-
alence relation ∼ and parameter λ. Assume that the class group of Ĥ ⊂ F is finite and that
condition (C3) in Theorem 5.3 is fulfilled. Let E ⊂ P denote the set of H -essential primes. Then
there exists K1 ∈ N such that

min L(a) � vE (a) + K1

for all a ∈ H .

Proof. Suppose that S ⊂ H is a support-closed submonoid. We put FS = �S�F , and we denote
by ∼S the restriction of ∼ to PS = FS ∩P . By Proposition 4.6.1 S is a weakly C-monoid defined
in FS with equivalence relation ∼S and parameter λ. Note that we have supp∼(E) = supp∼S

(E)

for every subset E ⊂ FS .
Suppose now that S ⊂ H is support-closed, ψ∼(S) = 1, and | supp∼(Ŝ \ Ŝ×)| > 1. Then

KS = sup
{
min LS(a)

∣∣ a ∈ S
} = sup

{
min LH (a)

∣∣ a ∈ S
}
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is finite by Proposition 5.7. Define

K0 = max
{
KS

∣∣ S ⊂ H is support-closed, ψ∼(S) = 1, and
∣∣supp∼

(
Ŝ \ Ŝ ×)∣∣ > 1

} ∈ N0

(recall that we defined max∅ = 0). For every non-trivial support-closed submonoid S ⊂ H we
fix an element fS ∈ (S : Ŝ) such that the following conditions are satisfied:

• fS is not a unit of S.
• vτ (fS) ∈ λN0 for all τ ∈ P/∼.
• If S′ ⊂ H is support-closed and S′ ⊂ S, then vτ (fS′) � vτ (fS) for all τ ∈ P/∼.

Let ψ ∈ N. We show by induction on ψ that

min L(a) � vE (a) + ψ !
(

K0 + vP

(
f 2

H

) ψ∑
j=1

1

j !

)
(3)

for all a ∈ H with ψ∼(�a�∼) � ψ . Let a ∈ H \ H× with ψ∼(�a�∼) � ψ . We set T = �a�∼
throughout the rest of the proof. Suppose that ψ = 1. Then ψ∼(T ) = 1. If | supp∼(T̂ \ T̂ ×)| > 1,
then

min LH (a) = min LT (a) � K0.

Suppose that | supp∼(T̂ \ T̂ ×)| = 1. Since H satisfies (C3), the class group of T̂ ⊂ �T �Ĥ is fi-

nite. Further, since the class group of �T �Ĥ ⊂ FT is a subgroup of the class group of Ĥ ⊂ F

(Lemma 3.2), it follows that the class group of T̂ ⊂ FT is finite. Therefore | supp∼(FT \
(FT )×)| = | supp∼(T̂ \ T̂ ×)| = 1. Since FT is factorial and | supp∼(FT \ (FT )×)| = 1, it fol-
lows that supp∼(FT \ FT

×) = {{τ }}, where τ ∈ PT /∼T . Hence τ = PT ∩ E . Proposition 5.7.1
yields

min L(a) � max L(a) � vτ (a) = vE (a).

Thus we have shown that min L(a) � vE (a) + K0 for all a ∈ H with ψ∼(�a�∼) � 1.
Suppose now that ψ > 1, and assume that (3) is true for all b ∈ H with ψ∼(�b�∼) < ψ . We

suppose that ψ∼(T ) = ψ , and distinguish two cases.
Case 1. Every c ∈ H \ H× with c |H a satisfies �c�∼ = T .
We assert that

min L(a) < vP

(
f 2

T

)
.

Write a = u1 · . . . · uk , with k = min L(a) and u1, . . . , uk ∈ A(H). Then, since �a�∼ = �ui�∼ for
all i ∈ [1, k], we have supp∼(u1) = · · · = supp∼(uk) = supp∼(a) (cf. Lemma 3.7.2.(b)). Thus
vτ (a) � k for all τ ∈ supp∼(a) and vτ (a) = 0 for all τ ∈ (P/∼) \ supp∼(a). Since ψ∼(T ) > 1
there exists a non-trivial support-closed submonoid S properly contained in T , and we have
vτ (fT ) � vτ (fS) for all τ ∈ P/∼. Assume, by way of contradiction, that k � vP (f 2

T ). This im-
plies that

vτ (a) � vP

(
f 2) � vτ (fT fS) for all τ ∈ P/∼.
T
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By Lemma 4.3.4 there exist f ′
T , f ′

S ∈ F such that f ′
T f ′

S |F a, [f ′
T ]FH = [fT ]FH , [f ′

S]FH = [fS]FH ,
and vτ (f

′
T ) = vτ (fT ) and vτ (f

′
S) = vτ (fS) for all τ ∈ P/∼. Since the obvious map {[x]FH | x ∈

FT } → C(T ,FT ) is well-defined (see the proof of Proposition 4.6.1), it follows that [f ′
T ]FT

T =
[fT ]FT

T . Since fS ∈ (S : Ŝ) and [fS]FH = [f ′
S]FH , Lemma 4.2.2 implies that f ′

S ∈ (S : Ŝ). The same
argument shows that f ′

T ∈ (T : T̂ ). We infer that(
f ′

T f ′
S

)−1
a ∈ q(T ) ∩ F = T̂ , f ′

T

(
f ′

T f ′
S

)−1
a ∈ T ,

and hence a has a decomposition

a = f ′
S

(
f ′

T

(
f ′

T f ′
S

)−1
a
)
,

where f ′
S is a divisor with H× � �f ′

S�∼ ⊂ S � T . This is a contradiction.
Case 2. There exists c ∈ H \ H× with c |H a and �c�∼ � T .
Proposition 4.4.1 implies that H is a BF-monoid. Therefore there exists l ∈ N0 being maximal

such that a has a product decomposition

a = c1 · . . . · cla
′,

where a′ ∈ H and c1, . . . , cl ∈ H \ H× with �ci�∼ � T for all i ∈ [1, l]. By assumption l � 1,
and the maximality of l implies that �c�∼ = T for every divisor c ∈ H \ H× of a′. By gathering
the ci with the same ∼-support, we obtain a product decomposition

a = b1 · . . . · bka
′,

where �b1�∼, . . . , �bk�∼ are pairwise distinct non-trivial and proper support-closed submonoids
of T . Then k < ψ∼(T ), and

min L(a) �
k∑

i=1

min L(bi) + min L(a′).

Since ψ∼(�bi�∼) < ψ∼(T ) = ψ for each i ∈ [1, k], the induction hypothesis and Case 1 imply
that

min L(a) �
k∑

i=1

min L(bi) + min L(a′)

�
k∑

i=1

(
vE (bi) + (ψ − 1)!

(
K0 + vP

(
f 2

H

)ψ−1∑
j=1

1

j !

))
+ vP

(
f 2

H

)

� vE (a) + ψ !
(

K0 + vP

(
f 2

H

)ψ−1∑
j=1

1

j !

)
+ vP

(
f 2

H

)

= vE (a) + ψ !
(

K0 + vP

(
f 2

H

) ψ∑ 1

j !

)
. �
j=1
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The following proposition yields the “only if” part in Theorem 5.3.

Proposition 5.9. Suppose that H is a weakly C-monoid defined in F = F× ×F(P ) with equiv-
alence relation ∼ and parameter λ, and assume that the class group of Ĥ ⊂ F is finite. Then, if
(C3) does not hold, H fails to be locally tame.

Proof. Let T ⊂ H be a support-closed submonoid such that | supp∼(T̂ \ T̂ ×)| = 1 and such
that the class group of T̂ ⊂ �T �Ĥ is infinite. We put FT = �T �F , PT = P ∩ FT , and define the
equivalence relation ∼T on PT to be the restriction of ∼ to PT . Since T is a weakly C-monoid
defined in FT (Proposition 4.6.1), Proposition 4.4.2 implies that the class group of T̂ ⊂ FT

is finitely generated. Since the class group of T̂ ⊂ �T �Ĥ injects into G = q(FT )/q(T )F× =
C(T̂ F×,FT ), the group G is infinite. Therefore G contains elements of infinite order, and so
does any set of generators of G. In particular, {[p]FT

T̂ F× | p ∈ PT } contains an element [p]FT

T̂ F×
of infinite order. Choose w ∈ FT with [w]FT

T̂ F× = −[p]FT

T̂ F× . Then w can be written as w =
p

α1
1 · . . . · pαr

r , where pi ∈ PT , pi �= pj if i �= j , and αi ∈ N. Consider the set

S =
{
I ⊂ [1, r]

∣∣∣ there exist n ∈ N and (βi)i∈I ∈ NI
0 such that

[
pn

]FT

T̂ F× = −
∑
i∈I

[
p

βi

i

]FT

T̂ F×

}
.

Let I0 ∈ S be minimal with respect to inclusion, and let n0 ∈ N and (βi)i∈I0 ∈ NI0 such that

n0[p]FT

T̂ F× = −
∑
i∈I0

βi[pi]FT

T̂ F× . (4)

Then I0 �= ∅ since [p]FT

T̂ F× has infinite order and n0 � 1, and by the minimal choice of I0 it
follows that all βi are non-zero. Define

M =
{(

γ0, (γi)i∈I0

) ∈ N1+|I0|
0

∣∣∣ γ0[p]FT

T̂ F× = −
∑
i∈I0

γi[pi]FT

T̂ F×

}
⊂ (

Ns
0,+

)
.

We continue with two assertions.

A1. Let γ = (γ0, (γi)i∈I0) ∈ M \ {0}. Then γ0 > 0 and γi > 0 for all i ∈ I0.
A2. M is a discrete valuation monoid.

Proof of A1. Suppose we have proved that γ0 > 0. Then it follows by the minimality of I0 that
γi > 0 for all i ∈ I0. Hence it suffices to show that γ0 > 0. Assume to the contrary that γ0 = 0.
Since γ �= 0 there exist non-zero elements contained in Q = { γi

βi
| i ∈ I0}. Let i0 ∈ I0 such that

γi0
βi0

= maxQ, and put ñ0 = n0γi0 − γ0βi0 = n0γi0 > 0 and γ̃i = βiγi0 − γiβi0 � 0 for all i ∈ I0.

Then it follows from (4) and γ0[p]FT

T̂ F× = −∑
i∈I0

γi[pi]FT

T̂ F× that

ñ0[p]FT

T̂ F× = −
∑
i∈I0

γ̃i[pi]FT

T̂ F× . (5)

Since γ̃i = 0 and ñ0 �= 0 Eq. (5) contradicts the minimal choice of I0. �
0
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Proof of A2. A simple calculation shows that M ⊂ (Ns
0,+) is a saturated submonoid, and there-

fore M is a Krull monoid. Thus it remains to show that M is primary. Let γ = (γ0, (γi)i∈I0),
γ ′ = (γ ′

0, (γ
′
i )i∈I0) ∈ M \ {0}. It suffices to show that either γ � γ ′ or γ ′ � γ .

We define ζi = γi/γ
′
i for all i ∈ I0 ∪{0}. Let j0 ∈ I0 ∪{0} be an index such that ζj0 = max{ζj |

j ∈ I0 ∪ {0}}. Put γ̂i = γ ′
i γj0 − γiγ

′
j0

for each i ∈ I0 ∪ {0}. Then it follows from γ0[p]FT

T̂ F× =
−∑

i∈I0
γi[pi]FT

T̂ F× and γ ′
0[p]FT

T̂ F× = −∑
i∈I0

γ ′
i [pi]FT

T̂ F× that

γ̂0[p]FT

T̂ F× = −
∑
i∈I0

γ̂i[pi]FT

T̂ F× .

Since γ̂i � 0 for all i ∈ I0 ∪ {0}, the element c = (γ̂0, (γ̂i)i∈I0) is contained in M . By the con-
sideration above it follows that all γ̂i must be non-zero if c is non-zero. But γ̂j0 = 0. Therefore
it follows that c = 0. Hence we obtain γ ′

i = γi(γ
′
j0

/γj0) for all i ∈ I0 ∪ {0}. But this implies that
either γ � γ ′ or γ ′ � γ . �

Note that, by Lemma 3.2, the class group of �T �Ĥ ⊂ FT is finite. We set e = exp(C(�T �Ĥ F×,

FT )). Since | supp∼(T̂ \ T̂ ×)| = 1 and (T : T̂ ) �= ∅, there exists N ∈ N such that (T̂ \ T̂ ×)N ⊂
(T : T̂ ). We define v0 = εpn0e and w0 = η

∏
i∈I0

p
βie
i , where the units ε and η are chosen in such

a way that v0 and w0 are contained in �T �Ĥ . By construction we have v0w0 ∈ q(T )F× ∩ �T �Ĥ =
Ĥ×T̂ . Let χ ∈ Ĥ× such that χv0w0 ∈ T̂ , and put

v = vN
0 and w = (χw0)

N .

Then vw = χNvN
0 wN

0 ∈ (T : T̂ ).
Let f ∈ (H : Ĥ ). Our goal is to show that t(H,Z(f 2)) = ∞. Then H is not locally tame by

[23, Theorem 1.6.7]. We claim that

max LH

(
f wn

)
� vP (f ) and max LH

(
f vn

)
� vP (f ) for all n ∈ N. (6)

Assume to the contrary that max LH (f wn) > vP (f ), and let f wn = u1 · . . . ·uk , with k > vP (f ),
be a factorization into atoms ui of H . Then there exists j ∈ [1, k] such that uj |F wn. Write

uj = εj

∏
i∈I0

p
ξi

i , where εj ∈ F× and ξi ∈ N0 for all i ∈ I0. Since uj ∈ H ∩ FT = T it follows
that ∑

i∈I0

ξi[pi]FT

T̂ F× = 0.

But by the minimal choice of I0 it follows that ξi = 0 for all i ∈ I0, contradiction. There-
fore it follows that max LH (f wn) � vP (f ) for all n � 1, and the same arguments imply that
max LH (f vn) � vP (f ) for all n � 1.

We now consider the sequence bn = f 2vnwn in H . By (6) we have min LH (bn) � 2vP (f ).
We claim that the length of the shortest factorization of f −2bn = vnwn into atoms of H is at
least n/2. Indeed, by the minimal choice of I0, every h ∈ T̂ with h |F vnwn is of the form
h = εvqwq , where ε ∈ F× and q is a positive rational number. Since T̂ ⊂ F is saturated and
vw ∈ T̂ , the element h can only be an atom of T̂ if q � 1. Since (T̂ \ T̂ ×)N ⊂ T , it follows that
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if h = εvqwq ∈ T̂ is an irreducible element of T , then q < 2. Therefore min LT (vnwn) > n/2,
and we conclude that t(H,Z(f 2)) = ∞. �
Proof of Theorem 5.3. If (C3) does not hold, then Proposition 5.9 implies that H is not locally
tame. To prove the converse, suppose that (C3) holds.

Let u ∈ A(H). Suppose that a ∈ uH and u1, . . . , uk ∈ A(H) with a = u1 · . . . ·uk and u � u−1
i a

for all i ∈ [1, k]. Then k � ω(H,u). By Proposition 5.8 it follows that

min L
(
u−1a

)
� vE

(
u−1a

) + K1,

where K1 is a constant that only depends on H . Lemma 5.4.2.(b) implies that DE (H) < ∞, and
we have

vE
(
u−1a

)
� vE (a) � vE (u1 · . . . · uk) =

k∑
i=1

vE (ui) � kDE (H).

Hence

min L
(
u−1a

)
� vE

(
u−1a

) + K1 � kDE (H) + K1 � ω(H,u)DE (H) + K1.

From this it follows that τ(H,u) � ω(H,u)DE (H) + K1. If f ∈ (H : Ĥ ), then [25, Corol-
lary 4.3.2] implies that

ω(H,u) � vP (u) + ω(H,f ).

If u is a prime, then t(H,uH×) = 0, and the assertion follows. If u is not a prime, then [25,
Theorem 3.6] implies that

t
(
H,uH×) = max

{
ω(H,u),1 + τ(H,u)

}
�

(
vP (u) + ω(H,f )

)
max

{
DE (H),1

} + K1 + 1. �
6. Weakly C-monoids: further arithmetic properties and examples

In this section we prove that a locally tame weakly C-monoid H with finite class group C(Ĥ )

has finite catenary degree (Theorem 6.3). After that we show how our abstract results apply to
Mori domains (see Theorem 6.7 and Corollary 6.8).

For a subset L ⊂ Z we denote by Δ(L) the set of all d ∈ N for which there exists m ∈ L with
[m,m + d] ∩ L = {m,m + d}. The set Δ(L) is called the set of (successive) distances of L.

Definition 6.1. Suppose that H is atomic.

1. Let a ∈ H , z, z′ ∈ Z(a) and N ∈ N0 ∪ {∞}. An N -chain of factorizations of a from z

to z′ is a finite sequence (zi)0�i�k of factorizations zi ∈ Z(a) such that z = z0, z
′ = zk and

d(zi−1, zi) � N for all i ∈ [1, k].
2. Let a ∈ H . The catenary degree c(a) ∈ N0 ∪ {∞} is the smallest N ∈ N0 ∪ {∞} such that,

for any two factorizations z, z′ ∈ Z(a), there is an N -chain of factorizations of a from z to z′.
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3. We call

c(H) = sup
{
c(a)

∣∣ a ∈ H
} ∈ N0 ∪ {∞}

the catenary degree of H , and

Δ(H) =
⋃
a∈H

Δ
(
L(a)

)
is called the set of distances of H .

By definition, if |Δ(H)| = 1, then all sets of lengths are arithmetical progressions of the
same difference. The catenary degree is a much more subtle arithmetical invariant than the set
of distances (for more information on this invariant we refer to [23, Sections 1.6, 6.4 and 7.6]).
Note that, in general, local tameness does not imply the finiteness of the catenary degree (there
are even locally tame Krull monoids with infinite catenary degree, see [23, Theorem 4.8.4]).

Recall [24] that a monoid H is called finitary if it is a BF-monoid and there exist a finite set
U ⊂ H \H× and M ∈ N such that (H \H×)M ⊂ UH . By Theorem 3.1 a v-noetherian G-monoid
with (H : Ĥ ) �= ∅ is finitary. Neither C-monoids nor weakly C-monoids are finitary in general,
but we show that there exists a (not necessarily finite) set U ⊂ H such that (H \ H×)M ⊂ UH

and such that U behaves arithmetically uniform.

Lemma 6.2. Suppose that H is a BF-monoid. Assume U ⊂ H \ H× is a subset and M ∈ N such
that (H \ H×)M ⊂ UH and t(H,Z(u)) � M for all u ∈ U . Then c(H) � M .

Proof. We may suppose without loss of generality that H is reduced. We show that c(a) � M

for all a ∈ H . To this end, we proceed by induction on max L(a). If max L(a) < M , then
c(a) � max L(a) < M . Suppose that max L(a) � M . Then a ∈ (H \ H×)M ⊂ UH , and therefore
a = ub for some u ∈ U and some b ∈ H . Let z, z′ ∈ Z(a) and v ∈ Z(u). Then there are factoriza-
tions y, y′ ∈ Z(a)∩vZ(H) such that max{d(z, y),d(z′, y′)} � t(H,Z(u)) � M . Since max L(b) <

max L(a), the induction hypothesis yields an M-chain v−1y = x0, x1, . . . , xk = v−1y′ in Z(b)

concatenating x0 and xk . Then z, y = vx0, vx1, . . . , vxk = y′, z′ is an M-chain in Z(a) concate-
nating z and z′. �
Theorem 6.3. Suppose that H is a weakly C-monoid defined in F = F× ×F(P ).

1. There exist U ⊂ H \ H× and N ∈ N such that (H \ H×)N ⊂ UH and such that {vP (u) |
u ∈ U} is bounded.

2. If H is locally tame and has finite class group C(Ĥ ), then H has finite catenary degree and
finite set of distances.

Proof. 1. Suppose that H is defined in F with equivalence relation ∼ and parameter λ. For
every support-closed submonoid T ⊂ H we pick fT ∈ (T : T̂ ) such that vτ (fT ) ∈ λN for all
τ ∈ ⋃

Σ∈supp∼(T ) Σ (this is possible since there exists t ∈ T such that supp∼(t) is the maximal

element of supp∼(T ). Pick f0 ∈ (T : T̂ ), and define fT = f λ
0 tλ). Define

UT = {
u ∈ T

∣∣ vτ (u) = vτ (fT ) for all τ ∈ P/∼}
,
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and put U = ⋃
T UT , where T ranges over all non-trivial support-closed submonoids of H . It is

clear from the definition of U that {vP (u) | u ∈ U} is bounded. We define N = Mψ∼(H), where

M = max
{
2vp(fT )

∣∣ T ⊂ H is support-closed and p ∈ P
}
.

We claim that (H \ H×)N ⊂ UH . To prove this, let a1, . . . , aN ∈ H \ H×. Then there exists a
divisor-closed submonoid T ⊂ H and a set I ⊂ [1,N] such that |I | � M and �ai�∼ = T for all
i ∈ I . Without loss of generality we may assume that I = [1,M]. Then vτ (f

2
T ) � vτ (a1 · . . . ·aM)

for all τ ∈ P/∼. By Lemma 4.3.4 there exist f ′
T , f ′′

T ∈ F such that

(a) [f ′
T ]FH = [f ′′

T ]FH = [fT ]FH ,
(b) vτ (f

′
T ) = vτ (f

′′
T ) = vτ (fT ) for all τ ∈ P/∼, and

(c) f ′
T f ′′

T | a1 · . . . · aM (in F and hence in Ĥ ).

By (a) it follows that f ′
T and f ′′

T are contained in H . By (b) we see that f ′
T , f ′′

T ∈ FT , where
FT = �T �F . Thus f ′

T , f ′′
T ∈ H ∩ FT = H ∩ Ĥ ∩ FT = H ∩ �T �Ĥ = T (see Lemma 3.6). By (a)

we moreover have [f ′
T ]FT

T = [f ′′
T ]FT

T = [fT ]FT

T (see the proof of Proposition 4.6.1), and therefore
it follows that f ′

T , f ′′
T ∈ (T : T̂ ). By (c) we have (f ′

T f ′′
T )−1a1 · . . . · aM ∈ FT ∩ q(T ) = T̂ . Thus

(f ′′
T )−1a1 · . . . · aM ∈ T . Since f ′′

T ∈ UT , we infer that a1 · . . . · aM ∈ UT T . Therefore we have
a1 · . . . · aN ∈ UT H ⊂ UH .

2. By 1. there exist M,N ∈ N and a subset U ⊂ H \ H× such that (H \ H×)N ⊂ UH and
vP (a) � M for all a ∈ U . We show that there exists M∗ ∈ N such that t(H,Z(a)) � M∗ for all
a ∈ U . Then c(H) � max{N,M∗} by Lemma 6.2, and it follows by [23, Theorem 1.6.3] that the
set of distances of H is finite. Let f ∈ (H : Ĥ ), a ∈ U and x = u1 · . . . · uk ∈ Z(a) with k ∈ N
and u1, . . . , uk ∈ A(Hred). Then k � vP (a) � M , and by [23, Lemma 1.6.5.5] the tame degree
t(H,Z(a)) is bounded from above by

2t(H,u1) + · · · + 2t(H,uk).

Theorem 5.3 provides an upper bound for each t(H,uj ), and this bound depends only on vP (uj )

and some universal parameters. Taking into account that vP (uj ) � M , we obtain an upper bound
M∗ for the local tame degrees. �

Suppose that H is a weakly C-monoid such that C(Ĥ ) is finite. In the next proposition we
show that if H is locally tame and a G-monoid, then every saturated submonoid of H with finite
class group is locally tame, too. We do not know if this remains true when we drop the assumption
that H be a G-monoid. (Note that, in general, a monoid with finite catenary degree can have a
saturated submonoid with finite class group and infinite catenary degree, see [23, Section 3.6].)
After having proved Proposition 6.4, we apply the result to a class of v-noetherian G-monoids
occurring in the study of one-dimensional domains.

Proposition 6.4. Suppose that H is a v-noetherian G-monoid with (H : Ĥ ) �= ∅ and finite
group C(Ĥ ). Assume that H is locally tame. If S ⊂ H is a saturated submonoid with finite
class group, then S is a locally tame weakly C-monoid, C(Ŝ) is finite, and S has finite catenary
degree and finite set of distances.
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Proof. Let S ⊂ H be a saturated submonoid with finite class group. By Proposition 4.7.1 and
Lemma 3.5.3, S is a weakly C-monoid with finite class group C(Ŝ). By Theorem 6.3 it remains to
verify that S is locally tame. By Theorem 5.3 it suffices to show that condition (C3) holds for S.
Let T0 ⊂ S be a divisor-closed submonoid such that | supp(T̂0 \ T̂0

×
)| = 1. We have to show that

the class group

q(�T0�Ŝ )

q(T0)Ŝ×

of T̂0 ⊂ �T0�Ŝ is finite.
We set T = �T0�H and see that �T �Ĥ = �T0�Ĥ . Lemma 3.7.2.(d) implies that T̂0 is primary.

We continue with the following assertion.

A1. T̂ is a discrete valuation monoid.

Proof of A1. Since T̂ is a Krull monoid, it suffices to show that it is primary. Since the class
group of S ⊂ H is finite, Lemma 3.2.2 implies that

q(�T0�H )

q(T0)H×

is finite. By Lemmas 3.2.3 and 3.5.1 it follows that T̂0 ⊂ �̂T0�H is saturated with finite class
group. This implies that

M = T̂0T̂
× ⊂ �̂T0�H = T̂

is saturated, and for every x ∈ T̂ there exists n ∈ N such that xn ∈ M . Then [14, Proposition 5]
implies that there is a bijection from s-spec(T̂ ) to s-spec(M). Since T̂0 is primary, M is primary,
and hence T̂ is primary. �

Since T̂ is a discrete valuation monoid, Lemma 3.7.2.(d) implies that | supp(T̂ \ T̂ ×)| = 1.

Since H is locally tame, Theorem 5.3 implies that the group
q(�T �Ĥ )

q(T )Ĥ× is finite. From the finiteness

of q(�T0�H )

q(T0)H
× it follows that

q(�T0�Ĥ )

q(T0)Ĥ×

is finite. Since the natural homomorphism

q(�T0�Ŝ )

q(T0)Ŝ× → q(�T0�Ĥ )

q(T0)Ĥ×

is a monomorphism, the first group is finite. �
A monoid H is said to be strongly primary if it is finitary and primary (recall that every

primary monoid is a G-monoid). The multiplicative monoid of a one-dimensional local Mori



A. Geroldinger, W. Hassler / Journal of Algebra 319 (2008) 3419–3463 3457
domain is v-noetherian and primary (see [23, Proposition 2.10.7.1]), and every v-noetherian
primary monoid is finitary [23, Theorem 2.7.9] and thus strongly primary. Suppose that H is
strongly primary, Ĥ is a Krull monoid, and (H : Ĥ ) �= ∅. Then H is locally tame [26, Theo-
rem 3.5] (note that this result holds without imposing any conditions on the class group of Ĥ ).
In the next proposition we study saturated submonoids, with finite class group, of a finite prod-
uct of strongly primary monoids. Via transfer principles saturated submonoids of products of
strongly primary monoids reflect the multiplicative arithmetic of (v-noetherian) weakly Krull
domains (see [23, Sections 3.6 and 4.5]). Therefore arithmetical results on these monoids have
direct bearings on the structure of factorizations in, e.g., one-dimensional noetherian domains.

Proposition 6.5. Let D1, . . . ,Dn be strongly primary monoids, put D = D1 × · · · × Dn, and
suppose that H ⊂ D is a saturated submonoid with finite class group.

1. If T ⊂ H is a divisor-closed submonoid, then there exists I ⊂ [1, n] such that

T ⊂
∏
i∈I

Di ×
∏

i∈[1,n]\I
D×

i

is saturated with finite class group.
2. Ĥ ⊂ D̂ is saturated. If (Di : D̂i) �= ∅ for all i ∈ [1, n], then (H : Ĥ ) �= ∅. If all D̂i are Krull

monoids (with finite class group), then Ĥ is a Krull monoid (with finite class group).
3. If all Di are v-noetherian with (Di : D̂i) �= ∅ and such that C(D̂i) is finite, then H is a

locally tame weakly C-monoid, C(Ĥ ) is finite, and H has finite catenary degree and finite
set of distances.

Proof. 1. Let T ⊂ D be a divisor-closed submonoid. Since s-spec(D) is finite, s-spec(H) is
finite by [23, Corollary 2.4.3.3]. Thus there exists a ∈ H such that T = �a�H . We set TD =
�T �D = �a�D . Then Lemma 3.2 implies that T ⊂ TD is saturated and that q(TD)/q(T )D× is
isomorphic to a subgroup of q(D)/q(H)D×. In particular, the class group of T ⊂ TD is finite.
Let a = a1 · . . . · an with ai ∈ Di , and put

I = {
i ∈ [1, n] ∣∣ ai /∈ D×

i

}
.

Then we see that

TD =
∏
i∈I

Di ×
∏

i∈[1,n]\I
D×

i .

2. Since H ⊂ D has finite class group, H ⊂ D is cofinal, and hence Ĥ ⊂ D̂ is saturated with
finite class group by Lemma 3.3.1. If (Di : D̂i) �= ∅ for all i ∈ [1, n], then (D : D̂) �= ∅, and hence
(H : Ĥ ) �= ∅ by Lemma 3.3.2. Suppose that all D̂i are Krull monoids. Then D̂ = D̂1 × · · · × D̂n

is a Krull monoid, and Ĥ is a Krull monoid since it is a saturated submonoid of a Krull monoid.
If all C(D̂i) are finite, then there exists a factorial monoid F such that D̂ ⊂ F is saturated with
finite class group, and hence Ĥ ⊂ F is saturated with finite class group. Therefore the class group
C(Ĥ ) is finite by [23, Theorem 2.4.7.2].

3. If all Di are as asserted, then D is a v-noetherian G-monoid with finite class group C(D̂),
and D is locally tame by [26, Theorem 3.5]. Thus H has the asserted properties by Proposi-
tion 6.4. �
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In the remainder of the paper we show how the theory of weakly C-monoids applies to do-
mains. The main results are Theorem 6.7 and Corollary 6.8. In Remark 6.9 we re-formulate the
main assumptions of Theorem 6.7 for noetherian domains. As a special example of noetherian
domains we are able to deal with, we look at rings of generalized power series with coefficients
in a field K and exponents in a finitely generated monoid (Proposition 6.10). If K is infinite, then
the arithmetic of such domains R could not be studied before. In Proposition 6.10 we show that
R satisfies the assumptions of Theorem 6.7 for any base field K .

Let R be a Mori domain. We denote by R• = R \ {0} the multiplicative monoid of R and by R̂

the complete integral closure of R. It is easy to see that R• is v-noetherian and that R̂ = R̂• ∪{0}.
Suppose that (R : R̂) �= {0}. Then R̂ is a Krull domain, R̂• is a Krull monoid, and the divisor
class group C(R̂) of the domain R̂ coincides with the class group of R̂•. Furthermore, R• is a G-
monoid if and only if R is one-dimensional and semilocal [23, Proposition 2.10.7.2], and hence
dim(R) > 1 implies that R• fails to be a G-monoid. Note that, if v-max (R) is finite, then R is
semilocal and Cv(R) = 0 [23, Proposition 2.10.4.1]. We start with a lemma whose proof is due
to M. Roitman.

Lemma 6.6. Let R ⊂ S be commutative rings and f � R an ideal such that fS = f. Then the map

j :
{ {m ∈ max(R) | f �⊂ m} → {M ∈ max(S) | f �⊂ M},

m 
→ mS

is bijective, and for every M ∈ max(S) with f �⊂ M we have j−1(M) = M ∩ R.

Proof. Let m ∈ max(R) with f �⊂ m. Since mS = S would imply that f = fS = mfS ⊂ m, it
follows that mS �= S. Thus mS ∩ R = m. Since S = RS = (m + f)S ⊂ mS + R ⊂ S, it follows
that S = mS + R. In particular, S/mS ∼= R/m, and hence mS ∈ max(S). Therefore j is well-
defined and injective.

To show that j is surjective, let M ∈ max(S) with f �⊂ M. Then M + f = S, and if 1 = m + f

with m ∈ M and f ∈ f, then m = 1 − f ∈ M ∩ R. Therefore we have (M ∩ R) + f = R. Since
S/M = (R + M)/M ∼= R/(M ∩ R), it follows that M ∩ R ∈ max(R). If x ∈ M, then f x ∈
M ∩ fS ⊂ M ∩ R, x = mx + f x ∈ (M ∩ R)S, and thus M = (M ∩ R)S. Hence j is surjective
and j−1(M) = M ∩ R. �
Theorem 6.7. Let R be a semilocal Mori domain such that f = (R : R̂) �= {0}, the group C(R̂) is
finite, and R̂/f is semilocal with nilpotent Jacobson radical.

1. R• is a weakly C-monoid.
2. For every divisor-closed submonoid T ⊂ R• the class group of T̂ ⊂ �T �R̂• is trivial.
3. R• is locally tame, has finite catenary degree, and finite set of distances.

Proof. Let H = {aR | a ∈ R•} denote the monoid of non-zero principal ideals of R. Then
(R•)red ∼= H , and statements 1., 2. and 3. hold for R• if and only if they hold for H (for 1. see
Proposition 4.6.2, and for 2. this can be checked directly).

1. Since Ĥ is a Krull monoid, Lemma 2.2.2 implies that there exists an embedding

Ĥ ⊂ F = Ĥ× ×I∗
v (Ĥ ) = Ĥ× ×F

(
v-max (Ĥ )

)
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which is cofinal and saturated with class group C(R̂). We show that H is a weakly C-monoid
defined in F . Clearly, condition (C1) in Definition 4.1 is fulfilled.

Since R̂/f is semilocal there exist only finitely many maximal ideals of R̂ that contain f.
Therefore it follows by Lemma 6.6 that R̂ is semilocal. We now define an equivalence relation ∼
on P = v-max (Ĥ ). Let p̂, p̂′ ∈ v-max (Ĥ ). We say that p̂ and p̂′ are ∼-equivalent, p̂ ∼ p̂′, if and
only if (̂

p ⊂ M ⇔ p̂′ ⊂ M for all M ∈ max(R̂)
)

and
(̂
pq(Ĥ ) = p̂′q(Ĥ )

)
.

Put

M = {
M ∈ max(R̂)

∣∣ f ⊂ M
}
.

Since the radical of R̂/f is nilpotent, there exists α ∈ N such that

a =
∏

M∈M
Mα

is contained in f. By the Chinese Remainder Theorem we have a natural isomorphism

ι : R̂/a →
∏

M∈M
R̂/Mα.

We now define λ = αe, where e = exp(q(F )/q(Ĥ )). Let p1,p
′
1, . . . ,pλ,p

′
λ ∈ P such that p1 ∼

p′
1 ∼ · · · ∼ pλ ∼ p′

λ. For k ∈ [1, α] put Jk = [(k − 1)e + 1, ke]. Then dk = ∏
j∈Jk

pj and d ′
k =∏

j∈Jk
p′
j are contained in Ĥ for all k ∈ [1, α]. Furthermore, if dk is contained in some maximal

ideal M of R̂, then dl, d
′
l ∈ M for all l ∈ [1, α]. To verify condition (C2) in Definition 4.1 it is

enough to prove the following statement:

(†) Let k, k′ � α, and let x1, . . . , xk, x
′
1, . . . , x

′
k′ ∈ Ĥ such that all xi, x

′
i have the same maximal

overideals. Then there exist η,η′ ∈ Ĥ× such that [ηx1 · . . . · xk]FH = [η′x′
1 · . . . · x′

k]FH .

To prove (†) put

N = {
M ∈ max(R̂)

∣∣ there exists ν ∈ [1, k] such that xν ∈ M
}
.

We then have

ι(x1 · . . . · xk) =
∏

M∈M
κM, ι

(
x′

1 · . . . · x′
k′
) =

∏
M∈M

κ ′
M,

where κM = κ ′
M

= 0 if M ∈ N , and κM, κ ′
M

∈ (R̂/Mα)× if M /∈ N . Since R̂ is semilocal, the
canonical epimorphism π : R̂ → R̂/a induces an epimorphism R̂× → (R̂/a)×. Therefore there
exist η,η′ ∈ R̂× such that ι(η)M = ι(η′)M = 1 if M ∈ N , and ι(η)M = κM, ι(η′)M = κ ′

M
if

M /∈ N . If we define ε = η(η′)−1, then

f = x1 · . . . · xk − εx′ · . . . · x′ ′ ∈ a ⊂ f.
1 k
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This implies that

[x1 · . . . · xk]ĤH = [
f + εx′

1 · . . . · x′
k′
]Ĥ
H

= [
εx′

1 · . . . · x′
k′
]Ĥ
H

,

and thus [x1 · . . . · xk]FH = [εx′
1 · . . . · x′

k′ ]FH by Lemma 4.2.1.(b).
2. Let T ⊂ H be a divisor-closed submonoid. By Lemma 3.6 we have q(T ) = (T −1H)× and

q(�T �Ĥ ) = (T −1Ĥ )×. Therefore we must prove that the group

G = (T −1Ĥ )×

(T −1H)×Ĥ×

is trivial. Let x ∈ (T −1Ĥ )×. We show that x ∈ (T −1H)×Ĥ×.
There exist h ∈ �T �Ĥ and t ∈ T such that x = h

t
. If u ∈ T such that supp∼(u) is maximal in

the set {supp∼(t ′) | t ′ ∈ T }, then, after replacing h with hu and t with tu, we may assume without
restriction that supp∼(h) = supp∼(u) = supp∼(t). By statement (†) there exist η,η′ ∈ Ĥ× such
that [

ηhtα−1]F
H

= [
η′tα

]F
H

.

Thus z = ηη′−1htα−1 ∈ [tα]FH ⊂ H . From Lemma 3.6.2 it follows that z ∈ �T �Ĥ ∩ H = T .
Therefore we obtain

x = η′η−1 z

tα
∈ Ĥ×(

T −1H
)×

.

3. This follows from 1., 2. and from Theorems 5.3 and 6.3. �
Corollary 6.8. Let R be a Mori domain such that f = (R : R̂) �= {0}, C(R̂) is finite, and R̂/f

is semilocal with nilpotent Jacobson radical. Then the monoid (I∗
v (R), ·v) of v-invertible v-

ideals with v-multiplication is a direct product of a free monoid and a weakly C-monoid that
satisfies (C3). In particular, I∗

v (R) is locally tame and has finite catenary degree and finite set of
distances.

Proof. Let R denote the set of regular elements on R̂/R, that is,

R = {
x ∈ R• ∣∣ xy ∈ R implies y ∈ R for all y ∈ R̂

}
.

Put P = {p ∈ v-spec(R) | p ∩ R �= ∅}. Then R−1R is a semilocal Mori domain, all localizations
Rp, for p ∈ P , are discrete valuation domains, and there is an isomorphism

δ0 :I∗
v (R) →

∐
p∈P

(
R•

p

)
red × (

R−1R•)
red

[23, Theorem 2.10.9]. Thus it remains to verify that the domain R−1R satisfies all assumptions of
Theorem 6.7. By Lemma 3.4.2 R−1R has complete integral closure R−1R̂ and conductor (R−1R :
R̂−1R) = R−1f �= {0}. Since R is the complement of the union of those maximal ideals of R that
contain f, [31, Lemma 2.3] implies that the natural map R/f → R−1R/fR−1R is an isomorphism.
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By tensoring this with R̂, we see that the natural map R̂/f → R−1R̂/fR−1R̂ is an isomorphism.
By Nagata’s Theorem [20, Corollary 7.2] there is an epimorphism C(R̂) → C(R−1R̂), and thus
C(R−1R̂) is finite. �
Remark 6.9. Let R be a semilocal noetherian domain with integral closure R and conductor f,
and suppose that R/f is artinian. Then R̂ = R, f �= {0}, and R/f is artinian. (Thus, like every
artinian ring, R/f is semilocal and zero-dimensional with nilpotent Jacobson radical.)

Proof. For all noetherian domains the integral closure coincides with the complete integral clo-
sure. If dimR = 0, then R is a field, and all assertions are trivially true. Hence suppose that
dimR > 0. Since R/f is zero-dimensional, f must be non-zero. Thus R is a finitely generated
R-module, hence both R and R/f are noetherian. Since R/f ⊂ R/f is an integral ring extension,
R/f is zero-dimensional. Therefore R/f is artinian. �

Rings of generalized power series provide a rich source of interesting examples of noetherian
rings. In the next proposition we prove that certain generalized power series rings satisfy the as-
sumptions of Theorem 6.7. We first recall the construction of generalized power series from [40].
Suppose R is a commutative ring and (S,�) is an additive, partially ordered monoid. Then
R�S� = �RS,�� denotes the set of all mappings f :S → R such that {s ∈ S | f (s) �= 0} is an
artinian and narrow subset of S. Clearly, R�S� is an abelian group with pointwise addition. For
s ∈ S and f,g ∈ R�S� put

Xs(f,g) = {
(t, u) ∈ S × S

∣∣ s = t + u, f (t) �= 0, g(u) �= 0
}
.

Since S is artinian and narrow, the sets Xs(f,g) are finite, and the multiplication of R�S� is
defined by convolution:

(fg)(s) =
∑

(t,u)∈Xs(f,g)

f (t)g(u) for all s ∈ S.

With these operations R�S� is a commutative ring, called the the ring of generalized power series
with coefficients in R and exponents in S.

Proposition 6.10. Let K be a field, s ∈ N, and S ⊂ (Ns
0,+) a finitely generated submonoid,

endowed with the induced product order of (Ns
0,�). Assume that Ŝ = Ns

0. Then the ring K�S� of
generalized power series satisfies the assumptions of Theorem 6.7.

Proof. The ring R = K�S� is a local noetherian domain (see [40, 5.8] and [41, 1.20, 2.3]). We
have R ⊂ K�Ŝ� = K�Ns

0� [34, Theorem 2.5], and K�Ns
0� is isomorphic to K�X1, . . . ,Xs�, the

formal power series ring in s variables over K [40, Example 3], which is a local noetherian
factorial domain. Since S is finitely generated and Ŝ = Ns

0, it follows from [23, Theorem 2.7.13]
that there exists a = (a1, . . . , as) ∈ Ns

0 such that a + Ns
0 ⊂ S. If α = max{a1, . . . , as}, then an

easy calculation shows that Xα
i K�Ŝ�⊂ R for all i ∈ [1, s]. This implies that K�Ŝ� = R̂, and that

Xα
1 R̂ + · · · + Xα

s R̂ ⊂ (R : R̂). Since R̂/(X1, . . . ,Xs) is zero-dimensional, R̂/(R : R̂) is zero-
dimensional. Therefore we see that R̂/(R : R̂) is zero-dimensional and noetherian, and hence an
artinian ring. By Remark 6.9, all assumptions of Theorem 6.7 are satisfied. �
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We end with a simple example of a v-noetherian G-monoid H with (H : Ĥ ) �= ∅ that fails to
be locally tame.

Example 6.11. Let P = {p1,p2,p3} be a set with three elements. Put F = F(P ), and let

H = p2
1F ∪ {

(p2p3)
k
∣∣ k ∈ N0

} ⊂ F.

1. H is a G-monoid with Ĥ = F and (H : Ĥ ) �= ∅.
2. H is isomorphic to the associated reduced monoid of a divisor-closed submonoid of the

domain R = Q[X2,X3] ⊂ Q[X].
3. H is a weakly C-monoid that fails to be locally tame.
4. R and R = Q[X] are both one-dimensional and noetherian, (R : R) = X2, C(R) = 0, and

R/(X2) is artinian. Nevertheless, R fails to be locally tame.

Proof. Since p2
1F ⊂ H it follows that (H : F) �= ∅. Therefore we see that Ĥ = F . It is checked

easily that H = �p1p2p3�H , and thus H is a G-monoid [23, Lemma 2.7.7.3]. Put R• = R \ {0},
p′

1 = X, p′
2 = X + 1, and p′

3 = X − 1. Then p′2
1 p′

2p
′
3 = X4 − X2 ∈ R•, and an easy calculation

shows that the homomorphism H → (�X4 − X2�R•)red induced by pi 
→ p′
i is an isomorphism.

Since R is noetherian, R• is v-noetherian. Hence all divisor-closed submonoids of R• are v-
noetherian (Lemma 3.5.1). It follows that H is v-noetherian, and Proposition 4.7.1 implies that
H is a weakly C-monoid.

To prove that H fails to be locally tame we show that H does not satisfy (C3). Clearly,
T = {(p2p3)

k | k ∈ N0} ⊂ H is a divisor closed submonoid with T = T̂ ∼= (N0,+), and
Lemma 3.7.2.(d) implies that | supp(T̂ \ T̂ ×)| = 1. Since �T �Ĥ = F({p2,p3}), the class group
of T̂ ⊂ �T �Ĥ is isomorphic to Z, and therefore (C3) does not hold.

Clearly, (R : R) = X2, and C(R) = 0. As a factor ring of a one-dimensional noetherian domain
R/(X2) is artinian. Since R has a divisor-closed submonoid that is not locally tame, R fails to
be locally tame. �
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