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HALF-FACTORIAL SUBSETS IN INFINITE ABELIAN GROUPS

ALFRED GEROLDINGER AND RUDIGER GOBEL

Communicated by Klaus Kaiser

ABSTRACT. Let G be an abelian group. A subset S of G is said to be half-
factorial, if the block monoid over S is a half-factorial monoid. We show that
every Warfield group has a half-factorial subset which generates the group
in the monoid theoretical sense. In particular, this implies that for every
Warfield group G there exists a half-factorial Dedekind domain whose divisor
class group is isomorphic to G. We also provide torsion-free abelian groups
with prescribed endomorphism ring (for any ring with free additive group)
which have half-factorial generating sets but surely are not Warfield groups.
The corresponding question about the existence of non totally projective
abelian p-groups with a half-factorial set of generators remains open.

1. INTRODUCTION

By a monoid we always mean a multiplicative, commutative semigroup with
unit element satisfying the cancellation law. A monoid is said to be atomic,
if every element may be written as a product of atoms (irreducible elements).
The main examples we have in mind are the multiplicative monoids of noetherian
domains. An atomic monoid is said to be half-factorial, if for every element a € H
the following holds: if a = u;y -... -ug and a = vy -...-v; are two factorizations of
a into irreducibles, then k = [. Clearly, every factorial monoid is half-factorial.

Since the very beginning of the theory of non-unique factorization the property
of half-factoriality has been in the centre of interest. In 1960 L. Carlitz proved
that the ring of integers of an algebraic number field is half-factorial if and only
if the ideal class group has at most two elements. Motivated by a question of W.
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Narkiewicz, L. Skula and A. Zaks started the investigation of general half-factorial
Dedekind domains (cf. [Sku76] and [Zak76]). Since that time half-factoriality has
been studied in a great variety of atomic monoids and (not necessarily integrally
closed) noetherian domains (cf. [HKS83], [AP97], [ACS94b], [ACS95], [PL00],
[KLO0O] and many others; for a recent survey cf. [CC00]).

Let H be a Krull monoid (cf. [HK98], §23 ) with divisor class group G and let
Gy C G denote the set of classes containing prime divisors. Then G generates
G (as a monoid) and the question whether or not H is half-factorial depends
only on Gy (cf. [Ger88], Proposition 1). We say that Gy is half-factorial, if the
corresponding Krull monoid H is half-factorial (cf. Definition 3.1). Conversely, for
every abelian group G and every generating subset Gy C G there exists a Krull
monoid H (even a Dedekind domain) whose divisor class group is isomorphic
to G such that Gy corresponds to the set of classes containing prime divisors
(These results go back to L. Claborn, A. Grams, L. Skula and F. Halter-Koch; see
Theorem 1.4 in [Gra74], Theorem 2.4 in [Sku76], Satz 5 in [HK90] and Theorem
23.7 in [HK98]; for a survey cf. [CG97]). Thus studying half-factoriality in Krull
monoids is exactly the same as studying pairs (G, Gy) of abelian groups G and
generating subsets Gy.

Let G be an abelian group and Gy C G a generating subset. If Gy = G, then the
result of L. Carlitz carries over immediately whence G is half-factorial if and only
if |G| < 2. The situation is completely different, if Gg is a proper subset of G. It
is easy to see that every finite abelian group has a half-factorial generating subset.
Furthermore, half-factorial subsets play an important role in the investigation of
various arithmetical properties in (not necessarily half-factorial) Krull monoids
(cf. [Ger90], [GGI8], [GGO0]). However, up to now only little is known about
their structure or about their maximal possible size.

Half-factorial subsets (and other arithmetical properties) in infinite abelian
groups have been studied in [ACS94c] and [ACS94a]. The question, whether
every infinite abelian group has a half-factorial generating set, was first tackled
by D. Michel and J.L. Steffan (see [MS86]) and is still open. The existence of half-
factorial generating sets Gy is in sharp contrast to a result of F. Kainrath, who
showed that, if Gy = G is an infinite abelian group, then every finite set L C N>,
appears as a set of lengths (see [Kai99]). We continue the investigation of half-
factorial subsets in infinite abelian groups. As a main result we show that every
Warfield group has a half-factorial generating set (Theorem 5.1). In particular,
all countable abelian groups have a half-factorial generating set. Moreover, we
will provide examples of groups with half-factorial generating sets which are not
Warfield groups (cf. the Remark after Corollary 5.4).
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2. PRELIMINARIES

Our terminology in factorization theory is consistent with the one used in the
survey articles in [And97] and concerning group theory we refer to the books of
L. Fuchs and P. Loth ([Fuc70], [Fuc73] and [Lot98]). For convenience and to fix
notations we briefly recall some central notions.

Let N denote the positive integers, Ny = N U {0}, P C N the set of prime
numbers and for a,b € Z we set [a,b] = {m € Z | a < m < b}.

Throughout, a monoid is a commutative, cancellative semigroup with unit
element. Let H be a (multiplicatively written) monoid with unit element 1 € H.
We denote by H* the invertible elements of H and say that H is reduced, if
H* = {1}. Let A(H) denote the atoms (irreducible elements) of H, and H is
said to be atomic, if every a € H \ H* allows a factorization

a=1Uui-... Ug

with atoms uy,...,ur € A(H). In this case k is called the length of the factoriza-
tion and

Ly(a) =L(a) = {k € N|a has a factorization of length k} C N

denotes the set of lengths of a. For convenience we set L(a) = {0} for all a € H*.
An atomic monoid H is said to be

e factorial, if every irreducible element is prime (equivalently, every element
has a factorization, which is unique up to associates and up to the order
of factors),

e half-factorial, if |L(a)| = 1 for every a € H.

Clearly, every factorial monoid is half-factorial.
Let G be an abelian group and ) # Gy C G a subset. We set —Gg ={—¢g|g €
Go} and denote by

[Go] = {Zmege | me €N, g. € Gy, E a finite set} aye!

ecE

the submonoid generated by Gy, and we say that G is a generating set of G, if
[Go] = G. As usual let (Gp) denote the subgroup generated by G. Obviously, if
G is a torsion group, then [Go] = (Gp).

Gy is called independent, if 0 ¢ G and given distinct elements g1,..., g € Go
and integers mq,...,m; € Z, then Zi’:1 m;g; = 0 implies that mig; = --- =
myg; = 0. Clearly, Gy is independent if and only if every finite subset of Gy is
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independent. Any equation of the form
migr+ -+ mg =0

where ¢1,...,g1 € G and mq, ..., m; € Nis called a minimal relation, if Zizl n;g;
# 0 for all 0 < n; < m; with 0 < Zé:l n; < 22:1 m;.

We denote by F(Gg) the free abelian monoid with basis Gog. The elements
S € F(Gyp) have a unique representation of the form

S = H gve )
9€Go

with v4(S) € Ny and vy (S) = 0 for all but finitely many g € Gj.

Let S =[],ecq, gvs(%) = Hézl gi € F(Ggp). We denote by

S| = 2" 4cq, vg(S) =1 € No the length of S,

supp(S) = {g € Go | v4(S) >0} = {g; | i € [1,1]} C G the support of S,

vg(S l
k(S) = deGo Orgd((g)) =3 Wl(gi) € Q the cross number of S
and by

o(S) =3 yeq, vg(S)g = Zi=1 gi € G the sum of S.
Clearly, the sum gives rise to a monoid homomorphism o : F(Gy) — G and
B(Go) = ker(o)
is the block monoid over Gyg. The block monoid is a reduced atomic monoid
with unit element 1 = [ .5, ¢° and we set A(Go) = A(B(Go)). An element
S = Hi:l gt € F(Gp) is an atom in B(Gy) if and only if o(S) = 22:1 m;g; =0
and this is a minimal relation in G. The relevance of block monoids stems from

its relationship to Krull monoids: Let H be a Krull monoid with divisor class
group G and let Gy denote the set of classes containing prime divisors. Then
H is a half-factorial monoid if and only if B(Gy) is half-factorial (cf. [Ger88|,
Proposition 1 or [CG97]).

3. HALF-FACTORIAL SUBSETS

Definition 3.1. A non-empty subset Gy of an abelian group G is said to be
factorial (resp. half-factorial), if the block monoid B(Gy) is factorial (resp. half-
factorial).

We start with some simple observations.

Lemma 3.2. Let G be an abelian group.

(1) For every g € G the set {g} is factorial.
(2) For a non-empty subset Go C G the following are equivalent:
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(a) Go is a factorial (resp. half-factorial) subset of G.
(b) Go U {0} is factorial (resp . half-factorial) in G.
(c) Every finite subset of Gq is factorial (resp. half-factorial) in G.
(3) There exists a maximal (with respect to set-theoretical inclusion) half-
factorial subset.

PROOF. 1. If ¢ has infinite order, then B({g}) = {1} is the trivial monoid. If g
has order n € N, then A({g}) = {¢9"}, whence B({g}) is a reduced monoid having
exactly one prime element.

2. The sequence 0 € F(G) is a prime element in B(G) whence B(Go U {0}) =
B({0}) x B(Ggy \ {0}) whence a) and b) are equivalent. Gy is half-factorial if and
only if |L(B)| = 1 for every B € B(Gg) which holds if and only if B(supp(B))
is half-factorial for every B € B(Gg). An analogue statement holds for factorial
subsets whence a) and c) are equivalent.

3. Let Q = {Go C G | Gy is half-factorial}. Then 1. shows that Q # 0 . If
(Gi)ier is a chain in €, then (J;c; Gi € Q by 2. Thus Q has a maximal element
by Zorn’s Lemma. O

Maximal half-factorial subsets Gy do not necessarily generate the group G (see
the Remark at the end of section 4). For the special case of torsion groups the
following result was first proved in [GG98].

Proposition 3.3. Let G be an abelian group and Gog C G a half-factorial subset.
Let go € Gy and g € G\ (Go) such that pg = go for some p € P. Then Gy U {g}
1s half-factorial.

PrROOF. Let B € B(Go U {g}) be given. We proceed in two steps.

First we show that v,(B) is a multiple of p. Suppose for contradiction that
B=g"1I;_, gF where gy,...,gs € Go, k € Z\ {0} and p, k relatively prime. So
there are x,m € Z such that 1 = mp + kx, hence g = mpg + kxg. From o(B) =0
it follows kg + >_7_, kig; = 0, thus kxg+ >_._, zk;g; = 0. This implies that

g =mpg + kxg =mgo — > _xkig; € (Go),
i=1
a contradiction.

In the second step we verify that |L(B)| = 1. To do so we proceed by induction
on vy(B). If vg(B) =0, then B € B(Gy) and the assertion follows. If v,(B) > 0,
then B’ = (pg) - g7 - B € B(Gy) (by the first step) and by induction hypothesis
we have [L(B’)] = 1. For every factorization Uy - ... Uy of B, say vg(U1) > p,
there is some factorization U] - Uy - ... Uy of B’ with the same length, where



846 ALFRED GEROLDINGER AND RUDIGER GOBEL

Ul = (pg) - g~? - Uy. Thus we infer that that L(B) C L(B’) whence the assertion
follows. ]

For torsion groups there is a simple but useful characterization of half-factorial
subsets going back to L. Skula and J. Sliwa. For convenience we recall its short
proof.

Lemma 3.4. Let G be a torsion group and Go C G a subset. Then the following
statements are equivalent:

(1) Go is half-factorial.

(2) k(S) =1 for every S € A(Gp).

(3) For every minimal relation mygy + -+ + myg, = 0 with g1,...,g91 € Go

and mq,...,m; € N we have 22:1 Orgz"g’_) =1.

PROOF. 2. and 3. are equivalent by definition whence it remains to show the
equivalence of 1. and 2.

Ifk(S)=1forall S € A(Go) and Uy -...-Us = Vi -...-V; where U;, V; € A(G)),
then

s=k(Uy-...-Ug)=k(V1-...- V) =t

whence B(Gy) is half-factorial.

Let S = Hf;zl gi € A(Gp) with k(S) # 1. For every i € [1,1] we set U; =
gfrd(gi) € A(Go) and m; = ;3¢5 where m = lem{ord(g1), ..., ord(g;)}. Then it
follows that

Sm U U

and since k(S) = 22:1 " # 1, these are factorizations of two different lengths.
O

Lemma 3.5. Let G be an abelian group.

(1) Suppose that G = @®,c1G; and for every i € I let H; C G; \ {0}. Then
B(U;er Hi) = ,c; B(H;). In particular, ;e H; is factorial (resp. half-
factorial) if and only if all H; are factorial (resp. half-factorial).

(2) Ewvery independent subset is factorial in G.

PRrROOF. 1. Since for each two distinct 4,j € I we have (H;) N (H;) = {0}, it
follows that A(J,c; Hi) = U, e A(H;) and hence B(U,¢; Hi) = [1,c; B(H;).

2. If X C G is independent, Then (X) = @ x (r). Hence the assertion follows
from 1. and from Lemma 3.2.1. g

Proposition 3.6. Let G = G cxZx be a free abelian group with basis X and let
Y C [X].
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(1) If (Y) =G, then [Y U (—-X)] =G.
(2) Y U(—X) is factorial in G.

PROOF. 1. is obvious. To verify 2., note that every irreducible block B € B(Y U
(=X)) has the form
B=y- [[(-2)™
zeE

for some y = 3 _pmg,r €Y where E C X is finite and all m, € N. Thus every
B € B(Y U (—X)) has a unique factorization into irreducible blocks. O

Half-factorial subsets of Z are studied in [ACS94a] and [ACS94c]. A special
case of the following result goes back to D. Michel and J. Steffan (cf. [MS86],
Proposition 7).

Proposition 3.7. Let G be an abelian group, X C G a maximal independent
subset of elements of infinite order and ¢ : G — G/(X) = H the canonical
epimorphism. Let Hy = {h; | i € I} C H be a subset and for every i € I let
gi € G such that p(g;) = h; and n;g; € [X]| where n; = ordg(h;) € N. Then
Go = {gi,z,—x | i € I,z € X} is a generating set of G if and only if Hy is a
generating set of H and we have
(1) B(Go) =B(X U (=X)) x B{gi,—z|ic I,z € X}).
(2)
f:B{gi,—x|iel,xze X})— B(Hy)
st T1 cor o T
jed TEE, jeJ
is an isomorphism. In particular, Gy is (half-)factorial if and only if Hy
is (half-)factorial.

PROOF. By construction, Gy generates G if and only if Hy generates H. We
proceed in several steps.
1. To study A(Gyp), let

v =TI IT = TI (- < AiGo)
JjeE RSy N r€EE,

be given with finite subsets £ C I, Ei,Ey C X and positive integers k;, l;, my.
Then

(%) ijgj + Z lzx = Z MyT

JjEE zeFE; reFy
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Case 1: By # ). Let y € Eq. Multiplying (x) with n = lem{n; | j € E} we obtain
S kitng) + D (len)z =Y (mgn)a.
JjEE z€EE; z€FE>

Since all summands on both sides of the equation are in [X], it follows that m,, > 0
whence U =y - (—y).
Case 2: E; = (0. We assert that
V=1 el9)" € A(Ho).
JjEE
Since |U| > 0 and |E1| = 0, it follows that |E| > 0 and (*) implies that o(V) = 0.
For every j € E let kj € [0, k;] such that

Zk; >0 and Zk‘;-cp(gj):OEH.
JEE JEE
Hence there exist a finite subset £/ C X and integers m/, € Z such that
(v Sk = Y mia
JEE zEE

and for n =lem{n; | j € E} we obtain

Y (nml)e =" kj(ng;) € [X]

TEE’ JEE
Z (nmg)z = Z kj(ng;) € [X].
zeFy JEE

These equations imply that E' C Ey and m/, € [0, m,] for every x € E’. Since U
is irreducible, () implies that & = k; for every j € I/ whence V is irreducible.

2. Let B € B(Gy) be given. We have to show that B can be written uniquely in
the foorm B=U" -V where U € B(X U (-X)) and V € B({g;, —z |i € I,z € X }).
Consider a factorization

B=U-....U,-Vi-...-V

where Uy, V; € A(Go), D, cx v2(Us) > 0 for every i € [1, p] and V; = S;T; where
148, € F{g; |ie€I})and T; € F({—z | x € X}). The above considerations
imply that |U;| = 2 for every i € [1, p] whence
U=U,-...-U, = H(—x-m)“”(B)
zeX

is uniquely determined. Thus V = U~!- B is uniquely determined and V =
Vi-...-VyeB{gi,—xliel,zeX}).
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3. Obviously7 f is a homomorphism. To show that f is bijective, let C' =
ngE h] € B(Hy) be given. We verify that there is exactly one B € B({g;, —x |
i€l,x e X}) with f(B) =C. Since

0> kjg)) =Y kihj =0(C) =0,

JjEE jEE

it follows that >, g kjg; € (X). If n =lem{n; | j € £}, then

nijg] Zk n]gj € [X]

JEE JEE

whence 3 i kjg; € [X]. Thus there exist a uniquely determined finite subset
F C X and uniquely determined positive integers (m,,) e such that jeE kjg; =

> wcr Ma® Whence
k; my
B=[lg [[-o™
JjEE zeF
is the unique block with f(B) = C. O

4. SIMPLE SUBSETS IN MODULES OVER DISCRETE VALUATION DOMAINS

Throughout this section, let R be a discrete valuation domain over Z, with
prime element 7 such that #R N Z = pZ for some prime p € P and residue
class field k = R/mR. Let v, : Q@ — Z U {oco} the p-adic valuation. Then
RNQ =Zy) = {r € Q| vy(xz) > 0} denotes the corresponding valuation ring, p
is a prime element and the residue class field is isomorphic to IFp.

A group G is called p-local, if for all ¢ € P\ {p} multiplication with ¢ is a group
automorphism. Any p-local group can be given the structure of a Z,)-module
in a unique way and the Z,)-submodules are the p-local subgroups. Conversely,
note that Z,)/Z is a torsion divisible group with no p-torsion, whence, if G has a
Z(p)-module structure, then all of its torsion is p-torsion. If G'and H are p-local,
then

Homgz (G, H) = Homg,, (G, H).

Clearly, every R-module is a Z)-module and the main cases of interest are R =
Zpy or R the p-adic integers (for details cf. [War77] §2).
Let M be an R-module. For two elements g,h € M we set

g<h if ﬂkh:g for some k € Ng.

This defines a natural partial order on M (for the antisymmetry, note that if
7*h = g and wlg = h with k,l € N, then (1 — 7**!)g = 0 whence g = h = 0
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because 1 — whtt e R*). For a subset Y C G we denote by
Yo={yeY|g<y}
the tree over g in Y and by
Y = {2z € M| there is some y € Y with 2z <y}
the 7-closure of Y. We say that Y is m-closed if Y =Y.

Definition 4.1. Let M be an R-module. We say that a subset Y C M is R-
simple, if Y is w-closed and for every finite non-empty subset E C Y \ {0} and

every maximal element eq € E there exists some homomorphism ¢ : g(E) — k
such that v(eg) # 0 and p(e) =0 for alle € E\ {ep}.

Proposition 4.2. Let M be a Z,)-module for some prime p € P and Go € M a
Zp)-simple subset.

(1) For every B € B(Gy) and every mazimal element g € supp(B) the multi-
plicity vg(B) is a multiple of p.

(2) The support of every irreducible block in Gq lies in a tree and Gy is half-
factorial.

PROOF. 1. Suppose B = Hizl gi" € B(Gy), E =supp(B) = {g1,...,q:} and g1
is a maximal element in E. Then there is some homomorphism ¢ : g(E) — F,
such that ord(p(g1)) = p and p(g;) = 0 for every 2 < ¢ <. Since 0 = ¢(B) =
22:1 m;g;, it follows that 0 = p(o(B)) = m1¢(g1) whence ord(p(g1)) = p divides
mi.

2. We have to show that supp(B) lies in a tree for every B € A(Gy) and that
|IL(B)| =1 for every B € B(Gy). For both assertions we proceed by induction on
|B|.

If |B] = 1, then B = 0 whence B is prime and L(B) = {1}. If 1 < |B| < p,
then 1. implies that B = gP for some g € Gy whence L(B) = {1}. In all these
cases B is irreducible and its support lies in a tree.

Let B = le':1 9" € B(Gp) with |B| > p. If [ =1, then ord(g) < oo, m; is a
multiple of ord(g;) and L(B) = {#(;1)}. Suppose that [ > 1. After a suitable
renumeration we may suppose that ¢g; is a maximal element of supp(B) whence
p | my. Since Gy is p-closed it follows that go = pg1 € Gy. We consider the block
B =gy-g/" " Hé:g g:"". Clearly |B’| < |B|, whence by induction hypothesis
both assertions hold for B’.

If B is irreducible, then B’ is irreducible and if supp(B’) lies in a tree over
some element g, then supp(B) lies in the tree over g.
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Suppose that B is not irreducible. We show that for every factorization z of B
there exists some factorization z’ of B’ with |z| = |2’| which implies the assertion.
Let z=Uj -... Uy be a factorization of B. Without restriction we may suppose
that g; | Uy. Then g; is maximal in supp(U;) whence 1. implies that p | vg, (U1).
Thus U{ =go-9,7-U1 € A(Go) and 2’ = U] - Uy - ... Uy is a factorization of B’
with k = |2/| = |z|. O

Let M be an R-module. Following R. Warfield ([War81], p. 329) we say that
M is simply presented, if it has a presentation of the following form: let F' be
a free R-module with basis X, L. C F a subset and ® : ' — M a surjective
homomorphism with ker(®) = g(L) such that Y = ®(X) satisfies the following
properties:

r(Y) =M

0¢Y

ifyeY and my # 0, then 7y € Y

for every y € Y we have y ¢ r({z €Y | 7"z # y for all n € Ny}).

Every subset Y C @G satisfying the above properties is called a T-basis of M.
In [Hal77] simple presentations are exactly those representations having "rela-
tional complexity” two and it is proved that every group has a presentation with
relational complexity at most three.

Theorem 4.3. Let M be a simply presented R-module and Y C M a T-basis.
Then Y is R-simple and hence half-factorial.

PrOOF. The set Y is m-closed by definition. Let E C Y be finite and y € E
maximal. Let Z = {z € Y | 7"z # y for all n € No} whence E \ {y} C Z.
By the proof of Lemma 2.1 in [War81] there exists an R-module homomorphism
o: M — k with o(y) # 0 and 0(Z) = {0}. Thus Y is R-simple (and hence Z,)-
simple) in the sense of Definition 4.1, since o | =(E) has the required property.
Proposition 4.2 implies that Y is half-factorial. O

Remark. 1. For every n € N the set Y = {p' + p"Z | i € [1,n — 1]} is a T-basis
of Z/p"Z. The set Y = {pi +Z | i€ N} is a T-basis of Z(p>) ={s +Z | a €
Z,i € N} CQ/Z. T-bases of generalized Priifer groups are given in [Fuc73], §83,
Example 3.

2. Let G =Z/2Z®Z/AZ = (e1) D {e2) with ord(e;) = 2 and ord(ez) = 4. Then
Go = {0,e1,e1 + 2e2} is a 2-closed, Z(s)-simple subset of G and it is a maximal
half-factorial subset. However, Gy does not generate G.
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3. Let G =Z/nZ & Z/nZ = {e1) & {e2) with ord(e;) = ord(ez) = n for some
n € N with n > 3. Then Gy = {ie1 + ez | i € [1,n]} is a half-factorial subset
which is not simple (cf. also Theorem 6.3 and Corollary 6.5 in [GG98]).

4. There is also a definition of simple presentations in the global case (cf.
[Lot98], Definition 1.19). However, if g € G with ord(g) = p*m for some prime
p, positive integers k,m with p{m and m > 3, then the p-closed set Gy = {pg |
i € No} is not half-factorial.

To verify this, we set h = p¥g. Then ord(h) = m and multiplication with p is
an automorphism on (h). Thus (h) C Gy, U = (—h) - h is an irreducible block in
Go with k(U) = 2 # 1 whence Gy is not half-factorial by Lemma 3.4.

T m
5. ABELIAN GROUPS HAVING HALF-FACTORIAL GENERATING SETS

We recall some basic facts on Warfield groups. All of them may be found in
the book of P. Loth [Lot98].

An abelian group G is called a Warfield group, if there exists a subset X C G
such that the following conditions are satisfied:

(1) X C G is a maximal independent subset of elements of infinite order.

(2) G/(X) is a torsion group whose p-subgroups are simply presented as Z,)-
modules.

(3) (X) is a nice valuated coproduct in G.

Indeed, in Theorem 3.83 in [Lot98] there are given 10 equivalent characterization
for Warfield groups and the above definition coincides with condition 3 (cf. also
Definition 3.25). The class of Warfield groups is closed under arbitrary direct
sums and summands. Every Warfield group is balanced projective. A torsion-
free group is balanced projective if and only if it is completely decomposable (i.e.,
a direct sum of groups of rank one). A torsion p-group is balanced projective
if and only if it is a direct sum of a divisible p-group (which is a direct sum of
groups isomorphic to Z(p>)) and of a totally projective p-group (these are defined
in [Fuc73] and include generalized Priifer groups and countable reduced p-groups)
(cf. [War76]).

Theorem 5.1. Every Warfield group has a half-factorial generating set.

PRrOOF. Let G be a Warfield group, X C G as in the above definition and
G/(X) = H = ©pepH,. Let p € P, R = Z(,) and consider H, as an R-module.
If Y C H, is a T-basis of H,, then Y is half-factorial by Theorem 4.3, and since
r(Y) = (Y) = [Y], it follows that Y is a half-factorial generating set of H,. By
Lemma 3.5 H has a half-factorial generating set whence by Proposition 3.7.2 G
has a half-factorial generating set. O
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Corollary 5.2. Let G be an abelian group and X C G a mazimal independent
subset of elements of infinite order such that G/(X) is a Warfield group. Then
G has a half-factorial generating set.

PROOF. Let X C G be a maximal independent subset of elements of infinite
order, F the free abelian group with basis X and ¢ : G — H = G/F the canonical
epimorphism. Since H is a Warfield group, it has a half-factorial generating subset
by Theorem 5.1. Since X is maximal, H is a torsion group whence G has a half-
factorial generating set by Proposition 3.7. O

Theorem 5.3. Let G be an abelian group and F C G a free abelian subgroup such
that G/ F is either countable or divisible. Then G has a half-factorial generating
set.

PROOF. Let X denote a basis of F. By Zorn’s Lemma we extend X to a maximal
independent subset X’ of elements (of infinite order). If G/(X) is countable,
then G/(X’) is a countable group whence a Warfield group and the assertion
follows from Corollary 5.2. If G/(X) is divisible, then G/(X') is divisible (as
an epimorphic image of a divisible group) whence it is Warfield group and the
assertion follows from Proposition 3.7 as well as from Corollary 5.2. O

We want to apply Theorem 5.3 to topological groups and to do so we repeat
some basic facts (for details we refer to [CG85], [GM89], [FS01], Chapter 8 and
[Mat97], §8 ). Let R be a commutative ring with identity and characteristic zero,
S C R\ {0} a multiplicative subsemigroup consisting of non-zero divisors, 1 € S
and M an R-module. Then M is called S-divisible if sM = M for every s € S
and a submodule N C M is called S-pure if sM N N = sN for every s € S.
The S-topology on M is defined by taking {x + sM | s € S} as a basis of
neighbourhoods for every z € M. Then addition in M and (equipping R with the
discrete topology) scalar multiplication are continuous whence M is a topological
R-module. If R is noetherian and {0} # I < R an ideal, then the I-adic topology
(where (I"M),>0 is a basis of neighbourhoods of 0) coincides with the S-topology
where S = (I'\ {0}) U {1} (We provide the short argument: i) let s € S be given;
then sR C I C +/T whence there is some n € N with I" C sR whence I"M C sM.
ii) let n € N be given; if s € I then s"R C I™ whence s"M C I"M).

Let T' C R such that for every ¢ € T multiplication with ¢ is an automorphism
on M. If St denotes the multiplicative subsemigroup generated by S and T, then
the S-topology coincides with the Sp-topology and M is S-divisible if and only if
M is Sp-divisible. In particular, if M is a Z,)-module, then the p-adic topology
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(i.e., the S-topology with S = {p* | k € N}) coincides with the Z-adic topology
(i.e., the S-topology with S = N).

The S-topology is Hausdorff if and only if (g sM = {0}. Note that, if M
is a free Z-module, then the S-topology is Hausdorff. From now on we suppose
that the S-topology is Hausdorff and that S is countable.

Let M denote the completion of M in the S-topology. Then the completion
topology on M coincides with the S-topology on M and M is dense and S-pure
in M.

Let N C M be a submodule. If N C M is dense in the S-topology, then M /N
is S-divisible (here is the argument: let z + N € M/N and s € S be given; since
N is S-dense, there is some y € N with z —y € sM, say x —y = sz whence
s(z+N)=sz+N=x—y+N =zx+N). If N C M is S-pure, then, by definition
of purity, the S-topology on N (having (sN)secs as a basis of neighbourhoods of
0) coincides with the induced S-topology of M ( having (sM N N),cg as a basis
of neighbourhoods of 0).

Let G be any R-module between M and M such that G C M is S-pure. Then
M is dense in G in the S-topology whence G/M is S-divisible.

Corollary 5.4. Let R be a commutative ring with identity and characteristic
zero, S C (R\ {0},-) as above such that nRNS # 0 for alln € N and G a
Hausdorff R-module. If G has a submodule M, which is a free abelian group and
dense in the S-topology, then G has a half-factorial generating set.

PROOF. Let M C G be a submodule having the above properties. Since M C G
is dense, the factor module G/M is S-divisible. If n € N and a € R such that
na = s € S, then

n(G/M) C G/M = s(G/M) = n(aG/M) C n(G/M)

whence G/M is divisible as an abelian group. Thus the assertion follows from
Theorem 5.3. U

Note that, if R is an integral domain, {0} # I < R an ideal and S = (I'\{0})U
{1}, then
nRNS=nRN((I\{0}H)U{1}) D (nR)- I\ {0} #0
for every n € N. In the following remark we discuss some groups to which
Corollary 5.4 applies. All of them are torsion-free.

Remark. 1. Consider Z together with the Z- adlc topology and let Z denote its
completion. Since Z is dense in Z it follows that Z has a half-factorial generating
set.
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2. Let R be a ring which is a free Z-module, I << R an ideal and G = R the
I-adic completion. Then G has a half-factorial generating set. We would like to
point out two special situations.

If A is a ring which is a free Z-module, then R = A[Xy,...,X,] is a free Z-
module and if T = g(X1,...,X,), then R= Al[X1,...,X,]] is the power series
ring.

If K is an algebraic number field with ring of integers o and {0} # p a prime
ideal. Then R = o is a free Z-module and R are the p-adic integers.

3. There are two standard construction principles for pathological abelian
groups G, which satisfy the assumption of Corollary 5.4. They are based on
A.L.S. Corner, M. Dugas, R. Gobel and S. Shelah,

Let R be a ring which is a free Z-module and A a cardinal number. Then there
always exists a torsion-free abelian group G and some multiplicatively closed
subset S C R\ {0} such that

e M =@, cre,RC Gand G C M is S-pure, whence M is a free abelian
group, dense in the S-topology and by Corollary 5.4 G has a half-factorial

generating set.
e End(G) 2 R.

provided that one of the following conditions holds:

(1) |R| < 2% and 2rk(R) < A < 2% see [Cor63] and [GM89)].
(2) |R|-2% < X = AYo see [CG85].

(3) |R| =Ny and A = Ry see [GS98].
)

In 2) and 3) G may be assumed to be N;-free i.e., all its countable subgroups are
free. Surely these examples are not Warfield groups, so we do have a large supply
of torsion-free groups with half-factorial systems of generators besides all Warfield
groups. However the question whether every abelian group has a half-factorial
generating set remains open. In particular, we do not know whether this is true
for the torsion-completion B of B = ®,>1Z/p"Z. We close with an observation
stating that the case of general abelian groups might be reduced to the case of
reduced uncountable, unbounded p-groups.

Remark. If every reduced unbounded uncountable p-group has a half-factorial
generating set, then every abelian group has a half-factorial generating set.

PROOF. First we show that all p-groups have a half-factorial generating set. Let
G be a p-group. Then G = D & C for some divisible group D and some reduced
group C. By Theorem 5.1 D has a half-factorial generating set. If C' is bounded
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or countable it is Warfield. If C' is unbounded and uncountable, it has a half-
factorial generating set by assumption. Thus G = D & C has a half-factorial
generating set by Lemma 3.5.

If G is a torsion group, it is a direct sum of its p-components whence it has a
half-factorial generating set by Lemma 3.5.

Let G be an abelian group and X C G a maximal independent subset of
elements with infinite order. Then F' = (X) is a free abelian group and H = G/F
a torsion group. Since H has a half-factorial generating set, Proposition 3.7
implies that G has a half-factorial generating set. O
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