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HALF-FACTORIAL SUBSETS IN INFINITE ABELIAN GROUPS

ALFRED GEROLDINGER AND RÜDIGER GÖBEL

Communicated by Klaus Kaiser

Abstract. Let G be an abelian group. A subset S of G is said to be half-

factorial, if the block monoid over S is a half-factorial monoid. We show that

every Warfield group has a half-factorial subset which generates the group

in the monoid theoretical sense. In particular, this implies that for every

Warfield group G there exists a half-factorial Dedekind domain whose divisor

class group is isomorphic to G. We also provide torsion-free abelian groups

with prescribed endomorphism ring (for any ring with free additive group)

which have half-factorial generating sets but surely are not Warfield groups.

The corresponding question about the existence of non totally projective

abelian p-groups with a half-factorial set of generators remains open.

1. Introduction

By a monoid we always mean a multiplicative, commutative semigroup with
unit element satisfying the cancellation law. A monoid is said to be atomic,
if every element may be written as a product of atoms (irreducible elements).
The main examples we have in mind are the multiplicative monoids of noetherian
domains. An atomic monoid is said to be half-factorial, if for every element a ∈ H

the following holds: if a = u1 · . . . · uk and a = v1 · . . . · vl are two factorizations of
a into irreducibles, then k = l. Clearly, every factorial monoid is half-factorial.

Since the very beginning of the theory of non-unique factorization the property
of half-factoriality has been in the centre of interest. In 1960 L. Carlitz proved
that the ring of integers of an algebraic number field is half-factorial if and only
if the ideal class group has at most two elements. Motivated by a question of W.
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Narkiewicz, L. Skula and A. Zaks started the investigation of general half-factorial
Dedekind domains (cf. [Sku76] and [Zak76]). Since that time half-factoriality has
been studied in a great variety of atomic monoids and (not necessarily integrally
closed) noetherian domains (cf. [HK83], [AP97], [ACS94b], [ACS95], [PL00],
[KL00] and many others; for a recent survey cf. [CC00]).

Let H be a Krull monoid (cf. [HK98], §23 ) with divisor class group G and let
G0 ⊆ G denote the set of classes containing prime divisors. Then G0 generates
G (as a monoid) and the question whether or not H is half-factorial depends
only on G0 (cf. [Ger88], Proposition 1). We say that G0 is half-factorial, if the
corresponding Krull monoid H is half-factorial (cf. Definition 3.1). Conversely, for
every abelian group G and every generating subset G0 ⊆ G there exists a Krull
monoid H (even a Dedekind domain) whose divisor class group is isomorphic
to G such that G0 corresponds to the set of classes containing prime divisors
(These results go back to L. Claborn, A. Grams, L. Skula and F. Halter-Koch; see
Theorem 1.4 in [Gra74], Theorem 2.4 in [Sku76], Satz 5 in [HK90] and Theorem
23.7 in [HK98]; for a survey cf. [CG97]). Thus studying half-factoriality in Krull
monoids is exactly the same as studying pairs (G, G0) of abelian groups G and
generating subsets G0.

Let G be an abelian group and G0 ⊆ G a generating subset. If G0 = G, then the
result of L. Carlitz carries over immediately whence G is half-factorial if and only
if |G| ≤ 2. The situation is completely different, if G0 is a proper subset of G. It
is easy to see that every finite abelian group has a half-factorial generating subset.
Furthermore, half-factorial subsets play an important role in the investigation of
various arithmetical properties in (not necessarily half-factorial) Krull monoids
(cf. [Ger90], [GG98], [GG00]). However, up to now only little is known about
their structure or about their maximal possible size.

Half-factorial subsets (and other arithmetical properties) in infinite abelian
groups have been studied in [ACS94c] and [ACS94a]. The question, whether
every infinite abelian group has a half-factorial generating set, was first tackled
by D. Michel and J.L. Steffan (see [MS86]) and is still open. The existence of half-
factorial generating sets G0 is in sharp contrast to a result of F. Kainrath, who
showed that, if G0 = G is an infinite abelian group, then every finite set L ⊆ N≥2

appears as a set of lengths (see [Kai99]). We continue the investigation of half-
factorial subsets in infinite abelian groups. As a main result we show that every
Warfield group has a half-factorial generating set (Theorem 5.1). In particular,
all countable abelian groups have a half-factorial generating set. Moreover, we
will provide examples of groups with half-factorial generating sets which are not
Warfield groups (cf. the Remark after Corollary 5.4).



HALF-FACTORIAL SUBSETS 843

2. Preliminaries

Our terminology in factorization theory is consistent with the one used in the
survey articles in [And97] and concerning group theory we refer to the books of
L. Fuchs and P. Loth ([Fuc70], [Fuc73] and [Lot98]). For convenience and to fix
notations we briefly recall some central notions.

Let N denote the positive integers, N0 = N ∪ {0}, P ⊂ N the set of prime
numbers and for a, b ∈ Z we set [a, b] = {m ∈ Z | a ≤ m ≤ b}.

Throughout, a monoid is a commutative, cancellative semigroup with unit
element. Let H be a (multiplicatively written) monoid with unit element 1 ∈ H.
We denote by H× the invertible elements of H and say that H is reduced, if
H× = {1}. Let A(H) denote the atoms (irreducible elements) of H, and H is
said to be atomic, if every a ∈ H \H× allows a factorization

a = u1 · . . . · uk

with atoms u1, . . . , uk ∈ A(H). In this case k is called the length of the factoriza-
tion and

LH(a) = L(a) = {k ∈ N | a has a factorization of length k} ⊆ N

denotes the set of lengths of a. For convenience we set L(a) = {0} for all a ∈ H×.
An atomic monoid H is said to be

• factorial, if every irreducible element is prime (equivalently, every element
has a factorization, which is unique up to associates and up to the order
of factors),

• half-factorial, if |L(a)| = 1 for every a ∈ H.

Clearly, every factorial monoid is half-factorial.
Let G be an abelian group and ∅ 6= G0 ⊆ G a subset. We set −G0 = {−g | g ∈

G0} and denote by

[G0] =

{

∑

e∈E

mege | me ∈ N, ge ∈ G0, E a finite set

}

⊆ G

the submonoid generated by G0, and we say that G0 is a generating set of G, if
[G0] = G. As usual let 〈G0〉 denote the subgroup generated by G. Obviously, if
G is a torsion group, then [G0] = 〈G0〉.

G0 is called independent, if 0 /∈ G0 and given distinct elements g1, . . . , gl ∈ G0

and integers m1, . . . , ml ∈ Z, then
∑l

i=1 migi = 0 implies that m1g1 = · · · =
mlgl = 0. Clearly, G0 is independent if and only if every finite subset of G0 is
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independent. Any equation of the form

m1g1 + · · ·+ mlgl = 0

where g1, . . . , gl ∈ G and m1, . . . , ml ∈ N is called a minimal relation, if
∑l

i=1 nigi

6= 0 for all 0 ≤ ni ≤ mi with 0 <
∑l

i=1 ni <
∑l

i=1 mi.
We denote by F(G0) the free abelian monoid with basis G0. The elements

S ∈ F(G0) have a unique representation of the form

S =
∏

g∈G0

gvg(S)

with vg(S) ∈ N0 and vg(S) = 0 for all but finitely many g ∈ G0.
Let S =

∏

g∈G0
gvg(S) =

∏l
i=1 gi ∈ F(G0). We denote by

|S| =
∑

g∈G0
vg(S) = l ∈ N0 the length of S,

supp(S) = {g ∈ G0 | vg(S) > 0} = {gi | i ∈ [1, l]} ⊆ G0 the support of S,
k(S) =

∑

g∈G0

vg(S)
ord(g) =

∑l
i=1

1
ord(gi)

∈ Q the cross number of S

and by
σ(S) =

∑

g∈G0
vg(S)g =

∑l
i=1 gi ∈ G the sum of S.

Clearly, the sum gives rise to a monoid homomorphism σ : F(G0) → G and

B(G0) = ker(σ)

is the block monoid over G0. The block monoid is a reduced atomic monoid
with unit element 1 =

∏

g∈G0
g0 and we set A(G0) = A(B(G0)). An element

S =
∏l

i=1 gmi
i ∈ F(G0) is an atom in B(G0) if and only if σ(S) =

∑l
i=1 migi = 0

and this is a minimal relation in G. The relevance of block monoids stems from
its relationship to Krull monoids: Let H be a Krull monoid with divisor class
group G and let G0 denote the set of classes containing prime divisors. Then
H is a half-factorial monoid if and only if B(G0) is half-factorial (cf. [Ger88],
Proposition 1 or [CG97]).

3. Half-factorial subsets

Definition 3.1. A non-empty subset G0 of an abelian group G is said to be
factorial (resp. half-factorial), if the block monoid B(G0) is factorial (resp. half-
factorial).

We start with some simple observations.

Lemma 3.2. Let G be an abelian group.

(1) For every g ∈ G the set {g} is factorial.
(2) For a non-empty subset G0 ⊆ G the following are equivalent:
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(a) G0 is a factorial (resp. half-factorial) subset of G.
(b) G0 ∪ {0} is factorial (resp . half-factorial) in G.
(c) Every finite subset of G0 is factorial (resp. half-factorial) in G.

(3) There exists a maximal (with respect to set-theoretical inclusion) half-
factorial subset.

Proof. 1. If g has infinite order, then B({g}) = {1} is the trivial monoid. If g

has order n ∈ N, then A({g}) = {gn}, whence B({g}) is a reduced monoid having
exactly one prime element.

2. The sequence 0 ∈ F(G) is a prime element in B(G) whence B(G0 ∪ {0}) =
B({0})×B(G0 \ {0}) whence a) and b) are equivalent. G0 is half-factorial if and
only if |L(B)| = 1 for every B ∈ B(G0) which holds if and only if B(supp(B))
is half-factorial for every B ∈ B(G0). An analogue statement holds for factorial
subsets whence a) and c) are equivalent.

3. Let Ω = {G0 ⊆ G | G0 is half-factorial}. Then 1. shows that Ω 6= ∅ . If
(Gi)i∈I is a chain in Ω, then

⋃

i∈I Gi ∈ Ω by 2. Thus Ω has a maximal element
by Zorn’s Lemma. £

Maximal half-factorial subsets G0 do not necessarily generate the group G (see
the Remark at the end of section 4). For the special case of torsion groups the
following result was first proved in [GG98].

Proposition 3.3. Let G be an abelian group and G0 ⊆ G a half-factorial subset.
Let g0 ∈ G0 and g ∈ G \ 〈G0〉 such that pg = g0 for some p ∈ P. Then G0 ∪ {g}
is half-factorial.

Proof. Let B ∈ B(G0 ∪ {g}) be given. We proceed in two steps.
First we show that vg(B) is a multiple of p. Suppose for contradiction that

B = gk ·
∏s

i=1 gki
i where g1, . . . , gs ∈ G0, k ∈ Z \ {0} and p, k relatively prime. So

there are x, m ∈ Z such that 1 = mp+ kx, hence g = mpg + kxg. From σ(B) = 0
it follows kg +

∑s
i=1 kigi = 0, thus kxg +

∑s
i=1 xkigi = 0. This implies that

g = mpg + kxg = mg0 −
s

∑

i=1

xkigi ∈ 〈G0〉,

a contradiction.
In the second step we verify that |L(B)| = 1. To do so we proceed by induction

on vg(B). If vg(B) = 0, then B ∈ B(G0) and the assertion follows. If vg(B) > 0,
then B′ = (pg) · g−p · B ∈ B(G0) (by the first step) and by induction hypothesis
we have |L(B′)| = 1. For every factorization U1 · . . . · Uk of B, say vg(U1) ≥ p,
there is some factorization U ′

1 · U2 · . . . · Uk of B′ with the same length, where
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U ′
1 = (pg) · g−p · U1. Thus we infer that that L(B) ⊆ L(B′) whence the assertion

follows. £

For torsion groups there is a simple but useful characterization of half-factorial
subsets going back to L. Skula and J. Sliwa. For convenience we recall its short
proof.

Lemma 3.4. Let G be a torsion group and G0 ⊆ G a subset. Then the following
statements are equivalent:

(1) G0 is half-factorial.
(2) k(S) = 1 for every S ∈ A(G0).
(3) For every minimal relation m1g1 + · · · + mlgl = 0 with g1, . . . , gl ∈ G0

and m1, . . . , ml ∈ N we have
∑l

i=1
mi

ord(gi)
= 1.

Proof. 2. and 3. are equivalent by definition whence it remains to show the
equivalence of 1. and 2.

If k(S) = 1 for all S ∈ A(G0) and U1 ·. . .·Us = V1 ·. . .·Vt where Ui, Vj ∈ A(G0),
then

s = k(U1 · . . . · Us) = k(V1 · . . . · Vt) = t

whence B(G0) is half-factorial.
Let S =

∏l
i=1 gi ∈ A(G0) with k(S) 6= 1. For every i ∈ [1, l] we set Ui =

g
ord(gi)
i ∈ A(G0) and mi = m

ord(gi)
where m = lcm{ord(g1), . . . , ord(gl)}. Then it

follows that
Sm = Um1

1 · . . . · Uml

l

and since k(S) =
∑l

i=1
mi

m 6= 1, these are factorizations of two different lengths.
£

Lemma 3.5. Let G be an abelian group.
(1) Suppose that G = ⊕i∈IGi and for every i ∈ I let Hi ⊆ Gi \ {0}. Then

B(
⋃

i∈I Hi) =
∐

i∈I B(Hi). In particular,
⋃

i∈I Hi is factorial (resp. half-
factorial) if and only if all Hi are factorial (resp. half-factorial).

(2) Every independent subset is factorial in G.

Proof. 1. Since for each two distinct i, j ∈ I we have 〈Hi〉 ∩ 〈Hj〉 = {0}, it
follows that A(

⋃

i∈I Hi) =
⋃

i∈I A(Hi) and hence B(
⋃

i∈I Hi) =
∐

i∈I B(Hi).
2. If X ⊆ G is independent, Then 〈X〉 = ⊕x∈X〈x〉. Hence the assertion follows

from 1. and from Lemma 3.2.1. £

Proposition 3.6. Let G = ⊕x∈XZx be a free abelian group with basis X and let
Y ⊆ [X].
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(1) If 〈Y 〉 = G, then [Y ∪ (−X)] = G.
(2) Y ∪ (−X) is factorial in G.

Proof. 1. is obvious. To verify 2., note that every irreducible block B ∈ B(Y ∪
(−X)) has the form

B = y ·
∏

x∈E

(−x)mx

for some y =
∑

x∈E mxx ∈ Y where E ⊆ X is finite and all mx ∈ N. Thus every
B ∈ B(Y ∪ (−X)) has a unique factorization into irreducible blocks. £

Half-factorial subsets of Z are studied in [ACS94a] and [ACS94c]. A special
case of the following result goes back to D. Michel and J. Steffan (cf. [MS86],
Proposition 7).

Proposition 3.7. Let G be an abelian group, X ⊂ G a maximal independent
subset of elements of infinite order and ϕ : G → G/〈X〉 = H the canonical
epimorphism. Let H0 = {hi | i ∈ I} ⊆ H be a subset and for every i ∈ I let
gi ∈ G such that ϕ(gi) = hi and nigi ∈ [X] where ni = ordH(hi) ∈ N. Then
G0 = {gi, x,−x | i ∈ I, x ∈ X} is a generating set of G if and only if H0 is a
generating set of H and we have

(1) B(G0) = B(X ∪ (−X))× B({gi,−x | i ∈ I, x ∈ X}).
(2)

f : B({gi,−x | i ∈ I, x ∈ X}) → B(H0)
∏

j∈J

g
kj

j ·
∏

x∈E2

(−x)mx 7→
∏

j∈J

h
kj

j

is an isomorphism. In particular, G0 is (half-)factorial if and only if H0

is (half-)factorial.

Proof. By construction, G0 generates G if and only if H0 generates H. We
proceed in several steps.

1. To study A(G0), let

U =
∏

j∈E

g
kj

j

∏

x∈E1

xlx
∏

x∈E2

(−x)mx ∈ A(G0)

be given with finite subsets E ⊆ I, E1, E2 ⊆ X and positive integers kj , lx, mx.
Then

(∗)
∑

j∈E

kjgj +
∑

x∈E1

lxx =
∑

x∈E2

mxx
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Case 1: E1 6= ∅. Let y ∈ E1. Multiplying (∗) with n = lcm{nj | j ∈ E} we obtain
∑

j∈E

kj(ngj) +
∑

x∈E1

(lxn)x =
∑

x∈E2

(mxn)x.

Since all summands on both sides of the equation are in [X], it follows that my > 0
whence U = y · (−y).
Case 2: E1 = ∅. We assert that

V =
∏

j∈E

ϕ(gj)kj ∈ A(H0).

Since |U | > 0 and |E1| = 0, it follows that |E| > 0 and (∗) implies that σ(V ) = 0.
For every j ∈ E let k′j ∈ [0, kj ] such that

∑

j∈E

k′j > 0 and
∑

j∈E

k′jϕ(gj) = 0 ∈ H.

Hence there exist a finite subset E′ ⊆ X and integers m′
x ∈ Z such that

(∗∗)
∑

j∈E

k′jgj =
∑

x∈E′

m′
xx

and for n = lcm{nj | j ∈ E} we obtain
∑

x∈E′

(nm′
x)x =

∑

j∈E

k′j(ngj) ∈ [X]

∑

x∈E2

(nmx)x =
∑

j∈E

kj(ngj) ∈ [X].

These equations imply that E′ ⊆ E2 and m′
x ∈ [0, mx] for every x ∈ E′. Since U

is irreducible, (∗∗) implies that k′j = kj for every j ∈ E whence V is irreducible.
2. Let B ∈ B(G0) be given. We have to show that B can be written uniquely in

the form B = U · V where U ∈ B(X ∪ (−X)) and V ∈ B({gi,−x | i ∈ I, x ∈ X}).
Consider a factorization

B = U1 · . . . · Uρ · V1 · . . . · Vψ

where Ui, Vj ∈ A(G0),
∑

x∈X vx(Ui) > 0 for every i ∈ [1, ρ] and Vj = SjTj where
1 6= Sj ∈ F({gi | i ∈ I}) and Tj ∈ F({−x | x ∈ X}). The above considerations
imply that |Ui| = 2 for every i ∈ [1, ρ] whence

U = U1 · . . . · Uρ =
∏

x∈X

(−x · x)vx(B)

is uniquely determined. Thus V = U−1 · B is uniquely determined and V =
V1 · . . . · Vψ ∈ B({gi,−x | i ∈ I, x ∈ X}).
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3. Obviously, f is a homomorphism. To show that f is bijective, let C =
∏

j∈E h
kj

j ∈ B(H0) be given. We verify that there is exactly one B ∈ B({gi,−x |
i ∈ I, x ∈ X}) with f(B) = C. Since

ϕ(
∑

j∈E

kjgj) =
∑

j∈E

kjhj = σ(C) = 0,

it follows that
∑

j∈E kjgj ∈ 〈X〉. If n = lcm{nj | j ∈ E}, then

n
∑

j∈E

kjgj =
∑

j∈E

kj
n

nj
(njgj) ∈ [X]

whence
∑

j∈E kjgj ∈ [X]. Thus there exist a uniquely determined finite subset
F ⊆ X and uniquely determined positive integers (mx)x∈F such that

∑

j∈E kjgj =
∑

x∈F mxx whence

B =
∏

j∈E

g
kj

j ·
∏

x∈F

(−x)mx

is the unique block with f(B) = C. £

4. Simple subsets in modules over discrete valuation domains

Throughout this section, let R be a discrete valuation domain over Z, with
prime element π such that πR ∩ Z = pZ for some prime p ∈ P and residue
class field k = R/πR. Let vp : Q → Z ∪ {∞} the p-adic valuation. Then
R ∩Q = Z(p) = {x ∈ Q | vp(x) ≥ 0} denotes the corresponding valuation ring, p

is a prime element and the residue class field is isomorphic to Fp.
A group G is called p-local, if for all q ∈ P\{p} multiplication with q is a group

automorphism. Any p-local group can be given the structure of a Z(p)-module
in a unique way and the Z(p)-submodules are the p-local subgroups. Conversely,
note that Z(p)/Z is a torsion divisible group with no p-torsion, whence, if G has a
Z(p)-module structure, then all of its torsion is p-torsion. If G and H are p-local,
then

HomZ(G, H) = HomZ(p)(G, H).

Clearly, every R-module is a Z(p)-module and the main cases of interest are R =
Z(p) or R the p-adic integers (for details cf. [War77] §2).

Let M be an R-module. For two elements g, h ∈ M we set

g ≤ h if πkh = g for some k ∈ N0.

This defines a natural partial order on M (for the antisymmetry, note that if
πkh = g and πlg = h with k, l ∈ N, then (1 − πk+l)g = 0 whence g = h = 0
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because 1− πk+l ∈ R×). For a subset Y ⊆ G we denote by

Yg = {y ∈ Y | g ≤ y}

the tree over g in Y and by

Y = {z ∈ M | there is some y ∈ Y with z ≤ y}

the π-closure of Y . We say that Y is π-closed if Y = Y .

Definition 4.1. Let M be an R-module. We say that a subset Y ⊆ M is R-
simple, if Y is π-closed and for every finite non-empty subset E ⊆ Y \ {0} and
every maximal element e0 ∈ E there exists some homomorphism ϕ : R〈E〉 → k

such that ϕ(e0) 6= 0 and ϕ(e) = 0 for all e ∈ E \ {e0}.

Proposition 4.2. Let M be a Z(p)-module for some prime p ∈ P and G0 ⊆ M a
Z(p)-simple subset.

(1) For every B ∈ B(G0) and every maximal element g ∈ supp(B) the multi-
plicity vg(B) is a multiple of p.

(2) The support of every irreducible block in G0 lies in a tree and G0 is half-
factorial.

Proof. 1. Suppose B =
∏l

i=1 gmi
i ∈ B(G0), E = supp(B) = {g1, . . . , gl} and g1

is a maximal element in E. Then there is some homomorphism ϕ : R〈E〉 → Fp

such that ord(ϕ(g1)) = p and ϕ(gi) = 0 for every 2 ≤ i ≤ l. Since 0 = σ(B) =
∑l

i=1 migi, it follows that 0 = ϕ(σ(B)) = m1ϕ(g1) whence ord(ϕ(g1)) = p divides
m1.

2. We have to show that supp(B) lies in a tree for every B ∈ A(G0) and that
|L(B)| = 1 for every B ∈ B(G0). For both assertions we proceed by induction on
|B|.

If |B| = 1, then B = 0 whence B is prime and L(B) = {1}. If 1 < |B| ≤ p,
then 1. implies that B = gp for some g ∈ G0 whence L(B) = {1}. In all these
cases B is irreducible and its support lies in a tree.

Let B =
∏l

i=1 gmi
i ∈ B(G0) with |B| > p. If l = 1, then ord(g) < ∞, m1 is a

multiple of ord(g1) and L(B) = { m1
ord(g1)

}. Suppose that l > 1. After a suitable
renumeration we may suppose that g1 is a maximal element of supp(B) whence
p | m1. Since G0 is p-closed it follows that g0 = pg1 ∈ G0. We consider the block
B′ = g0 · gm1−p

1 ·
∏l

i=2 gmi
i . Clearly |B′| < |B|, whence by induction hypothesis

both assertions hold for B′.
If B is irreducible, then B′ is irreducible and if supp(B′) lies in a tree over

some element g, then supp(B) lies in the tree over g.
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Suppose that B is not irreducible. We show that for every factorization z of B

there exists some factorization z′ of B′ with |z| = |z′| which implies the assertion.
Let z = U1 · . . . ·Uk be a factorization of B. Without restriction we may suppose
that g1 | U1. Then g1 is maximal in supp(U1) whence 1. implies that p | vg1(U1).
Thus U ′

1 = g0 · g−p
1 ·U1 ∈ A(G0) and z′ = U ′

1 ·U2 · . . . ·Uk is a factorization of B′

with k = |z′| = |z|. £

Let M be an R-module. Following R. Warfield ([War81], p. 329) we say that
M is simply presented, if it has a presentation of the following form: let F be
a free R-module with basis X, L ⊆ F a subset and Φ : F → M a surjective
homomorphism with ker(Φ) = R〈L〉 such that Y = Φ(X) satisfies the following
properties:

• R〈Y 〉 = M

• 0 /∈ Y

• if y ∈ Y and πy 6= 0, then πy ∈ Y

• for every y ∈ Y we have y /∈ R〈{z ∈ Y | πnz 6= y for all n ∈ N0}〉.

Every subset Y ⊆ G satisfying the above properties is called a T-basis of M .
In [Hal77] simple presentations are exactly those representations having ”rela-
tional complexity” two and it is proved that every group has a presentation with
relational complexity at most three.

Theorem 4.3. Let M be a simply presented R-module and Y ⊆ M a T-basis.
Then Y is R-simple and hence half-factorial.

Proof. The set Y is π-closed by definition. Let E ⊆ Y be finite and y ∈ E

maximal. Let Z = {z ∈ Y | πnz 6= y for all n ∈ N0} whence E \ {y} ⊆ Z.
By the proof of Lemma 2.1 in [War81] there exists an R-module homomorphism
σ : M → k with σ(y) 6= 0 and σ(Z) = {0}. Thus Y is R-simple (and hence Z(p)-
simple) in the sense of Definition 4.1, since σ |

R〈E〉 has the required property.
Proposition 4.2 implies that Y is half-factorial. £

Remark. 1. For every n ∈ N the set Y = {pi + pnZ | i ∈ [1, n − 1]} is a T-basis
of Z/pnZ. The set Y = { 1

pi + Z | i ∈ N} is a T-basis of Z(p∞) = { a
pi + Z | a ∈

Z, i ∈ N} ⊆ Q/Z. T-bases of generalized Prüfer groups are given in [Fuc73], §83,
Example 3.

2. Let G = Z/2Z⊕Z/4Z = 〈e1〉⊕〈e2〉 with ord(e1) = 2 and ord(e2) = 4. Then
G0 = {0, e1, e1 + 2e2} is a 2-closed, Z(2)-simple subset of G and it is a maximal
half-factorial subset. However, G0 does not generate G.
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3. Let G = Z/nZ ⊕ Z/nZ = 〈e1〉 ⊕ 〈e2〉 with ord(e1) = ord(e2) = n for some
n ∈ N with n ≥ 3. Then G0 = {ie1 + e2 | i ∈ [1, n]} is a half-factorial subset
which is not simple (cf. also Theorem 6.3 and Corollary 6.5 in [GG98]).

4. There is also a definition of simple presentations in the global case (cf.
[Lot98], Definition 1.19). However, if g ∈ G with ord(g) = pkm for some prime
p, positive integers k, m with p - m and m ≥ 3, then the p-closed set G0 = {pig |
i ∈ N0} is not half-factorial.

To verify this, we set h = pkg. Then ord(h) = m and multiplication with p is
an automorphism on 〈h〉. Thus 〈h〉 ⊆ G0, U = (−h) · h is an irreducible block in
G0 with k(U) = 2

m 6= 1 whence G0 is not half-factorial by Lemma 3.4.

5. Abelian groups having half-factorial generating sets

We recall some basic facts on Warfield groups. All of them may be found in
the book of P. Loth [Lot98].

An abelian group G is called a Warfield group, if there exists a subset X ⊆ G

such that the following conditions are satisfied:
(1) X ⊆ G is a maximal independent subset of elements of infinite order.
(2) G/〈X〉 is a torsion group whose p-subgroups are simply presented as Z(p)-

modules.
(3) 〈X〉 is a nice valuated coproduct in G.

Indeed, in Theorem 3.83 in [Lot98] there are given 10 equivalent characterization
for Warfield groups and the above definition coincides with condition 3 (cf. also
Definition 3.25). The class of Warfield groups is closed under arbitrary direct
sums and summands. Every Warfield group is balanced projective. A torsion-
free group is balanced projective if and only if it is completely decomposable (i.e.,
a direct sum of groups of rank one). A torsion p-group is balanced projective
if and only if it is a direct sum of a divisible p-group (which is a direct sum of
groups isomorphic to Z(p∞)) and of a totally projective p-group (these are defined
in [Fuc73] and include generalized Prüfer groups and countable reduced p-groups)
(cf. [War76]).

Theorem 5.1. Every Warfield group has a half-factorial generating set.

Proof. Let G be a Warfield group, X ⊆ G as in the above definition and
G/〈X〉 = H = ⊕p∈PHp. Let p ∈ P, R = Z(p) and consider Hp as an R-module.
If Y ⊆ Hp is a T-basis of Hp, then Y is half-factorial by Theorem 4.3, and since
R〈Y 〉 = 〈Y 〉 = [Y ], it follows that Y is a half-factorial generating set of Hp. By
Lemma 3.5 H has a half-factorial generating set whence by Proposition 3.7.2 G

has a half-factorial generating set. £
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Corollary 5.2. Let G be an abelian group and X ⊆ G a maximal independent
subset of elements of infinite order such that G/〈X〉 is a Warfield group. Then
G has a half-factorial generating set.

Proof. Let X ⊆ G be a maximal independent subset of elements of infinite
order, F the free abelian group with basis X and ϕ : G → H = G/F the canonical
epimorphism. Since H is a Warfield group, it has a half-factorial generating subset
by Theorem 5.1. Since X is maximal, H is a torsion group whence G has a half-
factorial generating set by Proposition 3.7. £

Theorem 5.3. Let G be an abelian group and F ⊆ G a free abelian subgroup such
that G/F is either countable or divisible. Then G has a half-factorial generating
set.

Proof. Let X denote a basis of F . By Zorn’s Lemma we extend X to a maximal
independent subset X ′ of elements (of infinite order). If G/〈X〉 is countable,
then G/〈X ′〉 is a countable group whence a Warfield group and the assertion
follows from Corollary 5.2. If G/〈X〉 is divisible, then G/〈X ′〉 is divisible (as
an epimorphic image of a divisible group) whence it is Warfield group and the
assertion follows from Proposition 3.7 as well as from Corollary 5.2. £

We want to apply Theorem 5.3 to topological groups and to do so we repeat
some basic facts (for details we refer to [CG85], [GM89], [FS01], Chapter 8 and
[Mat97], §8 ). Let R be a commutative ring with identity and characteristic zero,
S ⊆ R \ {0} a multiplicative subsemigroup consisting of non-zero divisors, 1 ∈ S

and M an R-module. Then M is called S-divisible if sM = M for every s ∈ S

and a submodule N ⊆ M is called S-pure if sM ∩ N = sN for every s ∈ S.
The S-topology on M is defined by taking {x + sM | s ∈ S} as a basis of
neighbourhoods for every x ∈ M . Then addition in M and (equipping R with the
discrete topology) scalar multiplication are continuous whence M is a topological
R-module. If R is noetherian and {0} 6= I C R an ideal, then the I-adic topology
(where (InM)n≥0 is a basis of neighbourhoods of 0) coincides with the S-topology
where S = (I \ {0})∪ {1} (We provide the short argument: i) let s ∈ S be given;
then sR ⊆ I ⊆

√
I whence there is some n ∈ N with In ⊆ sR whence InM ⊆ sM .

ii) let n ∈ N be given; if s ∈ I then snR ⊆ In whence snM ⊆ InM).
Let T ⊆ R such that for every t ∈ T multiplication with t is an automorphism

on M . If ST denotes the multiplicative subsemigroup generated by S and T , then
the S-topology coincides with the ST -topology and M is S-divisible if and only if
M is ST -divisible. In particular, if M is a Z(p)-module, then the p-adic topology
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(i.e., the S-topology with S = {pk | k ∈ N}) coincides with the Z-adic topology
(i.e., the S-topology with S = N).

The S-topology is Hausdorff if and only if
⋂

s∈S sM = {0}. Note that, if M

is a free Z-module, then the S-topology is Hausdorff. From now on we suppose
that the S-topology is Hausdorff and that S is countable.

Let ̂M denote the completion of M in the S-topology. Then the completion
topology on ̂M coincides with the S-topology on ̂M and M is dense and S-pure
in ̂M .

Let N ⊆ M be a submodule. If N ⊆ M is dense in the S-topology, then M/N

is S-divisible (here is the argument: let x + N ∈ M/N and s ∈ S be given; since
N is S-dense, there is some y ∈ N with x − y ∈ sM , say x − y = sz whence
s(z+N) = sz+N = x−y+N = x+N). If N ⊆ M is S-pure, then, by definition
of purity, the S-topology on N (having (sN)s∈S as a basis of neighbourhoods of
0) coincides with the induced S-topology of M ( having (sM ∩N)s∈S as a basis
of neighbourhoods of 0).

Let G be any R-module between M and ̂M such that G ⊆ ̂M is S-pure. Then
M is dense in G in the S-topology whence G/M is S-divisible.

Corollary 5.4. Let R be a commutative ring with identity and characteristic
zero, S ⊆ (R \ {0}, ·) as above such that nR ∩ S 6= ∅ for all n ∈ N and G a
Hausdorff R-module. If G has a submodule M , which is a free abelian group and
dense in the S-topology, then G has a half-factorial generating set.

Proof. Let M ⊆ G be a submodule having the above properties. Since M ⊆ G

is dense, the factor module G/M is S-divisible. If n ∈ N and a ∈ R such that
na = s ∈ S, then

n(G/M) ⊆ G/M = s(G/M) = n(aG/M) ⊆ n(G/M)

whence G/M is divisible as an abelian group. Thus the assertion follows from
Theorem 5.3. £

Note that, if R is an integral domain, {0} 6= I C R an ideal and S = (I \{0})∪
{1}, then

nR ∩ S = nR ∩ ((I \ {0}) ∪ {1}) ⊇ (nR) · I \ {0} 6= ∅
for every n ∈ N. In the following remark we discuss some groups to which
Corollary 5.4 applies. All of them are torsion-free.

Remark. 1. Consider Z together with the Z-adic topology and let ̂Z denote its
completion. Since Z is dense in ̂Z, it follows that ̂Z has a half-factorial generating
set.
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2. Let R be a ring which is a free Z-module, I C R an ideal and G = ̂R the
I-adic completion. Then G has a half-factorial generating set. We would like to
point out two special situations.

If A is a ring which is a free Z-module, then R = A[X1, . . . , Xn] is a free Z-
module and if I = R〈X1, . . . , Xn〉, then ̂R = A[[X1, . . . , Xn]] is the power series
ring.

If K is an algebraic number field with ring of integers o and {0} 6= p a prime
ideal. Then R = o is a free Z-module and ̂R are the p-adic integers.

3. There are two standard construction principles for pathological abelian
groups G, which satisfy the assumption of Corollary 5.4. They are based on
A.L.S. Corner, M. Dugas, R. Göbel and S. Shelah,

Let R be a ring which is a free Z-module and λ a cardinal number. Then there
always exists a torsion-free abelian group G and some multiplicatively closed
subset S ⊆ R \ {0} such that

• M = ⊕τ∈T eτR ⊆ G and G ⊆ ̂M is S-pure, whence M is a free abelian
group, dense in the S-topology and by Corollary 5.4 G has a half-factorial
generating set.

• End(G) ∼= R.

provided that one of the following conditions holds:

(1) |R| < 2ℵ0 and 2rk(R) ≤ λ ≤ 2ℵ0 see [Cor63] and [GM89].
(2) |R| · 2ℵ0 ≤ λ = λℵ0 see [CG85].
(3) |R| = ℵ0 and λ = ℵ1 see [GS98].

In 2) and 3) G may be assumed to be ℵ1-free i.e., all its countable subgroups are
free. Surely these examples are not Warfield groups, so we do have a large supply
of torsion-free groups with half-factorial systems of generators besides all Warfield
groups. However the question whether every abelian group has a half-factorial
generating set remains open. In particular, we do not know whether this is true
for the torsion-completion B of B = ⊕n≥1Z/pnZ. We close with an observation
stating that the case of general abelian groups might be reduced to the case of
reduced uncountable, unbounded p-groups.

Remark. If every reduced unbounded uncountable p-group has a half-factorial
generating set, then every abelian group has a half-factorial generating set.

Proof. First we show that all p-groups have a half-factorial generating set. Let
G be a p-group. Then G = D ⊕ C for some divisible group D and some reduced
group C. By Theorem 5.1 D has a half-factorial generating set. If C is bounded
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or countable it is Warfield. If C is unbounded and uncountable, it has a half-
factorial generating set by assumption. Thus G = D ⊕ C has a half-factorial
generating set by Lemma 3.5.

If G is a torsion group, it is a direct sum of its p-components whence it has a
half-factorial generating set by Lemma 3.5.

Let G be an abelian group and X ⊆ G a maximal independent subset of
elements with infinite order. Then F = 〈X〉 is a free abelian group and H = G/F

a torsion group. Since H has a half-factorial generating set, Proposition 3.7
implies that G has a half-factorial generating set. £
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