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Abstract

For a finite abelian group G, let S(G) denote the smallest integer / such that every sequence S
over G of length |S| > / has a zero-sum subsequence of length exp(G). We derive new upper and
lower bounds for S(G), and all our bounds are sharp for special types of groups. The results are
not restricted to groups G of the form G = Cj,, but they respect the structure of the group. In
particular, we show S(Cf, ) > 20n — 19 for all odd n, which is sharp if n is a power of 3. Moreover,
we investigate the relationship between extremal sequences and maximal caps in finite geometry.

1. Introduction and main results

Let G be a finite abelian group. We denote by S(G) (or n(G) respectively) the smallest integer
| € N such that every sequence S over G of length |S| > [ has a zero-sum subsequence T of length
|T| = exp(G) (or a zero-sum subsequence T of length |T'| € [1, exp(G)] respectively); for details on
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terminology and notation we refer to section 2. The investigation of these invariants has a long tradition
in combinatorial number theory as well as in finite geometry (for an overview, see [32, section 5.7]
and section 5). As already pointed out by Harborth, s(C7) is the smallest integer / such that every set
of [ lattice points in r-dimensional euclidean space contains n elements which have a centroid with
integral coordinates. This geometric interpretation was a main reason why emphasis was formerly
placed on groups of the form C;. In the meantime, new applications (for example, in the theory of
non-unique factorizations [32]) caused the need for investigations of the invariants S(G) and n(G)
for general finite abelian groups.

In the present paper, such investigations are carried out for the first time in a systematic way. In
Theorems 1.1 and 1.2, we briefly summarize the present state of knowledge, and then we discuss the
new results.

For finite abelian groups of rank at most 2, both invariants n(G) and s(G) are completely
determined.

THEOREM 1.1 Let G = C,,, @ Cp, with 1 < ny|ny. Then
n(G)=2ny+n, —2 and s(G)=2ny+2n, — 3.

A proof of Theorem 1.1 was recently given in [32, Theorem 5.8.3]. It contains the result by Reiher
[56], which states that s(C, @ C,) = 4p — 3 for all p € P [56, 59], and it contains the theorem
of Erdés, Ginzburg and Ziv (set n; = 1; see [19] for the original paper; for various proofs see [1;
51, section 2.4]).

From now on we consider finite abelian groups of rank larger than 2, and we start with the discussion
of lower bounds.

THEOREM 1.2 Letn,r € N.

M) =2 —Hn—-1)+1ands(C)) =2"(n—1)+ 1.

(2) If n is odd, then there exists a sequence T € .7-"(Cn3) of length |T| =9 such that T"~" has
no zero-sum subsequence of length n. In particular, we have n(C>) > 8n — 7 and s(C?) >
9n — 8.

The first result is due to Harborth (see [34, Hilfssatz 1] or Proposition 3.1 for a generalization)
and the second due to Elsholtz ([17], see also Lemma 3.4 for a simpler alternative proof). Note that
in these papers only the result for S(C;) is formulated, but the proofs and Lemma 2.3(2) show the
lower bound for 1(C7).

Gao and Thangadurai [27] conjecture that the lower bounds given in Theorem 1.2(2) are the precise
values, that is,

n(C)=8n—7 and s(C3)=9n—8 foralloddn e N.;

(see also Corollary 4.5).

Before discussing our new results, we consider the inverse problems associated to invariants S(G)
and n(G). In other words, we study the structure of sequences S € F(G) of length |S| = s(G) — 1
(or |S] = n(G) — 1 respectively), which have no zero-sum subsequence T' of length |T'| = exp(G)
(or no zero-sum subsequence T of length |T| € [1, exp(G)] respectively). These problems were first
studied for groups of the form G = C, @ C, by van Emde Boas [18]. Suppose that G = C], with
n > 2 and r € N. It is generally believed that G has the following two properties.
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ProPERTY C Every sequence S € F(G) of length |S| = n(G) — 1 which has no short zero-sum
subsequence has the form S = 7"~! for some sequence T € F(G).

PrOPERTY D Every sequence S € F(G) of length |S| = s(G) — 1 which has no zero-sum subse-
quence of length n has the form S = 7"~! for some sequence T € F(G).

If n > 2 and r = 1, then Property C holds (trivially) and so does Property D, as was proved
independently by several authors [4;24, Theorem 1; 54]. For a detailed discussion of these two
properties in the case r = 2, see [26]; in the case r > 3, see [28]. Clearly, if Property D holds then
n — 1 divides s(C},) — 1 and, by Lemma 2.3(2), we have n(C})) =s(C;) —n + 1.

In Theorem 1.3 we present new lower bounds for n(Cfl‘ ) and s(C ,‘1‘ ), and we conjecture that these
lower bounds give the precise value for all odd n € N3 (see Corollary 4.5). The sequence S we
construct for the proof of Theorem 1.3 has the form S = 7"~! for some T € F(C’), supporting
the conjecture that Property D holds for C. The proof of Theorem 1.3 is given in section 3, and
subsequently we show how to lift the bounds of Theorem 1.3 and Theorem 1.2 to groups of higher
rank (see Proposition 3.5 and Corollary 3.6).

THEOREM 1.3 Let n be an odd integer with n > 3. Then there exists a sequence T € F(C?) of length
|T| = 20 such that T"~" has no zero-sum subsequence of length n. In particular, we have n(C3) >
19n — 18 and s(C4) > 20n — 19.

Now we discuss the upper bounds. Gao and Yang (see [30] for the original paper (in Chinese) or
[32, Theorem 5.7.4]) proved that S(G) < |G| + exp(G) — 1 for every finite abelian group G. The
upper bounds for groups G of the form G = C,, were given by Alon, Dubiner and recently by Kubertin
(see Remarks 3.7).

We derive new upper bounds for both n(G) and S(G). The first (Theorem 1.4) rests on upper
bounds for s(C ) for primes p € P dividing exp(G), and the second (Theorem 1.5) is valid for
groups with large exponent (as usual, D(G) denotes the Davenport constant of G; see Definition 2.1
and the subsequent remarks).

THEOREM 1.4 Let G =C,, ®--- D C,, withr =r(G) and 1 < ny|---|n,. Letcy, ..., c, € Nsuch
that for all primes p € P with p|n, and all i € [1,r], we have S(Cf)) <ci(p—1)+ 1. Then

s(G) < Z(CH_]_,‘ —cr_i)ni —c, + 1, wherecy = 0.
i=1
In particular, ifn; = --- =n, =n, thens(G) <c,(n— 1)+ 1.

THEOREM 1.5 Let G = H & C,, be a finite abelian group where H C G is a subgroup, exp(G) =
n>2and D(G) <2n — 1.

(1) fD(G & Cy) <3n— 1, then 2(D(H) — 1) +n < n(G) < D(G & Cy).

(2) If G is a p-group for some odd prime p, then

DG®C,)+DH)-1<8(G) <D(Ga&C,) +n.
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The proofs of Theorems 1.4 and 1.5 will be given in section 4. Theorem 1.4 is proved by the
induction method and provides the best known upper bound for groups G which are not of the
form G = Cj,. The main part of Theorem 1.5 is the upper bound in 1.5(2), which generalizes (for
odd primes) the recent results of Gao and Zhou [31, Theorem 1.5;23, Proposition 3.1]. Its proof
uses the polynomial method, first developed by Rényai [57] and later generalized by Sun [61], and
Kubertin [45].

After the proof of Theorem 1.5 we present special types of groups for which the lower and upper
bounds derived in this paper coincide (see Corollaries 4.4, 4.5 and 4.6). The quality of the bounds
in Theorem 1.5 can immediately be seen by considering the following most simple case. If (in
Theorem 1.5) H = C,, for some m dividing n, then 2(D(H) — 1) + n =2m +n — 2 = n(G) (see
Theorem 1.1). Moreover, if H = C,, and n is a prime power, then (again by Theorem 1.1) n(G) =
3n—2=D(G®C,)ands(G) =4n—-3=D(GeC,)+n—-1=D(GdC,) +D(H) — 1.

In section 5 we discuss further applications of invariants S(G) and n(G). Special emphasis is given
to the role of invariant s(C}) in finite geometry and problems on arithmetic progressions. We give a
detailed discussion of the history of the associated geometric problems.

2. Notation and some preparatory results

Let N denote the set of positive integers, P C N the set of all prime numbers and let Ng = N U {0}.
For integers a, b € Z we set [a, b] = {x € Z|a < x < b}, and for c e Nlet N>, =N\ [1,c—1].
Throughout, all abelian groups will be written additively, and for n € N, let C,, denote a cyclic group
with n elements. For p € P, let F,, = Z/pZ, and for a power g of p, let I, denote a field with ¢
elements such that F, O IF),.

Let G be an additive finite abelian group. If |G| > 1, then there are uniquely determined integers
r,ny,...,n, with 1 <ny|---|n, suchthat G =C,, & ---® C,,. Then r = r(G) is the rank of G,
and n, = exp(G) is the exponent of G. An r-tuple (ey, ..., e,) in G \ {0} is called a basis of G if
G=(e)®...®(e).Forn e N,wesetnG = {ng|g € G}.

We denote by F(G) the free (abelian, multiplicative) monoid with basis G. An element S € F(G)
is called a sequence over G and will be written in the form

i
s=[]"" =[] 7.

geG i=1

where v, (S) is called the multiplicity of g in S. A sequence §' € F(G) is called a subsequence of S
if there exists some S” € F(G) such that S = §'S” (equivalently, S'|.S or V4 (S') < V,(S) for every
g € G). If this holds, then §” = §''S. As usual

l

o) =) Ve($g=) 8 € G

g€G i=1
denotes the sum of S,
supp(S) ={g € G|v4(S) >0} C G
is the support of S and
1S|=) V() =1eNy

geG
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denotes the length of S. Clearly, |S| = 0 if and only if S =1 is the empty sequence. We say that
sequence S is

e a zero-sum sequence (resp. has sum zero) if o (S) = 0;
e short (in G) if | S| € [1, exp(G)];
e square-free if V,(S) < 1 forall g € G.

DEeFINITION 2.1 We denote by

e D(G) the smallest integer [ € N such that every sequence S € F(G) of length |S| > [ has a
zero-sum subsequence. We call D(G) the Davenport constant of G;

e 1(G) the smallest integer [ € N such that every sequence S € F(G) of length |S| > [ has a
short zero-sum subsequence;

e S(G) the smallest integer [ € N such that every sequence S € F(G) of length |S| >/ has a
zero-sum subsequence T of length |T'| = exp(G);

e g(G) the smallest integer [ € N such that every square-free sequence S € F(G) of length
|S| > [ has a zero-sum subsequence T of length |T| = exp(G).

A thorough treatment of the Davenport constant, a central invariant in zero-sum theory, may be
found in [32, Chapter 5], and for some recent results we refer to [11]. Apart from basic properties,
we use the following classical results on D(G) (originally due to Kruyswijk and Olson): if G =
Ch,,®---8C,,wherer =r(G)and 1 < ny|---|n,, then

1+ (i —1) = D(G),

i=I

and equality holds if either r < 2 or G is a p-group [32, Theorems 5.5.9 and 5.8.3].

Let 9: G — G’ be a map of abelian groups. Then there is a unique homomorphism ¢: F(G) —
F(G") with 9|G = ¢. We simply write ¢ instead of @, whence if S =g;-...-g € F(G), then
o(S) =9(g1) ... (&) € F(G.

We start with a simple observation which will be used tacitly throughout the paper. Then we
continue with a lemma relating invariants n(G), S(G) and g(G). In sections 3 and 4 we concentrate
on n(G) and S(G), and in section 5 we mainly deal with g(G).

LEMMA 2.2 Let G be a finite abelian group with exp(G)=n>2, g€ G, ¢: G— G an
automorphism, and f: G — G a map defined by f(x) = ¢(x) — g for every x € G.

(1) A sequence S € F(G) has a zero-sum subsequence of length n if and only if f(S) has a
zero-sum subsequence of length n.

(2) Let S=h""'T € F(G) with h € G, f(h) =0 and T € F(G). Then S has a zero-sum
subsequence of length n if and only if f(T) has a short zero-sum subsequence.

Proof. (1) Let S=g;-...-g € F(G) and T = [],, g: be a subsequence of S, where I C [1,/]
with |I| = n. Then,

a(f(T) =) (plg) — &) = p(o(T)),

iel

whence o (T) = 0 if and only if o (f(T)) = 0.
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(2) By (1), S has a zero-sum subsequence of length n if and only if f(S) has a zero-sum
subsequence of length n. Since f(S) = 0"~! f(T), the assertion follows.

LEMMA 2.3 Let G be a finite abelian group with exp(G) =n > 2, S € F(G), a sequence which has
no zero-sum subsequence of length n, and h = max{v,(S)|g € G}.

(1) D(G) =n(G) <s(G) —n+ 1.

Q) If h=n—1, then n(G) > |S| —n+ 2. In particular, if |S| =8(G) — 1, then n(G) =
S(G) —n+1.

B3 9gG)=sG)=@G) - 1DHn-1D+1IfG=C), withn>2and r € N, and s(G) =
(9(G) — 1)(n — 1) + 1, then G has Property D.

(4) If H is a finite abelian group with |H| > h and f: [1, h] — H an injective map, then

Ve (S)

[T+ r@nerGeH

geG i=1

is a square-free sequence which has no zero-sum subsequence of length n. In particular, if
exp(H)|n, then 9(G & H) > s(G), and g(C;“) > s(C)).

Proof. (1) Straightforward (for a detailed proof, see [32, Lemma 5.7.2]).

(2) Let S = g"'T, with g € G and T € F(G), and consider the map f: G — G defined by
f(x) =x — g for all x € G. By Lemma 2.2(2), f(T) has no short zero-sum subsequence
whence n(G) > | f(T)|+1=|S| —n+2.1If |S| =s(G) — 1, then n(G) > s(G) —n + 1,
whence (1) implies that n(G) = s(G) — exp(G) + 1.

(3) The first inequality follows by definition. Let

U:g’f‘ -...-glkl € F(G), wherel,ky,...,k;eN and g,...,g € G are distinct,

be a sequence of length |U| = s(G) — 1, which has no zero-sum subsequence of length n.
Clearly, T = g, - ... - g is a square-free sequence which has no zero-sum subsequence of
length n whence / < g(G) — 1. Therefore, we obtain that

l
s(G)-1=U|= Zki <ln-1)=@QG) - D —-1.
i=1

Furthermore, if G = C,, and equality holds, then k; =--- =k =n — 1, whence G has
Property D.
(4) By construction, the given sequence has all the asserted properties.

All sequences S constructed in this paper, that have no zero-sum subsequence of length exp(G),
have the additional property of Lemma 2.3(2). (That is, they have some element with multiplicity
exp(G) — 1) whence we always get n(G) > |S| — exp(G) + 2. Gao [25] conjectured that for all finite
abelian groups G we have n(G) = S(G) — exp(G) + 1. Among others, this holds true for all groups
G withr(G) < 2 (see Theorem 1.1) andexp(G) < 4.Let G = C], withn > 2 andr € Nand consider
the inequality S(G) < (9(G) — 1)(n — 1) + 1. Then the equality holds for n = 2 (trivial) and n = 3
[34, Hilfssatz 3]. If p is a prime with p > 67, then g(C, ® Cp) = s(C,) = 2p — 1; see Theorem 1.1
and [29].
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3. Lower bounds

All lower bounds for invariants 7(G) and S(G) are established by explicit constructions of sequences
S € F(G) having no zero-sum subsequences with the required properties. The first two results will
be used several times, whereas the specific preparations for the proof of Theorem 1.3 start from
Lemma 3.3 on. A geometric interpretation of the sequences given in Lemma 3.4 and Theorem 1.3
will be offered after Lemma 5.4. Note that in the special setting of p-groups, the bounds given in
Lemma 3.2 were first proved in [31, Theorem 1.5].

PrROPOSITION3.1 Let G =C,, ®--- ® C,,, wherer =r(G)and1 < ny|---|n,, andlet (ey, ..., e)
be a basis of G with ord(e;) = n; for every i € [1,r]. For a subset I C [1,r], we sete; =Y ;€
(in particular, ey = 0).

(1) Let

iel

U=1]] [] @+e)" e 7).

k=1 IClk+1,r]

Then the following statements are equivalent:
(a) U has no short zero-sum subsequence;
Mb) r=1o0r @ =>2andn, = n,).
(2) Let H be a finite abelian group with exp(H) = n being a multiple of n, and T € F(H) such
that T"~" has no zero-sum subsequence of length n. Then the sequence

s=]] (g’” [T+ ei)""‘) € F(G®H)
geT i=1
has no zero-sum subsequence of length n, and hence
SGOH) =G H) +n—121+]|T] (n—1+2(n,-—1>).
i=1

Furthermore, if meN and I,...,1, C[l,r] are pairwise disjoint sets with
Ziaﬂ(”i — 1) > nforall u € [1, m], then

S=S[[[]e+e,) € FGoH)

geT p=1
has no zero-sum subsequence of length n.
RIfG=G6a C,'f withk,n € Nandn,|n, then
s(G) = n(G) +n—121+2" (n—1+2<ni—1>>.
i=1
Proof. (1) (a) = (b) If r < 2, then there is nothing to show. If » > 3 and n, < n,, then
U'= € Nea+e) "t (er +e)(er +er+ )"

is a short zero-sum subsequence of U, a contradiction.
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(b) = (a) If r = 1, then the assertion is clear. Suppose that r > 2 and n, = n, = n. Then

U= [] @+en"™ J] &' e FG)

IC[2,r] P#IC[2,r]

and we consider a zero-sum subsequence

k 1
U' = l—[(el +ep,) l_[ er,
v=I v=k+1
of U with0 <k <[ <mn,subsets I, ..., Iy C[2,r]and non-empty subsets Iy, ..., I} C

[2, r]. We have to show that |U’| = | = 0. Assume, on the contrary, that/ > 1. SinceVv,, (U’) <
Ve, (U) = ny — 1, there exists some v € [1, /] such that I, is non-empty. Let i € I, and

a=|{jell.l]li € I;}]

Since o =0 mod n and 1 <« <[ < n, it follows that « = [ = n. Since U’ has sum zero
we infer that I} = --- = [,,, whence

k n—k
U = (e; +ey) e

Then k = Omodn; and k£ < Ve, ey, (U) =ny; — 1 imply that k = 0, whence U’ = 671 is a
subsequence of U, a contradiction.

(2) Assume, on the contrary, that S has a zero-sum subsequence S’ of length n. Since every zero-
sum subsequence of 7™, for any m > n, of length n has the form g" for some g € supp(7)
it follows that the sequence S’ has the form

§'=g" l_[(g +e)l,
i=1

with g € supp(T), l[; € [0,n — 1] and [; € [0,n; — 1] for all i € [1,r]. But [, < n implies
that there is some i € [1, r] withl; € [1,n; — 1], and hence o (S”) # 0, a contradiction. Now
the lower bounds for S(G & H) and n(G & H) follow from Lemma 2.3.

If S has a zero-sum subsequence S of length n, then

r m
- |
S =g [Je+e ]t +en),
i=1 pu=l

with §,, € {0, 1} and all other parameters as before. Since S isnota subsequence of S, there
is some p € [1, m] with §,, = 1. This implies that S’ must contain the sequence

S =(g+e) [[g+e .

iel,

and hence n = IEII > IE//I >1+ Ziel,l (n; — 1) > n 4+ 1, a contradiction.



ZERO-SUM PROBLEMS 167

k

n’

(3) Applying (1) to the group C¥, we obtain a sequence T = 07" of length |T| = 2* such that
U =T""" has no short zero-sum subsequence and hence T"~' has no zero-sum subse-
quence of length n. Then (2) gives us a sequence S € F (G) of length |S| = |T|(n — 1 +
Z:zl (n; — 1)), which has no zero-sum subsequence of length n. Now the assertion follows
from Lemma 2.3.

LEMMA 3.2 Let G be a finite abelian group withexp(G) =n > 2 and G = H ® (e), where H C G
is a subgroup and e € G with ord(e) = n. Then

n(G) > 2(D(H) — 1) +n and S(G) > 2(D(H) — 1) +2n — 1.

Proof. fT =gy -...-g € F(H)isasequence of length |T| = = D(H) — 1, which has no zero-
sum subsequence, then obviously the sequence

1 1
s=e¢"'la]]E+o € F©G

=1 i=l
has no short zero-sum subsequence. This implies that
1(G) = |S|+ 1 =2(D(H) — 1) +n,

and by Lemma 2.3(1) we have S(G) > 2(D(H) — 1) +2n — 1.

For the rest of this section we introduce the following notation. Let G = C;, withn > 2andr € N,
and let (eq, ..., e,) be a basis of G. In order to stress the geometric aspect of the theory, we write the
elements g € G as coordinate vectors; this means for an element g € G with g = aje; + - - - + a,e,,
we set

aj
=ae1+---+ae =g,
ay
whereay, ...,a, € [0,n — 1].Fori € [1, r], wecall q; theith coordinate of ganda; + - - - + a, € Ny

the weight of g.

LEMMA 3.3 Let G = C,% withn > 3 odd,

SRR
=606

Then neither Vy nor W, has a zero-sum subsequence of length n.

and
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Proof. Let f: G — G be defined by

n+1 n+1
a 2 2 a 0
> + .
b n—1 n+1 b 1
2 2

Thenitis easy to check that f(V,) = W,. By Proposition 3.1(1), S has no short zero-sum subsequence.
Thus Lemma 2.2 implies that V, and f(V,) have no zero-sum subsequence of length .

LEMMA 3.4 Let G = C; withn > 3 odd,

(e}
=
[\
[\
[\

Vi=Vil with V3=

=)
(V]
=
V)
—_
=
\}
—_
—_

and

N
\9)
\9)
\S)
—_
—
—
—
S

W; = W;il with W3 =

o o
&
=N
SIS
=)
[
\S)
—
RN

Then, neither V3 nor W has a zero-sum subsequence of length n. In particular, we have n(C;) >
8n — 7 and S(C,f) >9n — 8.

Proof. Let f: G — G be defined by

a -1 0 O a 3
bl—1]10 1 0 b |+
c 0 0 1 c 0

Then it is easy to verify that f(V3) = W3. Thus by Lemma 2.2(1) and Lemma 2.3(2), it suffices
to prove that V3 has no zero-sum subsequence of length n. Assume, on the contrary, that there is a
zero-sum subsequence Vj of V3 of length n.

We first suppose V5 contains only those elements of V3 that have first coordinate 1 or 2. Then the
sum of the first coordinates of the elements of V; is n or 2n. This is only possible if every element
of Vj has the same entry in the first coordinate. If all elements of V; have first coordinate 1, then
the sequence formed by the remaining two coordinates is a zero-sum subsequence of V, of length
n, a contradiction to Lemma 3.3. Similarly, if all elements of V; have first coordinate 2, then the
sequence formed by the remaining two coordinates is a zero-sum subsequence of W, of length n, a

contradiction to Lemma 3.3.
3

Thus V3 must contain the element ¢ = | 1 ] . Since the second coordinate of g equals 1, the sum

of the second coordinates of the elements of V3 must be n. The same is true for the third coordinate.
Since the first coordinate of g equals 3, the sum of the first coordinates of the elements of V; must
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be 2n. Thus the sum of all coordinates of the n elements of V3’ equals n + n + 2n, which is even. On
the other hand, since all elements of V3 have odd weight, this is the sum of an odd number of odd
weights whence it should be odd, a contradiction.

Proof of Theorem 1.3 Let G = Cfl with n > 3 odd. We set

N /1N /1N /1N /1\ /1\ /1\ /1\ /1
vtz 22t 2] 3
T(n) =T =
olloll2l]2]lollt]l1]]2]]1
o/ \2/ \o/ \2/ \1/ \o/ \2/ \1/ \u
2N /2\ /2\ 72\ /2\ /2\ /2\ /2\ /2\ /O\ /3
20222 bbbl ol 2]
ofloll212ltol ezl ]t]]
0o/ \2/ \o/ \2/ \i/ \o/ \2/) \1/ \u/ \u/ \u

and assert that V4, = T"~! has no zero-sum subsequence of length n. Then 8(G) > | S|+ 1 = 20n — 19,
and Lemma 2.3(2) implies that n(G) > 19n — 18. Assume, on the contrary, that there is a zero-sum
subsequence V, of V, of length n. We consider the elements

and h =

3
|
i
!

—_— = O N
Y

We first suppose that v, (V,) + v, (V;) = 0, whence V, contains only those elements of Vj that
have the first coordinate 1 or 2. Then the sum of the first coordinates of the elements of V, is n or
2n. This is only possible if all the elements of V, have the same entry in the first coordinate. If all
elements of V, have first coordinate 1, then the sequence formed by the remaining three coordinates is
a zero-sum subsequence of V3 of length n, a contradiction to Lemma 3.4. Similarly, if all elements of
V, have first coordinate 2, then the sequence formed by the remaining three coordinates is a zero-sum
subsequence of Wj of length n, a contradiction to Lemma 3.4.

Thus it follows that v, (V,) + v;(V,) > 0. Since both g and & have a 1 in the third coordinate and
all other elements of V; have a 0, 1 or 2 in the third coordinate, the sum of the third coordinates of the
elements of V; must be . The same is true for the fourth coordinate. The sum of the first coordinates
of the elements of V, can be neither O nor 3z, hence it must be either n or 2n. The same is true for
the second coordinate. We distinguish three cases.

Case 1. The sum of the first coordinates and the sum of the second coordinates are both n. Since for all
elements of V4 the sum of the first and the second coordinates is at least 2, V, can only contain
elements whose first two coordinates sum to exactly 2. This implies that V,(V,) = vy (V).
Any other elements of V, have an even number in the third coordinate. Thus the sum of the
third coordinates is even, contradicting n is odd.

Case 2. The sum of the first coordinates and the sum of the second coordinates are both 2n. Since
for all elements of V4 the sum of the first and the second coordinates is at most 4, V,
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can only contain elements whose first two coordinates sum to exactly 4. This implies that
Vi (V) = viy (V). Any other elements of V, have an even number in the third coordinate.
Thus the sum of the third coordinates is even, contradicting » is odd.

Case 3. The sum of the first coordinates equals n and the sum of the second coordinates equals 2n, or
conversely. Then the sum of all coordinates of the n elements of V; equalsn +n +n + 2n =
5n, which is odd. On the other hand, since all elements of V, have even weight, the sum of
all coordinates of the n elements of V should be even, a contradiction.

Next, we show how to lift lower bounds for s(C2), s(C3) and s(C?) to lower bounds for s(C")
with r > 5. Then we compare these bounds with upper bounds for s(C;). Although these lifting
results give the best lower bounds that are currently available, a lifting of a sharp bound for s(C))
will in general not give sharp bounds for larger ranks.

PROPOSITION 3.5 Let G be a finite abelian group with exp(G) =n > 2.

(1) Let G = G| & G, with subgroups Gy, Gy, C G such that exp(G) = exp(G,) = n. If for
every i € {1,2} there is some T; = g;.1 - ...- g1, € F(G;) such that Ti”_1 has no zero-sum
subsequence of length n, then sequence T"~", where

T= [] (©a+g.) € FG).
relll]
vell,hL]

has no zero-sum subsequence of length n. In particular,
s(G) = [TIn—=1D+1 and n(G) = (T|—Dn—-1) + 1L

(2) LetG = C) withr > 2andletr =r| + - - - + ry beany partition of r withs, ry, ..., ry € N.If
foreveryi € [1, s]there exists some T; € F(C}i) suchthat Ti'“1 has no zero-sum subsequence
of length n, then

S(G) = <H|ﬂ|> (r=D+1 and 7(G) = (I‘[w - 1) (=1 +1.

i=1 i=1

Proof. (1) Assume, on the contrary, that 7"~! has a zero-sum subsequence 7" of length 7, say

n
T =[](g14, + 82). where a1.... A, €[1.4] and vy.... v, € [1, ).
j=1
Then the sequences
n n
Tl/ = l_lgl‘}‘/' and TZ/ = ngf"f
j=1 j=1
have sum zero. Thus for every i € {1, 2}, the sequence 7/ is not a subsequence of Ti”_l,

whence Ay =...=A,, v =...=v, and

T/ = (gl,kl + g2,v1)n7

a contradiction to the assumption that 7" is a subsequence of 7"~
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Now, the lower bound for S(G) follows form the very definition, and the lower bound for
n(G) follows from Lemma 2.3(2).
(2) This follows from (1) by induction on s.

COROLLARY 3.6 Let n > 3 be an odd integer and r € N.

(1) For r € [5,12], we have S(C)) > c¢,(n — 1)+ 1, where cs =40, c¢ =81, c¢; =180,
cg = 400, Cg = 800, Clo = 1620, C1] = 3600 and Clp = 8000.

2) Ifr =4s +d withs € Ngand d € [1, 4] and if S(Cf) >cq(n—1)+ 1withcy,cy,c3,c4 €
N, then s(C}) > 20°cq(n — 1) + 1.

Proof. Letd € [1,4]. We assert that there is some sequence T € F(C If ) such that 7”~! has no zero-
sum subsequence of length n and |T| = ¢4 withc; =2, ¢; =4, ¢3 =9 and ¢4 = 20. Ford = 1, the
sequence T = Og has this property for every g € C, with ord(g) = n. For d = 2, this follows from
Proposition 3.1(2) with G = H = C,,. For d = 3, this follows from Lemma 3.4 and for d = 4, this
follows by Theorem 1.3. Now (1) and (2) follow from Proposition 3.5(2) (for (1), use the par-
titions S=1+4,6=3+4+3,7=4+3,8=44+4,9=14+4+4,10=3+3+4,11=3+4+
4,12=4+4+4).

REMARKS 3.7 (1) Alon and Dubiner proved the following upper bounds for s(C;): for every r € N
and every prime p one has S(C ;) < ¢, p, where ¢, is recursively defined as follows: ¢; = 2
and ¢, = 256r(log, r + 5)c,—1 + (r 4+ 1) for r > 2 (note that there is a misprint in formula
(6) in [2, p. 306]; since, in the meantime, it is known that S(C[%) < 4p, one can also start
the recursion with ¢, = 4). Furthermore, there exists an absolute constant M > 0 such that
s(C;) < (Mrlog,r)'n forall r,n € N [2, Theorem 1.1].

(2) Using some refinements, Kubertin [44, Satz 5.2] gave the following upper bounds: for suf-
ficiently large p and n, we have S(C;) <c.pand s(C}) < 2¢,n with ¢; =2, c; =4 and
¢, = 79.322410g(4.2637(1.4715r) )cr—1 + (r + 3)/2.

(3) Upper and lower bounds for s(C3) (equivalently, bounds for the maximal size of affine caps)
are discussed in detail in section 5.

4. Upper bounds and consequences

We first deal with Theorem 1.4. Note that the results of Alon, Dubiner and Kubertin (discussed in
Remarks 3.7) provide the starting values cy, ..., ¢, mentioned in the assumption of Theorem 1.4.
Although the proof of this theorem is straightforward, it provides the first reasonable upper bound
for s(G) in the case where G has not the form C), (see Corollary 4.6). We start with the following
lemma which generalizes [34, Hilfssatz 2] (see also [12]).

LEMMA 4.1 Let G be a finite abelian group, H C G a subgroup and S € F(G) a sequence of

length |S| > (s(H) — ) exp(G/H) +S(G/H). Then S has a zero-sum subsequence of length
exp(H) exp(G/H). In particular, if exp(G) = exp(H) exp(G/H), then

G G
s(G) < (s(H) — 1) exp <E> +s (ﬁ) .
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Proof. This follows from [32, Proposition 5.7.11].

Proof of Theorem 1.4 We proceed by induction on exp(G). If exp(G) = p € P, then G = C}, and
the assertion holds by assumption.
Let p € P with p|n;, p < n,, and let m; = p~'n; fori € [1, r]. We consider the groups

~ G ~ r
pG:CmI@Q}Cm, and p_G:Cp

Note that we may have m; = 1, but in any case the induction hypothesis implies that

r

s(pG) < Z(Cr+l—i —cr—i)m; —c + 1.
i=1

By Lemma 4.1 (with H = pG), we infer that

G G
G)<(s(H)-1 — —
s(G) = (s(H) )eXp<H>+s<H>

< (Z(ml_i —cri)mi — cr> pte(p—1)+1
i=1

< Z(CrJrlfi —c¢—ni — ¢ + L.

i=1

For the proof of Theorem 1.5 we need the following two well-known lemmas. For convenience,
we provide a short proof for the second one.

LEMMA 4.2 Let G be a finite abelian group, k,n € N, D(G & C,) <3n — 1 and S € F(G) a zero-
sum sequence of length |S| = (2k — 1)n. Then S has a zero-sum subsequence of length n.

Proof. This follows from [32, Proposition 5.7.7.3].

We introduce some more notation. Let R be a commutative ring and [ € N. We set
R[X] = R[Xy,..., X;], and if

f= > amX! - X" € RIX]

m=(mi,....,m;))eN)
is a non-zero polynomial, then we denote by
deg(f) = max{m; + --- +m;|m € Nf) with a,, # 0} € Ny
the total degree of f.

LEMMA4.3 Let R be a commutative ring,l € N, M = { ]_[igl X;|I C [1,1])gr C R[X] the submodule
generated by the multilinear monomials, C = {Og, 1g} C R! the cube in R and R€ the set of all
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maps ¢: C — R. Then the map

cC — R

0: M — RC definedby f +— 0(f):
> f(o)

is an R-module isomorphism.

Proof. Clearly, M is a free R-module of rank 2/ and R€ is a free R-module of rank 2/ having the
set of all characteristic functions as an R-basis. If ¢ = (¢1,...,¢) € C, x¢ € RC the characteristic
function of ¢ and

=11 % [la-x» e m.
jelLl] JelLl]
cj=1 cj=0

then 6(f) = x., whence 6 is an isomorphism.

Proof of Theorem 1.5 (1) The lower bound follows from Lemma 3.2 and the upper bound from

[32, Proposition 5.7.7.2].
(2) Since D(G @ C,) = (D(H) — 1)+ D(C,, & C,) = (D(H) — 1) + 2n — 1, the lower bound
follows from Lemma 3.2, and it remains to prove the upper bound.
Let p e P be an odd prime, G =C,, &---® C,, a p-group, where r =r(G) and
1 <ny|---|n,, and let (ey, ..., e,) be a basis of G with ord(e;) = n; for every i € [1, r].
Then

DG)=14+)> (mi—1) and DG®C)=n+Y (n;—1).
i=1 i=1
Assume, on the contrary, that there exists a sequence S =g;-...-g € F(G) of length
|S| =1 =D(G & C,) + n, which has no zero-sum subsequence of length n. Since D(G) < 2n — 1
by assumption, Lemma 4.2 implies that S has no zero-sum subsequence of length 3n. For every
i €[1,1] we set

g =aieg+---+a,e. with a;, €[0,n, —1] forall p €[1,r]
We define the polynomial
) r
X
P= ((Z’=1 ) —2> 0 [[R, €Qix]
n
p=1

where, for all p € [1, r],
I ! -
R, = (Zil ai,pXi 1) €Q[X] and Q= (Zlnli{ll 1) € QIX].

We set C = {0, 1}} C @' and start with the following assertion.

ASSERTION P(C) C Z, P(0) 20 mod p and P(c) =0 mod p forallc € C \ {0}.



174 Y. EDEL et al.

Proof of the assertion. Clearly, P(0) € {—2, 2}, whence P(0) # 0 mod p because p is odd.
Let 0 £ ¢ = (c,...,¢) €{0,1}} ¢ Q. We have to show that P(c) = 0 mod p. We need the
following two facts on binomial coefficients. Let k, m € N.

(F1) If p* { m, then <Z5‘_—11) = 0 mod p.

(F2) (”;”) = m mod p.

We consider the sequence

1
Se=[]s" € FG).
i=1

Clearly, S, is a subsequence of S of length |¢| = ¢; + - - - + ¢; < [. We distinguish two cases.

Case 1. S, is not a zero-sum sequence. Then there exists some p € [1, r] such that

I

> ai, #0modn,.

i=1
ci=1

Then (F1) implies that R,(¢) = 0 mod p, whence P(c) = 0 mod p.

Case 2. S, is a zero-sum sequence. If |S.| is not divisible by n, then (F1) implies that Q(¢) =0
mod p whence P(c) = 0 mod p. Suppose that |S,| is divisible by n. Then, by assumption, we have
|S¢| = 2n, whence (F2) and the first factor of P imply that P(¢) = 0 mod p. Thus the proof of the
assertion is complete.

Now we use Lemma 4.3 with R = QQ and with 6 and M as defined there.

Let Py € Q[X] be the polynomial arising from P after replacing the powers X lk by X; for all
i €[1,/]and all k € N. Then, Py € M, deg(Py) < deg(P) and P(c) = Py(c) forallc € C.

For every ¢ = (cy, ..., ¢;) € C we define

1 1
xe=[]X ][]0 -X)eMcQlx]

i=1 i=1
C,'=1 C,':O

and

Py=>"Py(e)x. € M C QIX].
ceC

Then 6(x.): C — Q is the characteristic fullction of ¢, and we have 6(1%)(c) = 0(Py)(c) for all
¢ € C. Therefore, by Lemma 4.3, we get Py = Pp. The assertion implies that the coefficient of
]_[5:1 X; in Py and the coefficient of ]_[521 X; in Py(0)xo are both integers which are congruent
modulo p but not divisible by p. In particular, the coefficient of ]—[f:l X; in P, is non-zero, whence
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deg(ﬁg) =/, and we get

I = deg(Py) = deg(Py) < deg(P)

<n+deg(Q)+ )y deg(R)) <2n—1+) (n,—1)

p=1 p=1
=DGeoC)+n—-1<I,
a contradiction.

We end this section with a series of corollaries. Among others, they provide some special types of
groups for which the lower bounds derived in section 3 and the upper bounds of this section give the
precise values of n(G) and s(G). The first corollary generalizes [34, Satz 1].

COROLLARY 4.4 Let G = Cyy @ C;k’l, where k,r e N, r > 2 and ky € [1, k]. Then

n(G)+2—1=s(G) =212~ + 25 —2) + 1.

Proof. Foreveryi € [1,r], we have s(C}) =2 + 1 = ¢;(2 — 1) + 1 with ¢; = 2/ (this can be seen
directly from the definition or [32, Corollary 5.7.6]). Thus Theorem 1.4 implies that

r—1
S(G) < (2 =272k 4y @t b 2.2 2 4
i=2

— 2r—12k1 + 2k2r—1 _ 2r + 1
=21k 42k —2) 4 1.

On the other hand, Proposition 3.1(3) (with G = Cy, and C,’f =Cy D) implies that
1+27 1R =142 — 1) < p(G) +2F -1,
whence the assertion follows from Lemma 2.3(1).

COROLLARY 4.5 Let P C P be a non-empty set of odd primes and let n € N be a product of prime
powers with primes from P.
@9) IfS(C;) =9p —8forallp € P, then8n — 7 = n(Cg) = S(CS) —n+ 1L
2) IfS(Cf,) =20p — 19 forall p € P, then 19n — 18 = n(Cfl‘) = S(Cfl') —n+1
(3) Let r,c, € N and let m be a power of 2. If s(C})) <¢,(p—1)+1 for all p € P, then
s(Cl )<2(m—Dn+c,(n—1)+ 1.

Proof. (1) By Lemma 3.4 and Lemma 2.3(1) we have
8n—7 < n(C) <s(C})—n+1.

On the other hand, Theorem 1.4 (with » = 3 and ¢, = 9) implies that s(Cn3) <9n — 8.
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(2) By Theorem 1.3 and Lemma 2.3(1), we have
197 — 18 < n(CH < s(CH —n+ 1.

On the other hand, Theorem 1.4 (with » = 4 and ¢, = 20) implies that S(C,;1 ) <20n — 19.
(3) Weset G =C,,, and H=nG = C,, whence G/H = C},. Since s(Cp) < S(CI%) <... <

S(C;) <c¢(p—1)+1, Theorem 1.4 implies that S(G/H) <c¢.(n—1)+1, and
Corollary 4.4 implies that S(H) = 2"(m — 1) + 1. Using Lemma 4.1 we infer that

G G
S(G) < (s(H) — ) exp (ﬁ) +s <ﬁ)

=2"m—-Dn+c,(n—1)+1.

COROLLARY 4.6 Let G = C,, ® C,,, ® C,,, where 1 < ny|ny|n3, and let P C P denote the set of
primes dividing nj.

@)) IfS(Cg) <9p —S8forall p € P, thens(G) < 5ny + 2ny 4+ 2n3 — 8. If ny = ns3, then 4n, +
4nz — 7 < s(G).
(2) If G is a 2-group, then S(G) < 4ny + 2ny + 2n3 — 7, and equality holds if n, = ns.

Proof. For every prime p, we have s(Cp,) =2p —1 and s(C;) =4p —3 by Theorem 1.1.
Corollary 4.4 shows that S(Cg) = 8(2 — 1) + 1. Thus Theorem 1.4 implies the upper bounds. The
lower bound in (1) follows from Proposition 3.1(3) (with k = 2 and n = n3). If G is a 2-group and
ny = n3, then Corollary 4.4 implies equality in (2).

REMARKS 4.7 (1) For r € {3,4,5}, the precise values of s(C;) and g(Cj) (see the discussion
after Lemma 2.3) were found (independently) by many authors (see the historical remarks after
Lemma 5.2). We have s(C3) = 19, s(C3) = 41 and S(C3) = 91, whence P = {3} satisfies both
assumptions in Corollary 4.5 and P = {2, 3} satisfies the assumption in Corollary 4.6(1). Note that
the sequence (2, 4,9, 20,45) = (9(C3) — 1, ..., g(C;) — 1) has number A090245 in the On-Line
Encyclopedia of Integer Sequences [60].

(2) Applying Corollary 4.5(3) (with P = {3},r =3,m =2, ¢3 = 9) and Proposition 3.1, we
obtain 41 < s(C3) < 43. Thus if the group C; has Property D, then S(C3) = 41.

(3) In general, neither the upper bound in Theorem 1.4 nor the upper bound in Corollary 4.6(1)
are sharp. Indeed, for certain groups, the upper bound from Theorem 1.5(2) is smaller than the upper
bound from Corollary 4.6(1).

5. On a geometric aspect of invariant S(G)

It seems conceivable that all phenomena controlling invariant S(C}), for n > 3 odd and r € N,

already occur in the special case where n = 3 (see the discussion after Lemma 5.4 and note that

in all situations known so far we have

s(C;) —1
2

But the problem to determine S(C3) is equivalent to the (well-investigated) problem of maximal
caps in affine geometry (see Lemma 5.2 and the subsequent remarks). Even though this relationship

S(C) = (n—1)+1.
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may have been implicitly known, we hope that the discussion below gives directions for future
research.

We start with some elementary facts from finite geometry. For a short introduction and collection
of basic properties of finite geometries, we refer to [48, Appendix B] and for more material to [39].
A recent survey on extremal problems in finite geometry is given in [40].

Let ¢ be a prime power and r € N. Recall that the s-dimensional subspaces of a projective space
PG(r, g) can be identified with the (s + 1)-dimensional subspaces of the vector space IF;“. The
incidence in the projective geometry is defined by the inclusion of the corresponding vector spaces.
The zero-dimensional subspaces of a projective space PG(r, g) are called the points, so PG(r, g) has
q"+q" '+ -+ g + 1 points. The one-dimensional subspaces are called the lines and the (r — 1)-
dimensional subspaces are called the hyperplanes. The pointsof aset S C PG(r, ¢) are called collinear
if there is a line L such that S C L.

One of the hyperplanes of PG(r, ¢) can be thought of as the hyperplane at infinity. The complement
of this hyperplane in PG(r, q) is the affine geometry AG(r, g) which consists of ¢" points. These
points can be thought of as lying on ¢ parallel hyperplanes of g’ ~! points. As the automorphism
group of PG(r, q), PGL(r, q), operates transitively on the hyperplanes, we can assume without loss
of generality that the hyperplane at infinity is the hyperplane x,,; = 0. So, we can always choose
this standard embedding of AG(r, q), that is, the points (x : 1) in PG(r, q).

So, one can also think of AG(r, ¢) as ]F;, since the point (x : 1) is uniquely determined by x € IE‘;.
It is also convenient to call x itself a point of AG(r, ¢). The geometric structure of AG(r, ¢) is induced
from PG(r, q) by restriction. A line in the projective space has g + 1 points, and a line in the affine
space has g points. One of the classic objects of interest in finite geometry consists of caps.

DErFINITIONS.1 (1) Anm-cap C C PG(r, g) isasetof |C| = m points, three of which are not collinear.

(2) An m-cap in PG(r, q) is called maximal if there exists no m + 1-cap in PG(r, q).
(3) A cap C C PG(r, g) is called affine if there is a hyperplane H suchthat CN H = 0.
(4) Anm-cap in PG(r, q) is called maximal affine if there exists no affine m + 1-cap in PG(7, q).

LEMMA 5.2 Let G = Ty withr € N.
(1) The map f, defined by f(T) = supp(T), is a bijection from the set

{T € F(G)|T is square-free and has no zero-sum subsequence of length 3}

onto the set {C C G|C is a cap}.

(2) The maximal size of a cap in AG(r, 3) is g(G) — 1.

(3) s(G) =29(G) — 1, and every sequence S € F(G) of length |S| = s(G) — 1, which has no
zero-sum subsequence of length 3, has the form S = T?, where supp(T) is a maximal cap
in G. Conversely, if T € F(G) is square free and has no zero-sum subsequence of length 3,
then T? has no zero-sum subsequence of length 3.

Proof. We identify G with the affine space AG(r, 3) C PG(r, 3).

(1) Three different points, (x : 1), (y : 1), (z : 1) € AG(r, 3), are not on a line if and only if the
vectors (x, 1), (y, 1), (z, 1) € IFgH are linearly independent, that is, if there is no non-trivial
linear combination Ax 4+ uy 4+ vz = 0 with A + u + v = 0. The only possible coefficients
{A, u,v}are {1, 1, 1}, {2, 2, 2} or permutations of {0, 1, 2}. The case {0, 1, 2} is impossible,
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as it would imply that two points are equal. An affine relation with respect to coefficients
{2, 2, 2} is equivalent to the relation with respect to {1, 1, 1} by a scalar multiplication. So,
three different points are not on a line if and only if the corresponding sequence has no
zero-sum of length 3.

(2) This follows from (1).

(3) In[34, Hilfssatz 3] itis proved that S(G) = 29(G) — 1. Therefore, Lemma 2.3(3) implies that
G has Property D, whence the first assertion follows from (1). Let T € F(G) be a square-free
sequence without a zero-sum subsequence of length 3. Assume, on the contrary, that 72 has a
zero-sum subsequence S’ of length 3. Since S’ is not a subsequence of T, we have S’ = h2h’
for some i, i’ € G. But then 2 + A’ = 0 implies that 2 = A/, a contradiction.

Let us briefly discuss some further connections to related problems. As Lemma 5.2 already shows,
the same type of problem has been studied in various different parts of mathematics, such as number
theory, combinatorics and finite geometry.

(1) A sequence g - ...~ g € F(F)) is called an arithmetic progression of length [ if there exist
a,b € I, suchthatg; = a +ibforalli € [0, — 1]. The problem of studying sets without arithmetic
progressions in I, has been studied, for example, by Green [33] and Lev [47].

In analogy to Lemma 5.2, one can state that the map f, defined by f(T) = supp(T), is a bijection
from the set

{T € F(G)|T is square-free and has no zero-sum subsequence of length 3}

onto the set {C C G|C does not contain an arithmetic progression of length 3}. Thus g(G) — 1 is the
maximal size of a set in G without an arithmetic progression of length 3.

This follows from Lemma 5.2(1) by observing that the three points in I define an arithmetic
progression of length 3 if and only if they are collinear.

The problem of sets without progressions in I is closely connected to the famous Erd6s—Turdn
problem on sets of integers without arithmetic progressions. Using harmonic analysis, Roth [58] was
the first to show that the maximal cardinality, r3(n), of sets without a progression of length 3 in
[1,n]is r3(n) = O(n/loglogn). Further progress was due to Heath-Brown [35], Szemerédi [62] and
Bourgain [8], leading to r3(n) = O (n(loglogn)'/?/(logn)!/?).

As Green [33] shows, all four proofs can be adapted to give an upper bound of O (3" /r) for the
cardinality of maximal sets in [, without an arithmetic progression of length 3. This bound was
first proved by Meshulam [49], based on Roth’s method; for precursors, see [10, 21, 22] and for a
generalization see [47]. Explicit bounds on g(C3) are given below.

(2) Davis and Maclagan [13] wrote an interesting paper on the card game SET, which carefully
explains the connections between this card game and affine caps. In short, cards have several properties
such as colour and symbol. A ‘SET’ is a set of three cards in which these properties are either the
same (like the same colour three times) or all different (like three different colours). This corresponds
to an arithmetic progression of length three or three collinear points. Since this card game is very
popular, a growing number of manuscripts have appeared on the Internet, rediscovering results that
are equivalent to the values of g(C33) =10 or g(Cg‘ ) = 21; here, we only mention the computer
programme by Knuth [43].
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(3) The problem of finding lattice points with no three collinear has an interesting application to
graph drawings. Given a finite simple graph G, a drawing of G represents each vertex by an integer
gridpoint in Z?, in which the edges are drawn as straight line segments between the adjacent vertices.
Edges are not allowed to pass through other vertices. The interest is in drawings with minimal volume
of the bounding box of the vertices. The connection to the problem of no three collinear points follows
from the observation that a set V C Z3 of n points induces a drawing of the complete graph K,, if
and only if no three points of V are collinear; for more details, see Pér and Wood [55]. Also, their
open Problem 3 on vol(n, d, 1) is a question on dense d-dimensional point configurations without
three points on a line, and their comment that this problem is trivial for d > log, n follows from the
trivial cap consisting of 2¢ points with coordinates 0 and 1 only.

We now describe the connection to caps in more detail and discuss explicit bounds on g(C3).

The determination of the maximal size of caps in projective geometry PG(r, ¢) or affine geometry
AG(r, q), as well as their complete characterization, appears to be a difficult problem. Few exact
results are known. We refer to [5, 40] for known results and here only summarize some details we
need for caps in AG(r, 3).

Let g be an odd prime power. In PG(2, ¢) there are (¢ + 1)-caps, the ovals, known to be maximal
[7]. An oval avoids several hyperplanes, so the maximal size of acapin AG(2, 3) is4.In PG(3, ¢) there
is a unique maximal (q2 + 1)-cap, the ovoid; see [3, 7, 52]. The ovoid contains an affine qz-cap. As
every g*-cap in PG(3, ¢) can be embedded in the unique (¢> + 1)-cap [20] and as the automorphism
group of the ovoid is transitive, the affine g>-cap is also projectively unique. In PG(4, 3) there exist
exactly nine types of maximal 20-caps, and one of these is affine [38, 53].

The values S(Cg) =19, g(C33) = 10, S(Cg‘) =41 and g(Cg‘) = 21 have been rediscovered several
times. It appears that they were first found by finite geometers. Bose [7] found the size of the maximal
affine caps in dimension 3, and uniqueness was proved by Barlotti [3] and Panella [S2]. In AG(4, 3) the
existence and the maximality of a cap of size 20 were proved by Pellegrino [53], and uniqueness was
proved by Hill [38]. The size of the unique maximal cap in AG (5, 3) is 45, as proved by Edel ez al. [16].
In AG(6, 3), a 112-cap can be constructed by applying the elementary doubling construction due to
Mukhopadhyay [50] to the 56 points of the Hill cap in PG(5,3) [36, 37]. The size of a cap in AG(6, 3)
can be at most 114 [6]. Frankl et al. [21] connected the problem of no three points in arithmetic
progression in I} to sunflowers and proved, on the basis of a construction in r = 18, that there are
affine caps in AG(3, r) of size at least 2.179", for sufficiently large r.

In the combinatorics community, the problem of determining invariants S(C;) and g(C;) was
posed and popularized by Harborth and Kemnitz. Harborth verified that (C3) = 19, and Kemnitz
proved that S(Cg‘) =4119, 10, 34, 41, 42, 63].

For larger r, lower bounds for the size of an affine cap in AG(r, 3), that is, bounds for g(C3) — 1,
can be obtained from projective caps by choosing a hyperplane (which will be the hyperplane at
infinity of the affine cap) and deleting all points of the projective cap in this hyperplane.

The lower bounds for r < 12 in the following table are obtained by choosing a hyperplane that
contains the minimal number of points of the projective caps found at [14]. The bounds for r = 62
and r = 480 are constructed in [15]. The latter shows that there are affine caps in AG(3, r) of size at
least 2.217389", for sufficiently large r.

For the upper bounds, we recursively use Lemma 5.3, which is an adaptation of [6, Theorem 2] (see
also [49]) to our situation. The upper bounds in the table are obtained by starting with the maximal
cap in AG(S5, 3), that is, with g(C;) — 1 =45T[16].
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LEMMA 5.3 Ifr > 3, then
,3@CTH-D+1
39CiH - +37
236 < g(C7) — 1 < 296,
476 < 9(C) — 1 < 783,
1068 < g(C3) — 1 < 2099,
2228 < g(C3") — 1 < 5691,
5232 < g(C3") — 1 < 15573,
10848 < g(C3%) — 1 < 42944,
2.57342 x 10! ~ 247°29 < g(C$?) — 1 < 6.11654 x 107,

Q) -1 =3

10
1.0095 x 10'6¢ ~ 3280 4 85<5 )11275125 < g(C*%) — 1 <2.17081 x 10*°.

The upper bound coming from Lemma 5.3 tends to 3"/r, as r tends to infinity. Note that
Meshulam [49] states this bound with an extra factor of 2.

LEMMA 5.4 Forr € {3, 4, 5}, the maximal affine cap in AG(r, 3) is unique up to affine transformation
(Which means that every maximal cap can be written as MC + a, where C is a fixed example of the
maximal cap, M is a non-singular r x r matrix over F3 and a € ).

Proof. In the preceding discussion we have seen that the caps in question are projectively unique.
These caps avoid only one hyperplane (easily verified by a computer). As there is only one hyperplane
avoided, a projective homomorphism fixing the cap must also fix this hyperplane.

This hyperplane must be the ‘hyperplane at infinity’ that defines the embedding of the affine
geometry into the projective geometry. As was motivated in the introduction, we can use the standard
embedding of AG(r, 3) (that is, all points are of the form (x : 1) in PG(r, 3)).

A projective homomorphism fixing the hyperplane at infinity, x,,; = 0, must be equivalent to a
multiplication with a matrix of the form

M a
(o 1)

with M a non-singular » x r matrix over IF; and a € IF}, that is, be an affine transformation.

In the remainder of this section we discuss some geometric aspects of the sequence constructed
in [17] and that given in Theorem 1.3 (we use the notation introduced before Lemma 3.3). If n > 3

2\ [0\ [0\ fO\ /LY /1) /1\ /1) (O
T=1]1 Ooftr1t1eriogjo11y424104,
2/ \1)J\O0J\1/\O/\1)\2/\2] \O

then the sequence 7"~! € F(C?) has no zero-sum subsequence of length n. This was first proved
in[17]foralloddn > 3.Thecasen = 3 was studied in [34, proof of Satz 4]. In that case, the underlying
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set supp(7') is a cap in AG(3, 3) and hence unique up to affine transformation (see Lemma 5.2(1) and
Lemma 5.4). A computer-based search produced six further square-free sequences 71, . . ., T with the
following properties: in the case n = 3, all underlying sets are representations of the cap in AG(3, 3)
and for all odd n > 3, sequences TI”*I, el Tg’*l have no zero-sum subsequence of length n:

i=loll1ll1|l2]fo]|f1]]o

(=)

L=|1]]10]]!1 ryjofjforfrylz2yyo],

Of these seven examples, the sequence T is distinguished by being the only one with the canonical
affine basis (containing 0, e;, e;, e3) and moreover is one of those sequences with a minimal sum of
entries.

We now come back to the example in C¥. Consider the support

S(n) = supp(T (n)) C (Z/nZ)*, where n > 3 is odd,

of the square-free sequence given in the proof of Theorem 1.3.

By Lemma 5.2(1), S(3) is a cap in AG(4, 3), and by Lemma 5.4, it is unique up to affine transfor-
mation. However, there are representations T of S(3) such that sequence S = T"~' (now considered
as a sequence in C}), with supp(T) = T, has a zero-sum subsequence of length n. For example,
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by [13] the set

0\ /2\ /O\ /2\ /1\ /0\ [/1\ /2\ /1 1
ol ol (2] (2] (o] |1 21 |1 1 1
of 1ol ol to| (2| 2| 2| 2| |t| |o}|’
o/ \o/ \o/ \o/ \o/ \o/ \o/ \o/ \o/ \u
0\ /2\ /0N /2\ /1\ /0\ /1\ /2\ /1 1
ol (o (2] (2] o] 1] [2] |1 1 1
20171200120 1210 (o 1o o] 1] |2
2] \2) \2/ \2/ \2/ \2/ \2/ \2/ \2/ \u

is a representation of the cap S(3). For every odd n > 3, the sequence S consisting of n — 1 copies
of any of the above points has the zero-sum subsequence S’ of length n, where

1 1 1 0 o) (n—3)/2 0 (n—5)/2
Ao a2 0
S=12011]1o]lo]]2 0

o/ \o/ \1/) 2/ \2 0

Actually, using a computer, we tried many representations of the cap S(3), but we did not find any
that have no zero sums of length n modulo other odd integers n and use the entries 0, 1, 2 only. As
the proof of Theorem 1.3 shows, the example can be thought of as two twisted copies of caps in
AG(3, 3) and two further points. The example we found may be one of the easiest, since it uses only
four entries, 0, 1, 2, 3, with only two 3s, and because of the symmetry discussed in the proof of
Theorem 1.3 and in what follows.

Finally, we study the automorphism group of the set S(n) (that is, the group of all affine transforma-
tions f: (Z/nZ)* — (Z/nZ)* with f(S(n)) = S(n)).Itis hoped that the study of the automorphism
group helps to construct maximal caps in AG(r, g) forr > 4.

The following automorphisms are easy to spot:

S(n) — S(n),
(a,b,c,d) — (b,a,c,d),
(a,b,c,d) — (a,b,d,c),
(a,b,c,d)— (3,3,2,2) — (a, b, c,d).

Combinations of these already generate up to eight points for one given point (a, b, c, d).
A complete computer-based search revealed that the full automorphism group of S(5) C IF‘S‘ and
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S(7) C IF‘; has 96 elements. The maps

gl : (avbs C, d) > (01 07 29 2)+(b9a7_ca _d)9
& :(a,b,c,d)— (3,3,2,2) — (a,b,c,d),
giabe,dyr— (f, f, f, f+2)—(d,c,b,d+c+Db),

@+b+c+d)(n+1)
2
84 : (a’bs C, d) [ (O’ 07 29 O)+(a7b7 _dvc)

with f =

fix the set S(n), as can be seen by explicit verification. The map g; as well as g, is of order 2 and
commutes with all other maps. The maps g3 and g4 are of orders 3 and 4, respectively. The maps g3
and g4 generate a group of order 24 without a centre and with more than two elements of order 3. Thus,
(g3, g4) 18 a group which is isomorphic to the symmetric group S4 [46, Lemma 4.3.4]. Therefore, the
automorphism group of S(n) must contain group C, & C, @ Sy as a subgroup. It is well known that
in the case n = 3, the full automorphism group has order 2880. For n € {5, 7}, a computer search
shows that G = C, @ C, @ Sy is the full automorphism group, and we do not expect any further
automorphisms for n > 7. Under the group action of (g, g2, g3, g4), the set S(n) is split into two
orbits, which are given in Lemma 5.5.

LEMMA 5.5 Let n > 3 be odd.

(1) The group G(n) = (g1, &2, &3, 84) is isomorphic to Cy & Cy ® S4. G(n) is a subgroup of the
automorphism group of S(n), and for n € {5, 7} it is the full automorphism group.

(2) Under the group action of G (n), the set S(n) is split into two orbits of lengths 12 (the first
12 below) and 8 (the last 8), respectively .

1 1 1 1 2\ [(2\ [2\ (2 1 3 0\ /2
1 1 1 1 2112112112113 1 2110
ojloj)12 211011012 2 1 1 1 1
0/ \2/ \0/ \2/ \0/ \2/ \0/ \2 1 1 1 1
1 1 1 1 2\ [(2\ [2\ (2
2112112112 1 1 1 1
0 1 1 2110 1 1 2
1 0/ \2 1 1 0/ \2 1

Proof. Point (1) has been outlined above and point (2) can be checked by a direct computation.
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