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1. Introduction

In this paper we introduce finitary monoids as a new class of monoids (by a
monoid we always mean a commutative cancellative semigroup with identity
element). The main examples of finitary monoids are v -noetherian G-monoids
(see [6]) and in particular finitely generated monoids, strongly primary monoids
(see [8]) and abstract congruence monoids (see [9]). Finitary monoids satisfy the
ACCP (ascending chain condition on principal ideals), finite direct products of
finitary monoids are finitary, and saturated submonoids with torsion class group
of finitary monoids are finitary again.

The main motivation for introducing finitary monoids stems from the
theory of non-unique factorizations in integral domains. In general, the multi-
plicative monoids even of noetherian integral domains are highly complicated.
It turned out to be a standard method in factorization theory to construct
suitable auxiliary monoids of a relatively simple structure which reflect the
arithmetical properties of the integral domains in question. Up to now the
auxiliary monoids in the centre of interest in factorization theory are finitely
generated and finitely primary monoids (see [16]) and saturated submonoids of
finite products of strongly primary monoids with finite class group (see [8]).
All these monoids are finitary, and it is our feeling that, to a large extent, fini-
tary monoids should take over their role in factorization theory (see [19] and
Example 4.16).

In Section 2 we fix our notations and recall some fundamentals from the
ideal theory of monoids. In Section 3 we define finitary monoids, prove some
structural properties (Theorems 3.5 and 3.8), discuss examples and establish
the central arithmetical result on finitary monoids (Theorem 3.10). Section 4
deals with v -noetherian G-monoids which turn out to be finitary and have
only finitely many prime s-ideals (Theorem 4.6). In particular, we shall prove
that the multiplicative monoid of a noetherian domain is finitary (resp. a v -
noetherian G-monoid) if and only if the domain is one-dimensional and semilocal
(Proposition 4.14).
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2. Preliminaries

Let N denote the positive integers, N0 = N ∪ {0} , and for a, b ∈ Z we set
[a, b] = {ν ∈ Z | a ≤ ν ≤ b} .

Throughout, a monoid is a commutative cancellative semigroup with
identity element. If not denoted otherwise, we use multiplicative notation. Let
H be a monoid with unit element 1H = 1 ∈ H . We denote by H× the group
of invertible elements of H , and we call H reduced if H× = {1} . We denote
by Hred = {aH× | a ∈ H} the associated reduced monoid of H and by Q(H)
a (fixed) quotient group of H whose elements we write as fractions a

b (where
a, b ∈ H ).

An element u ∈ H\H× is called

• irreducible (or an atom) if, for all a, b ∈ H , u = ab implies a ∈ H× or
b ∈ H× .

• prime (or a prime element) if, for all a, b ∈ H , u | ab implies u | a or
u | b .

Every prime element is irreducible. The monoid H is called atomic (resp.
factorial), if every a ∈ H\H× has a factorization into a product of irreducible
(resp. prime) elements. It is well known that H is factorial if and only if H is
atomic and every irreducible element is prime (see [17], Theorem 10.7).

For a submonoid S ⊂ H we always assume that Q(S) ⊂ Q(H), and we
denote by

S−1H =
{a

s
| a ∈ H, s ∈ S

}
⊂ Q(H)

the quotient monoid of H with respect to S . In particular, H−1H = Q(H).

A submonoid S ⊂ H is called

• saturated, if a, b ∈ S , c ∈ H and a = bc implies that c ∈ S (equivalently,
S = H ∩Q(S)).

• divisor-closed, if a ∈ H , b ∈ S and a | b implies that a ∈ S .

• cofinal, if for every c ∈ H there is some a ∈ S such that c | a .

By definition, every divisor-closed submonoid is saturated.

For a subset U ⊂ Q(H), let [U ] ⊂ H denote the submonoid and 〈U〉 the
subgroup of Q(H) generated by U . For a subset U ⊂ H , let

[[U ]]H = [[U ]] = {x ∈ H | x divides some s ∈ [U ]}

denote the smallest divisor-closed submonoid of H containing U . We say
that H is finitely generated, if H = [U ] for some finite subset U ⊂ H . If
U = {u1, . . . , um} , we set (as usual) [U ] = [u1, . . . , um] and 〈U〉 = 〈u1, . . . , um〉 .
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For subsets X,Y ⊂ Q(H), we set (X : Y ) = {z ∈ Q(H) | zY ⊂ X} , and
X−1 = (H : X). We denote by

H̃ = {x ∈ Q(H) | xn ∈ H for some n ∈ N}

the root closure of H and by

Ĥ = {x ∈ Q(H) | there exists some c ∈ H such that cxn ∈ H for all n ∈ N}

the complete integral closure of H . We have

H ⊂ H̃ ⊂ Ĥ ⊂ Q(H).

Our main reference for ideal theory is [17]. Note however that a monoid
in [17] contains a zero element. Thus in order to apply results of [17] we either
have to adjoin a zero element to our monoids and ideals or have to remove the
zero element from the monoids and ideals in [17]. For the readers convenience,
we recall some central notions.

By an ideal system r on H we mean a map

r:

{
P(H) → P(H)

X �→ Xr

such that the following conditions are fulfilled for all X,Y ⊂ H and all c ∈ H .

(Id 1): X ⊂ Xr

(Id 2): X ⊂ Yr implies Xr ⊂ Yr .

(Id 3): {c}r = cH .

(Id 4): cX r = (cX )r .

For an ideal system r on H we denote by

Ir(H) = {Xr | X ⊂ H} = {J ⊂ H | J = Jr}

the set of all r -ideals of H . Note that ∅ = ∅r ∈ Ir(H). We define the ideal
system rs on H by

Xrs =
⋃

E⊂X
E is finite

Er for X ⊂ H,

and we call r finitary if r = rs . The ideal system rs is always finitary. We say
that H is r -noetherian, if the ascending chain condition for r -ideals is satisfied.
Note that H is r -noetherian if and only if H is rs -noetherian, and then r = rs .
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The most important ideal systems are the s-system, the v -system and
the t -system. For X ⊂ H , they are defined by

Xs = XH , Xv = (X−1)−1 and t = vs.

Then Xs ⊂ Xt ⊂ Xv and Iv(H) ⊂ It(H) ⊂ Is(H). Note that H is v -
noetherian if and only if H is t -noetherian, and then t = v . For every ideal
system r on H , we have Iv(H) ⊂ Ir(H) ⊂ Is(H) and Xs ⊂ Xr ⊂ Xv for
every subset X ⊂ H . If r is finitary, then Xr ⊂ Xt and It(H) ⊂ Ir(H).

An r -ideal p ⊂ H is called prime if H\p is a submonoid of H . We
denote by r -spec(H) the set of prime r -ideals, and we set r -spec(H)• = r -
spec(H)\{∅} . Note that a subset p ⊂ H is a prime s-ideal if and only if H\p
is a divisor-closed submonoid of H . For an s-ideal a ⊂ H , we define its radi-
cal by √

a = {a ∈ H | an ∈ a for some n ∈ N}.

If r is a finitary ideal system and a ∈ Ir(H), then

√
a =

⋂
p∈r-spec(H)

p⊃a

p.

Let π: H → Hred denote the canonical epimorphism. Then the ideal
system r induces an ideal system rred on Hred by means of π(X)rred = π(Xr).
A subset a ⊂ H is an r -ideal if and only if π(H) is an rred -ideal. In par-
ticular, Ir(H) and Irred(Hred) are isomorphic lattices, and thus the r -ideal
theory of H “coincides” with the rred -ideal theory of Hred . The ideal sys-
tems sred , vred and tred on Hred are just the systems s , v and t on Hred ,
respectively.

3. Finitary monoids

We start with a simple technical lemma.

Lemma 3.1. Let H be a monoid and b ⊂ H an s-ideal.

1. Let a1, . . . , ar ⊂ H be s-ideals and n1, . . . , nr ∈ N0 such that a
ni
i ⊂ b for

every i ∈ [1, r] . If n = n1 + · · ·+ nr , then (a1 ∪ · · · ∪ ar)
n ⊂ b .

2. Let r be an ideal system on H , b an r -ideal and a ⊂ H an r -finitely
generated r -ideal such that a ⊂

√
b . Then there exists some n ∈ N such

that an ⊂ b .

Proof. 1. If a ∈ (a1 ∪ · · · ∪ ar)
n , then a = am1

1 · · · · · amr
r , where ai ∈ ai ,

mi ∈ N0 and n = m1 + · · · +mr . Since n = n1 + · · · + nr , there exists some
i ∈ [1, r] such that mi ≥ ni , which implies ami

i ∈ b and hence a ∈ b .

2. By [17], Theorem 6.7.(v).
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Lemma 3.2. Let H be a monoid and U ⊂ H a subset.

1. If a, b ∈ H , then b ∈
√
aH if and only if a ∈ [[b]] . In particular,√

aH =
√
bH if and only if [[a]] = [[b]] .

2. {
√
uH | u ∈ U} = {

√
aH | a ∈ H} if and only if {[[u]] | u ∈ U} = {[[a]] |

a ∈ H} .

3. If U ⊂ H\H× and U ∩ [[b]] �= ∅ for every b ∈ H\H× , then H\H× =√
UH .

4. If s-spec(H) is finite, then {[[a]] | a ∈ H} is the set of all divisor-closed
submonoids of H .

Proof. 1. If a, b ∈ H , then a ∈ [[b]] if and only if a | bn for some n ∈ N ,
and the latter condition it equivalent to b ∈

√
aH .

2. follows from 1.

3. Clearly, U ⊂ H\H× implies
√
UH ⊂ H\H× . If b ∈ H\H× , then

there exists some u ∈ U ∩ [[b]] , and by 1. we obtain b ∈
√
uH ⊂

√
UH .

4. Let S ⊂ H be a divisor-closed submonoid. Since s-spec(H) is finite,
the set of divisor-closed submonoids of H is also finite. Let [[a]] be maximal
in {[[b]] | b ∈ S} . We assert that [[a]] = S . Indeed, if b ∈ S\[[a]] , then
[[a]] � [[ab]] ⊂ S contradicts the maximal choice of [[a]] .

Definition 3.3. Let H be a monoid. A subset U ⊂ H\H× is called an
almost generating set of H , if there exists some n ∈ N such that

(H\H×)n ⊂ UH .

We denote by M(U) the smallest possible n ∈ N for which the above inclusion
holds.

Lemma 3.4. Let H be a monoid and U = {u1, . . . , ur} ⊂ H\H× an almost
generating set of H .

1. For any k1, . . . , kr ∈ N , the set {uk1
1 , . . . , ukr

r } is an almost generating set
of H .

2. Let v1, . . . , vr ∈ H\H× be such that vi | ui for all i ∈ [1, r] . Then
{v1, . . . , vr} is an almost generating set of H . In particular, if H is
atomic, then H possesses an almost generating set consisting of
atoms.

3. Let V ⊂ U be such that {[[v]] | v ∈ V } is the set of all minimal elements
of {[[u]] | u ∈ U} (with respect to set-theoretical inclusion).

(a) V is an almost generating set of H .
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(b) {[[v]] | v ∈ V } is the set of all minimal elements of {[[a]] | a ∈
H\H×} .

(c) If W is any almost generating set of H , then {[[v]] | v ∈ V } ⊂
{[[w]] | w ∈W} .

Proof. 1. We set a = UH = u1H ∪ · · · ∪ urH , b = {uk1
1 , . . . , ukr

r }H and
k = max{k1, . . . , kr} . Then (uiH)k = uk

iH ⊂ b for all k ∈ [1, r] , and by
Lemma 3.1.1 there exists some N ∈ N such that aN ⊂ b . If n ∈ N is such
that (H\H×)n ⊂ a , then (H\H×)Nn ⊂ b , whence {uk1

1 , . . . , ukr
r } is an almost

generating set of H .

2. Obvious, since vi | ui implies uiH ⊂ viH .

3. (a) It is sufficient to prove that if u, v ∈ U and [[v]] ⊂ [[u]] , then
U\{u} is an almost generating set of H . If u, v ∈ U and [[v]] ⊂ [[u]] , then
v | uk for some k ∈ N . By 1., (U\{u}) ∪ {uk} is an almost generating set,
and by 2. the set (U\{u}) ∪ {v} = U\{u} is also an almost generating set
of H .

(b) Let a ∈ H\H× . We have to show that there exists some v ∈ V such
that [[v]] ⊂ [[a]] . Obviously, 3.(a) implies the existence of some n ∈ N and
v ∈ V such that an ∈ vH . By Lemma 3.2.1 we obtain v ∈ [[a]] and hence
[[v]] ⊂ [[a]] .

(c) If v ∈ V , then there exists some n ∈ N and w ∈ W such that
vn ∈ wH and hence [[w]] ⊂ [[v]] by Lemma 3.2.1. By (b), there exists some
v0 ∈ V such that [[v0]] ⊂ [[w]] ⊂ [[v]] , and by the choice of V we obtain
[[v]] = [[v0]] = [[w]] .

Let H be a monoid. An element a ∈ H is called archimedean, if

⋂
n≥0

anH = ∅.

The monoid H is called archimedean, if every a ∈ H\H× is archimedean. Every
monoid satisfying the ACCP (ascending chain condition on principal ideals) is
archimedean and atomic (see [17], Ch. 3, Ex. 6, and Proposition 10.3).

Let H be an atomic monoid, a ∈ H\H× and a = u1 · · · · · uk a
factorization of a into irreducible elements u1, . . . , uk . Then k is called the
length of that factorization, and

L(a) = {k ∈ N | a has a factorization of length k} ⊂ N

is called the set of lengths of a . For a ∈ H× we set L(a) = {0} . The monoid
H is called a BF-monoid (bounded factorization monoid), if it is atomic and
L(a) is finite for every a ∈ H . Every BF-monoid satisfies the ACCP (see [15],
Corollary 1).
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Theorem 3.5. Let H be a monoid with H �= H× . Then the following
statements are equivalent:

1. H has a finite almost generating set consisting of archimedean elements.

2. H is a BF-monoid and possesses a finite almost generating set.

3. H satisfies the ACCP and has a finite subset U ⊂ H\H× such that for
some n ∈ N we have

H = UH ∪ {a ∈ H | sup L(a) < n}.

Proof. 1. =⇒ 2. Let U ⊂ H\H× be a finite almost generating set of
H consisting of archimedean elements, and a ∈ H\H× . Then there exists
some N ∈ N such that a /∈ uNH for every u ∈ U , and we assert that
max L(a) < M(U)N |U | (then L(a) is finite). Assume, to the contrary, that
there exists a factorization a = a1 · · · · · at , where a1, . . . , at ∈ H\H× and
t ≥M(U)N |U | . By the very definition of M(U) and Lemma 3.1.1, we obtain

a ∈ (H\H×)M(U)N |U | ⊂ (UH )N |U | ⊂
⋃
u∈U

uNH,

a contradiction.

2. =⇒ 3. Every BF-monoid satisfies the ACCP, and if U is an almost
generating set of H and a ∈ H satisfies max L(a) = t ≥M(U), then

a ∈ (H\H×)t ⊂ (H\H×)M(U) ⊂ UH .

3. =⇒ 1. Since H satisfies the ACCP, H is archimedean. If a ∈
(H\H×)n , then sup L(a) ≥ n whence a ∈ UH . Thus U is an almost generating
set of H .

Definition 3.6. A monoid H is called finitary, if H �= H× and H satisfies
the equivalent conditions of Theorem 3.5.

Example 3.7. The following four classes of monoids are finitary: 1. Finitely
generated monoids; 2. Strongly primary monoids; 3. v -noetherian G-monoids; 4.
Abstract congruence monoids. We discuss here finitely generated and strongly
primary monoids. v -noetherian G-monoids will be investigated in detail in
Section 4. For the definition of congruence monoids we refer the reader to [11],
§3. A thorough investigation of congruence monoids will be presented in [9]
where we shall also prove that they are finitary.

Finitely generated monoids. Let H be a monoid such that Hred is finitely
generated and H �= H× . Then there exists a finite subset U ⊂ H\H× such
that H = [U ∪ H×] , and consequently H\H× ⊂ UH . It follows from [15],
Theorem 2, that Hred (and hence H ) is a BF-monoid. Therefore H is finitary,
U is an almost generating set of H and M(U) = 1.
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Strongly primary monoids: A monoid H is called strongly primary if
H �= H× , and there exists a function M: H → N0 such that (H\H×)M(a) ⊂
aH for every a ∈ H\H× (see [8]).

Let H be strongly primary. If a, a1, . . . , ar ∈ H\H× and a = a1 · · · · ·ar ,
then a1 · · · · · ar−1 ∈ (H\H×)r−1\aH , whence r ≤ M(a). Hence we obtain
max L(a) ≤ M(a) for all a ∈ H\H× , and consequently H is a BF-monoid.
Therefore H is finitary, and for every a ∈ H\H× the singleton {a} is an
almost generating set of H satisfying M({a}) =M(a).

A monoid H is called primary if H �= H× , and if ∅ and H\H× are the
only prime s-ideals of H (see [17], Ch. 15.5 for various equivalent characteri-
zations). Obviously, every strongly primary monoid is primary. We assert that,
conversely, every primary finitary monoid is strongly primary.

Let H be a primary finitary monoid, U ⊂ H\H× an almost generating
set of H and a ∈ H\H× . Since H is primary, we have [[u]] = H for every
u ∈ H\H× . Since U is an almost generating set, the same is true for U ∪ {a}
and, by Lemma 3.4.3, {a} is also an almost generating set of H . Hence there
exists some n ∈ N such that (H\H×)n ⊂ aH , whence H is strongly primary.

Theorem 3.8. Let H be a monoid.

1. H is finitary if and only if Hred is finitary.

2. Let H be finitary and S ⊂ H a saturated submonoid such that S �= S× .

(a) If H possesses a finite almost generating set U such that U ⊂ S ,
then U is an almost generating set of S and S is finitary.

(b) If Q(H)/Q(S)H× is a torsion group, then H has an almost gener-
ating set U with U ⊂ S .

(c) If H is a finite direct product of strongly primary monoids, then S
is finitary.

(d) If S is divisor-closed, then S is finitary.

3. Let k ∈ N and H1, . . . , Hk be submonoids of H such that H = H1×· · ·×
Hk , and Hi �= H×

i for all i ∈ [1, k] . Then H is finitary if and only if Hi

is finitary for every i ∈ [1, k] .

Proof. 1. Let π: H → Hred be the canonical epimorphism. Then a subset
U ⊂ H\H× is an almost generating set of H if and only if π(U) is an almost
generating set of Hred . Since H is a BF-monoid if and only if Hred is a BF-
monoid, the assertion follows by Theorem 3.5.

2. Since S ⊂ H is saturated, we have S× = H×∩S and uH ∩S = uS for
every u ∈ S . By [15], Theorem 3, S is a BF-monoid. We shall use Theorem 3.5
to prove that S is finitary.

(a) Let U ⊂ S be a finite almost generating set of H . Then

(S\S×)M(U) = S ∩ (H\H×)M(U) ⊂ UH ∩ S = US .

Hence U is an almost generating set of S , and therefore S is finitary.
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(b) Suppose that Q(H)/Q(S)H× is a torsion group. Let {v1, . . . , vr} ⊂
H\H× be an almost generating set of H , and let k ∈ N be such that vki ∈
Q(S)H× , say vki = uiεi , where ui ∈ Q(S) and εi ∈ H× . By Lemma 3.4,
{u1, . . . , ur} is an almost generating set of H , and since ui = ε−1

i vki ∈ H ∩
Q(S) = S for all i ∈ [1, r] , it follows that {u1, . . . , ur} ⊂ S .

(c) Suppose that H =
∏n

i=1 Hi where H1, . . . , Hn are strongly primary
monoids. Then every a ∈ H may be written uniquely in the form a = a1 · · · · ·an
where ai ∈ Hi for every i ∈ [1, n] . Let T : H → {0, 1}n be defined by
T (a) = (α1, . . . , αn) where a ∈ H and αi = 0 if and only if ai ∈ H×

i for
i ∈ [1, n] . Let U ⊂ S\S× be a finite set with T (U) = T (S\S×) and let

m = 2nM where M = max{M(ui) | u ∈ U, i ∈ [1, n]}.

We show that
(S\S×)m ⊂ US .

Let a ∈ (S\S×)m , say a =
∏m

ν=1 b
(ν) with b(1), . . . , b(m) ∈ S\S× . Since

|T (S)| ≤ 2n , there exists some Λ ⊂ [1,m] with |Λ| = M , say Λ = [1,M ] , such

that T (b(1)) = · · · = T (b(M)) = (β1, . . . , βn) ∈ {0, 1}n . We set
∏M

ν=1 b
(ν) = b =

b1 ·· · ··bn with bi ∈ Hi for every i ∈ [1, n] . Let u ∈ U with T (u) = (β1, . . . , βn).
If for some i ∈ [1, n] we have βi = 1, then bi ∈ (Hi\H×

i )M whence ui |H bi . If
for some i ∈ [1, n] we have βi = 0, then ui ∈ H×

i , bi ∈ H×
i and thus ui |H bi .

Therefore we obtain that u |H b |H a whence u |S a since S ⊂ H is saturated.

(d) Let U ⊂ H\H× be a finite almost generating set of H , and let S ⊂ H
be divisor-closed. Then

(S\S×)M(U) ⊂ UH ∩ S = (U ∩ S)S,

and therefore U ∩ S is a finite almost generating set of S . Hence S is finitary.

3. It suffices to consider the case k = 2. If H is finitary, then H1 and
H2 are divisor-closed submonoids of H , and therefore they are finitary by 2.

Suppose that, for i ∈ {1, 2} , Hi is finitary and Ui ⊂ Hi\H×
i is a

finite almost generating set of Hi . We shall prove that L(a) is finite for every
a ∈ H\H× , and U = U1 ∪ U2 ∪ U1U2 is an almost generating set of H . Set
M = max{M(U1),M(U2)} .

If a ∈ H\H× , then a = a1a2 , where ai ∈ Hi and a1 /∈ H× or a2 /∈ H× .
If a2 ∈ H× , then L(a) = L(a1) and aM ∈ U1H1H

×
2 ⊂ UH . If a1 ∈ H× ,

then L(a) = L(a2) and aM ∈ H×
1 U2H2 ⊂ UH . If a1 /∈ H×

1 and a2 /∈ H×
2 ,

then factorizations of a into irreducibles are performed component-wise, and
therefore L(a) = L(a1) + L(a2) and aM ∈ U1H1U2H2 = UH . Hence the
assertion follows.

Example 3.9. A monoid H possessing a finite almost generating set which
is not finitary. We consider the additive monoid

H = (Z× R>0) ∪ (N0 × {0}) ⊂ (R2,+).
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We assert that H is a reduced valuation monoid with |s-spec(H)•| = 2 (for the
theory of valuation monoids see [17], Ch. 15 and 16). Indeed, if (m,x), (n, y) ∈
H , then (m,x) | (n, y) if and only if (n−m, y− x) ∈ H , and this is equivalent
to either y > x or [y = x and n ≥ m ]. Hence the principal s-ideals of H form
a chain, and therefore H is a valuation monoid. Obviously, H is reduced. If
y ∈ R>0 and n ∈ Z , then [[(n, y)]] = H , and if n ∈ N , then [[(n, 0)]] = N0×{0} .
Therefore H\H× = H\{(0, 0)} = (1, 1) + H and H\(N0 × {0}) are the only
non-empty prime s-ideals of H . Since H is not a discrete valuation monoid, it
is not atomic (see [17], Theorem 16.4) and thus not finitary.

Since H\H× = (1, 0)+H , the singleton {(1, 0)} is an almost generating
set of H .

Next we study the arithmetic of finitary monoids. We show that locally
tame finitary monoids have finite catenary degree. This is already known for
various subclasses of finitary monoids. The proof given here for the general case
is so simple that it encourages us to believe that finitary monoids might serve
as an appropriate conceptual tool in factorization theory.

We recall the notions of local tameness and of the catenary degree. For
the relevance of these two fundamental concepts in factorization theory we refer
the reader to the survey article [7].

Let H be an atomic monoid, A = A(Hred), Z(H) = F(A) the free
abelian monoid with basis A and π: Z(H)→ Hred the canonical epimorphism.
For z = a1 ·· · ··ar ∈ Z(H) (where r ∈ N0 and a1, . . . , ar ∈ A) we call |z| = r the
length of z . For z = ya1 · · · · ·ak and z′ = yb1 · · · · ·bl ∈ Z(H) (where y ∈ Z(H),
k, l ∈ N0 , a1, . . . , ak, b1, . . . , bl ∈ A and {a1, . . . , ak} ∩ {b1, . . . , bl} = ∅) we call
d(z, z′) = max{k, l} ∈ N0 the distance between z and z′ .

For a ∈ H , the elements of Z(a) = π−1(aH×) are called the factorizations
of a . Let z, z′ ∈ Z(a) and N ∈ N0 . By an N -chain of factorizations from z to
z′ we mean a finite sequence (z0, z1, . . . , zk) in Z(a) such that z0 = z , zk = z′

and d(zi−1, zi) ≤ N for every i ∈ [1, k] . We denote by c(a) ∈ N0 ∪ {∞} the
minimal N ∈ N0 ∪ {∞} such that for each two factorizations z, z′ ∈ Z(a) there
is an N -chain of factorizations from z to z′ . Obviously, c(a) ≤ sup L(a). We
call

c(H) = sup{c(a) | a ∈ H} ∈ N0 ∪ {∞}

the catenary degree of H .

For u ∈ A , let t(H,u) denote the smallest t ∈ N0 ∪ {∞} such that for
every a ∈ H the following holds: if Z(a)∩uZ(H) �= ∅ and z ∈ Z(a), then there
exists some z′ ∈ Z(a)∩uZ(H) such that d(z, z′) ≤ N . We say that H is locally
tame, if t(H,u) <∞ for every u ∈ A .

Theorem 3.10. Every locally tame finitary monoid has finite catenary de-
gree.

Proof. Let H be a locally tame finitary monoid. Then H is a BF-monoid,
and by Lemma 3.4.2, H possesses a finite almost generating set U such that
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U ⊂ A(H). For u ∈ U , we set ū = uH× ∈ A(Hred). We shall prove that

c(a) ≤M = max{M(U), t(H, ū) | u ∈ U} for all a ∈ H.

Let a ∈ H be given. Since H is a BF-monoid, we may proceed by induction
on max L(a). If max L(a) <M(U), there is nothing to do. Thus suppose that
max L(a) ≥M(U), and let z, z′ ∈ Z(a) be factorizations of a . By Theorem 3.5
we have a ∈ UH , whence a = ub for some u ∈ U and b ∈ H . There exist
factorizations y, y′ ∈ Z(b) (whence ūy, ūy′ ∈ Z(a) )such that d(z, ūy) ≤ t(H, ū)
and d(z′, ūy′) ≤ t(H, ū). Since max L(b) < max L(a), there exists an M -chain
of factorizations (y0, . . . , yk) from y to y′ . Then (z, ūy0, . . . , ūyk, z

′) an M -
chain of factorizations from z to z′ .

4. v -noetherian G-monoids

Lemma 4.1. Let H be a monoid.

1. If p ∈ s-spec(H) , then

p =
⋃
q⊂p

q∈t-spec(H)

q.

2. s-spec(H) is finite if and only if t-spec(H) is finite.

Proof. 1. If a ∈ p , then aH is a t -ideal satisfying aH ∩ (H\p) = ∅ , and
by [17], Corollary 6.3, there exists some q ∈ t -spec(H) such that aH ⊂ q ⊂ p .
This implies one inclusion and the other one is obvious.

2. If t -spec(H) is finite, then s-spec(H) is finite by 1., and since s-
spec(H) ⊃ t -spec(H), the assertion follows.

Lemma 4.2. Let H be a monoid and a ∈ H . Then the following conditions
are equivalent:

1. a ∈ p for every p ∈ s-spec(H)• .

2. a ∈ p for every p ∈ t-spec(H)• .

3. Every non-empty s-ideal contains a power of a .

4. Q(H) = [H ∪ {a−1}] .

5. H = [[a]] .

Proof. The equivalence of 1., 3. and 4. was proved in [6], Lemma 4, and the
equivalence of 1. and 2. follows by Lemma 4.1.1.

1. =⇒ 5. If [[a]] �= H , then H\[[a]] ∈ s-spec(H)• and a /∈ H\[[a]] .
5. =⇒ 1. If p ∈ s-spec(H)• and a /∈ p , then [[a]] ∩ p = ∅ and therefore

[[a]] �= H .
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Definition 4.3. A monoid H is said to be a G-monoid, if there exists some
a ∈ H satisfying the equivalent conditions of Lemma 4.2.

Proposition 4.4. Let H be a monoid.

1. H is a G-monoid if and only if Hred is a G-monoid.

2. If H is a G-monoid and S ⊂ H a cofinal saturated submonoid, then S is
a G-monoid.

3. If H is a G-monoid and D is a monoid such that H ⊂ D ⊂ Q(H) , then
D is a G-monoid.

4. Let k ∈ N and let H1, . . . , Hk be submonoids of H such that H =
H1 × · · · ×Hk . Then H is a G-monoid if and only if Hi is a G-monoid
for every i ∈ [1, k] .

Proof. 1. If a ∈ H , then H = [[a]] if and only if Hred = [[aH×]] . Thus the
assertion follows from Lemma 4.2.5.

2. Let a ∈ H be such that H = [[a]]H , and let S ⊂ H be a cofinal
saturated submonoid. Then there exists some u ∈ S such that a |H u , and we
assert that S = [[u]]S . Indeed, if c ∈ S , then c |H an for some n ∈ N , hence
c |H un , and since S ⊂ H is saturated, we obtain c |S un whence c ∈ [[u]]S .

3. This follows by Lemma 4.2.4.

4. It suffices to consider the case k = 2. If a1 ∈ H1 and a2 ∈ H2 , then
it follows from the very definition that H = [[a1a2]] if and only if H1 = [[a1]]
and H2 = [[a2]] . Hence, by Lemma 4.2.5, H is a G-monoid if and only if H1

and H2 are both G-monoids.

Next we investigate monoids H for which s-spec(H) is finite in more
detail.

Proposition 4.5. Let H be a monoid.

1. If s-spec(H) is finite, then H is a G-monoid. In particular, every primary
monoid is a G-monoid.

2. s-spec(H) is finite if and only if s-spec(Hred) is finite.

3. If s-spec(H) is finite and S ⊂ H is a saturated submonoid, then s-
spec(S) is finite.

4. If s-spec(H) is finite and S ⊂ H is a submonoid, then s-spec(S−1H) is
finite.

5. Let k ∈ N and let H1, . . . , Hk be submonoids of H such that H =
H1 × · · · × Hk . Then s-spec(H) is finite if and only if s-spec(Hi) is
finite for every i ∈ [1, k] .
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Proof. 1. If s-spec(H)• = {p1, . . . , pr} and ai ∈ pi for all i ∈ [1, r] , then
a1 · · · · · ar ∈ pi for all i ∈ [1, r] . Therefore H is a G-monoid by Lemma 4.2.1.

2. If π: H → Hred denotes the canonical epimorphism, then the assign-
ment I �→ π(I) defines a bijective map s-spec(H)→ s-spec(Hred).

3. Let S ⊂ H be a saturated submonoid. It T ⊂ S is any submonoid,
then [[T ]]S = [[T ]]H ∩ S . Now, if p ∈ s-spec(H), then p̄ = H\[[S\p]]H ∈
s-spec(H), and

p̄ ∩ S = S\([[S\p]]H ∩ S) = S\[[S\p]]S = p.

Hence the finiteness of s-spec(H) implies the finiteness of s-spec(S).

4. By [17], Theorem 4.4 viii) and Theorem 7.2.

5. It suffices to consider the case k = 2. We shall prove that the divisor-
closed submonoids of S ⊂ H1×H2 are exactly the monoids S = S1×S2 , where
S1 ⊂ H1 and S2 ⊂ H2 are divisor-closed submonoids.

Clearly, if S1 ⊂ H1 and S2 ⊂ H2 are divisor-closed submonoids, the
S1S2 is a divisor-closed submonoid of H . Conversely, let S ⊂ H be a
divisor-closed submonoid. For i ∈ {1, 2} , let pi: H → Hi be the canoni-
cal projection. Then p1(S) ⊂ H1 and p2(S) ⊂ H2 are divisor-closed sub-
monoids, and S ⊂ p1(S)p2(S). We assert that equality holds. Indeed, suppose
that s = p1(s

′)p2(s
′′) ∈ p1(S)p2(S), where s′, s′′ ∈ S . Since p1(s

′) |S s′

and p2(s
′′) |S s′′ , it follows that p1(s

′) ∈ S , p2(s
′′) ∈ S and hence also

s ∈ S .

Example 4.6. A G-monoid possessing infinitely many prime s-ideals. Let
H be the additive monoid of all bounded sequences (ni)i∈N ∈ NN

0 . Then Q(H)
consists of all bounded sequences (ni)i∈N ∈ ZN , and if e denotes the constant
sequence with value −1, then Q(H) = [H ∪{e}] . Hence H is a G-monoid. For
every ν ∈ N , the sequence pν = (δν,i)i∈N is a prime element of H . Hence H
possesses infinitely many prime s-ideals.

Theorem 4.7. Let H be a v -noetherian G-monoid and H �= H× .

1. H is finitary and s-spec(H) is finite.

2. If (H: Ĥ) �= ∅ , then Ĥ is a Krull monoid, and s-spec(Ĥ) is finite.

Proof. 1. By Lemma 4.2.2, there exists some a ∈ H lying in all p ∈
t-spec(H)• . Since H is v -noetherian, we have v = t , and therefore t-spec(H)
is finite by [17], Theorem 24.2. Hence s-spec(H) is finite by Lemma 4.1.2.

Every v -noetherian monoid satisfies the ACCP and therefore it is archi-
medean. Hence it remains to prove that H has a finite almost generating set.

For every q ∈ t-spec(H), we consider the prime s-ideal

q
∗ =

⋃
p∈t-spec(H)

p�=q

p ∈ s-spec(H).
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By Lemma 3.2.4, there exists some aq ∈ H\H× such that H\q∗ = [[aq]] . In
particular, aq /∈ p for all p ∈ t-spec(H)\{q} , and therefore, by [17], Proposi-
tion 6.6 and Theorem 6.7, √

aqH =
⋃

p∈t-spec(H)
aq∈p

p = q.

Since H is v -noetherian, every q ∈ t-spec(H) is v -finitely generated. Hence
there exists some n ∈ N such that qn ⊂ aqH for all q ∈ t-spec(H).

We assert that

(H\H×)n ⊂ {aq | q ∈ t-spec(H)•}H,

whence {aq | q ∈ t-spec(H)•} is an almost generating set of H . Indeed, if
a ∈ H\H× , then there exists some q ∈ t-spec(H)• such that a ∈ q and hence
an ∈ aqH .

2. By [17], Theorem 24.8.(i), Ĥ is a Krull monoid, and hence it is v -
noetherian. By Proposition 4.4.3, Ĥ is a G-monoid, and by 1. s-spec(Ĥ) is
finite.

We do not know whether the assumption (H : Ĥ) �= ∅ in Theorem 4.7.2

is necessary. If H is a G-monoid, then ˆ̃H is completely integrally closed by
[6], Theorem 4, but Ĥ need not be completely integrally closed (see [12],
Theorem 3). However, we do not know of an example of a v -noetherian G-
monoid for which Ĥ is not a Krull monoid.

Recall that a monoid H is said to be seminormal, if the following condi-
tion is satisfied:

If x ∈ Q(H) and xn ∈ H for all sufficiently large n ∈ N, then x ∈ H.

The condition of seminormality plays a central role in order to obtain strong
results on the structure of the complete integral closure (see [21], [4] and [5]). In
particular, the complete integral closure of a seminormal v -noetherian domain
is a Krull domain (see [2], Theorem 2.9).

Here we show that for a seminormal G-monoid H we always have (H :
Ĥ) �= ∅ (a corresponding result for integral domains was proved in [4],
Lemma 3.8).

Proposition 4.8. Let H be a G-monoid and

j =
⋂

p∈s-spec(H)•

p.

1. If a ∈ j and x ∈ Ĥ , then there exists some k ∈ N such that akxn ∈ H
for all n ∈ N .

2. If H is seminormal, then Ĥ = (j : j) and j ⊂ (H : Ĥ) .
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Proof. 1. Suppose that a ∈ j , x ∈ Ĥ and let c ∈ H such that cxn ∈ H for
all n ∈ N . Since by Lemma 4.2 [[a]] = H , there exist b ∈ H and k ∈ N such
that ak = bc and therefore akxn = bcxn ∈ H for all n ∈ N .

2. It is sufficient to prove that jĤ ⊂ j . Indeed, then Ĥ ⊂ (j : j) and
the other inclusion follows by [17], Theorem 14.1. In particular, we obtain that
jĤ ⊂ H and hence j ⊂ (H : Ĥ).

Suppose that x ∈ Ĥ and a ∈ j . By 1.there exists some k ∈ N such that
akxn ∈ H for all n ∈ N . For n > k we obtain

(ax)n = an−k(akxn) ∈ aH ⊂ H

whence ax ∈ H by seminormality, and even ax ∈
√
aH ⊂

√
j = j .

Theorem 4.9. Let H be a monoid.

1. H is a v -noetherian G-monoid if and only if Hred is a v -noetherian
G-monoid.

2. Every saturated submonoid of a v -noetherian G-monoid is a v -noetherian
G-monoid.

3. If H is a v -noetherian G-monoid and S ⊂ H a submonoid, then S−1H
is a v -noetherian G-monoid.

4. Let k ∈ N and let H1, . . . , Hk be submonoids of H such that H =
H1 × · · · × Hk . Then H is v -noetherian G-monoid if and only if Hi

is a v -noetherian G-monoid for every i ∈ [1, k] .

Proof. 1. If π: H → Hred denotes the canonical epimorphism, then the
assignment I �→ π(I) defines a bijective map Iv(H) → Iv(Hred). Hence H is
v -noetherian if and only if Hred is v -noetherian. By Proposition 4.4.1, H is a
G-monoid if and only if Hred is a G-monoid.

2. Let H be a v -noetherian G-monoid and S ⊂ H a saturated sub-
monoid. By Theorem 4.6.1, s-spec(H) is finite. Hence s-spec(S) is finite by
Proposition 4.7.3, and therefore S is a G-monoid by Proposition 4.7.1. By [10],
Proposition 6.6, S is v -noetherian.

3. By Proposition 4.4.3., S−1H is a G-monoid, and by [17], Corol-
lary 24.1, S−1H is v -noetherian.

4. If H is a v -noetherian G-monoid and i ∈ [1, k] , then Hi ⊂ H is a
saturated submonoid and hence a v -noetherian G-monoid by 2. If H1, . . . , Hk

are v -noetherian G-monoids, then H is a G-monoid by Proposition 4.4.3, and
H is v -noetherian by [10], Proposition 6.7.

Corollary 4.10. Let H be a monoid such that Hred is finitely generated.
Then H is a v -noetherian G-monoid.

Proof. By Theorem 4.9.1 we may suppose that H is finitely generated,
say H = [u1, . . . , ur] . Then H = [[u1 · · · · · ur]] and, by Lemma 4.2.5, H
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is a G-monoid. By [17], Theorem 3.6, H is s-noetherian and hence v -noe-
therian.

Remark 4.11. 1. There exists a primary monoid H (whence |s-spec(H)•|
= 1 and thus H is a G-monoid) for which Ĥ is factorial (whence Ĥ a Krull
monoid) with finitely many non-associated prime elements and (H : Ĥ) �= ∅ ,
but H is not v -noetherian (see [9]). This example is in contrast to the Eakin-
Nagata theorem in ring theory (see [20], Theorem 3.7).

2. We consider the (multiplicative) monoid H = {1} ∪ 2N ⊂ N . We
assert that H is finitary and v -noetherian, but not a G-monoid. Obviously,
H is a reduced BF-monoid, which is finitary since (H\{1})2 ⊂ 2H . If p is a
prime, then Ip = 2pN is a prime s-ideal of H , but there is no a ∈ H lying in
all Ip . Hence H is not a G -monoid. In order to prove that H is v -noetherian,
we show that Iv(H) = {2aN | a ∈ N} ∪ {∅} .

Clearly, Q(H) = Q>0 . If ∅ �= X ⊂ 2N = H\{1} , then there exists some
a ∈ N and a subset X0 ⊂ N such that gcd(X0) = 1 and X = 2aX0 . Then
X−1 = a−1N and Xv = (a−1N)−1 = 2aN . Therefore X is a v -ideal if and only
if X = 2aN for some a ∈ N .

The monoid {1} ∪ 2N is the simplest example of a non-trivial abstract
congruence monoid (see [9]).

Proposition 4.12. Let H be a Krull monoid and U ⊂ H\H× an almost
generating set. Then we have p ∩ U �= ∅ for all p ∈ v-spec(H)• .

Proof. Assume to the contrary that

Ω = {p ∈ v-spec(H)• | p ∩ U �= ∅} � v-spec(H)•.

Then there exists an element a ∈ H such that a ∈ q for some q ∈ v-spec(H)•\Ω,
and we choose a in such a way that

d = |{p ∈ Ω | a ∈ p}|

becomes minimal. Since U is an almost generating set of H , there exists some
u ∈ H and n ∈ N such that an ∈ uH . Thus it follows that a ∈ p for some
p ∈ Ω, hence d ≥ 1, and we set

{p ∈ Ω | a ∈ p} = {p1, . . . , pd}.

For p ∈ v-spec(H)• , we denote by vp the p -adic valuation of Q(H) (see
[17], 26.4). For i ∈ [1, d] , we set vi = vpi(u) ∈ N0 and wi = vpi(a) ∈ N . By
construction, vp(u) = 0 for all p ∈ v-spec(H)•\{p1, . . . , pd} , and vq(a) > 0.
Let j ∈ [1, d] be such that

vj
wj

= max

{
v1

w1
, . . . ,

vd
wd

}
,
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and consider the element a′ = u−wjavj ∈ Q(H). We assert that a′ ∈ H
contradicts the minimal choice of a . Indeed, if i ∈ [1, d] , then vpi(a

′) =
−wjvi + vjwi ≥ 0, vpj (a

′) = 0, and if p ∈ v-spec(H)•\{p1, . . . , pd} , then
vp(u) = 0 and hence vp(a

′) = vp(a) ≥ 0. In particular, a′ ∈ H , vq(a
′) > 0, and

{p ∈ Ω | a′ ∈ p} ⊂ {p1, . . . , pd}\{pj},

a contradiction.

Corollary 4.13. Let H be a Krull monoid and H �= H× . Then the follow-
ing conditions are equivalent:

1. H is a G-monoid.

2. H is finitary.

3. s-spec(H) is finite.

4. Hred is finitely generated.

Proof. Since H is v -noetherian, Theorem 4.7 shows that 1. =⇒ 2. and
1. =⇒ 3. , and Proposition 4.5.1 shows that 3. =⇒ 1.

3.⇐⇒ 4. By Lemma 4.1.2, s-spec(H) is finite if and only if t-spec(H) =
v-spec(H) is finite. By [17], Theorem 23.4, H possesses a divisor theory. If
∂: H → D is a divisor theory, then D ∼= It(H), and It(H) is free with basis
v-spec(H)• (see [17], Theorem 20.5 and Corollary 23.3). Hence s-spec(H) is
finite if and only if H has a divisor theory with only finitely many prime divisors,
and by [14] Satz 1, this is true if and only if Hred is finitely generated.

2. =⇒ 3. Let U ⊂ H\H• be a finite almost generating set of H . By
Proposition 4.12, every p ∈ v-spec(H)• contains some u ∈ U . Since every
u ∈ U lies in only finitely many v -prime ideals of H it follows that v-spec(H)
and hence also s-spec(H) is finite.

We close with a few remarks concerning integral domains. If R is an
integral domain, then we denote by R• = R\{0} its multiplicative monoid and
by R# = R•/R× the associated reduced monoid. The d -system on R• is
defined by Xd = R〈X〉\{0} . Thus a subset a ⊂ R• is a d -ideal if and only
if a ∪ {0} ⊂ R is a usual ring ideal. The domain R is called a G-domain, if⋂

p∈d-spec(R•)• p �= ∅ (see [13], §31 for the theory of G-domains). Since d is a

finitary ideal system on R• , Proposition 11.6 in [17] implies that

⋂
p∈d-spec(R•)•

p =
⋂

p∈t-spec(R•)•

p.

Hence R• is a G-monoid if and only if R is a G-domain. If R is a one-
dimensional semilocal domain, then d-spec(R•)• = {p1, . . . , pk} is finite whence
{0} �

∏r
i=1 pi ⊂

⋂r
i=1 pi and R is a G-domain.
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An integral domain is called a Mori domain if it satisfies the ascending
chain condition on divisorial ideals. For a survey article concerning recent results
on Mori domains we refer the reader to [3]. Note that an integral domain R is a
Mori domain if and only if R• is v -noetherian. Hence if R is a one-dimensional
semilocal Mori domain, then R• is a v -noetherian G-monoid. We summarize
our discussion in the following result.

Proposition 4.14. For a noetherian domain R the following conditions are
equivalent:

1. R is a one-dimensional semilocal domain.

2. R• is a G-monoid.

3. R• is finitary.

Proof. 1. =⇒ 2. follows from above and 2. =⇒ 3. from Theorem 4.7.1. To
verify 3. =⇒ 1. , let U ⊂ R•\R× be a finite almost generating set of R• . The
set P of minimal prime d -ideals lying over some u ∈ U is finite and by Krull’s
principal ideal theorem every ideal in P has height one. If x ∈ R•\R× , then
xM(U) ∈ p for some p ∈ P whence x ∈ p . Thus if m ⊂ R is a maximal
d -ideal, then m ⊂

⋃
p∈P p whence m ⊂ p . Therefore R is one-dimensional and

semilocal.

Proposition 4.14 does not stay valid any longer for Mori domains, as we
point out in the following remark.

Remark 4.15. 1. There are Mori domains in which Krull’s principal ideal
theorem does not hold: let k be a field and A = k + Xk [X,Y ] where X and
Y are indeterminates. Then A is a Mori domain, the ideal M generated by
{XY n | n ∈ N0} is a prime ideal which is minimal over X but has height two
(see [1], Example 3.6 (c) ).

2. Let R be a Mori domain, a ∈ R and p ⊂ R a prime d -ideal which is
minimal over a and has height greater than one. Then Rp is a Mori domain,
not one-dimensional and pp = Rp\R×

p is the only prime d -ideal lying over aRp

whence it is a v -ideal by [17], Proposition 6.6. Therefore we have
√

aRp = pp

and by Lemma 3.1.2 there is some n ∈ N such that (Rp\R×
p )

n ⊂ aRp . Thus
R•

p is a finitary monoid and {a} is an almost generating set. Note that R•
p is

not a primary monoid, since Rp is not one-dimensional.

We close with a further example of v -noetherian G-monoids arising in
the theory of non-unique factorizations.

Example 4.16. Local monoids in noetherian weakly Krull domains are v -
noetherian G-monoids. Let R be a noetherian weakly Krull domain (cf. [16]),
i.e. a noetherian domain such that

R =
⋂

p∈X(R)

Rp
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where X(R) denotes the set of height one prime ideals of R . Then the canonical
map

Φ: R# →
∐

p∈X(R)

R#
p

is a divisor homomorphism (note that for every r ∈ R• we have r ∈ R×
p for all

but finitely many p ∈ X(R)). Let x ∈ R# and V (x) = {p ∈ spec(R) | x ∈ p} .
Then

[[x]]R# ⊂ R#

is called the local monoid belonging to x . These monoids are studied in detail
in [19], section three. It turned out that

[[x]]R# = {y ∈ R# | V (y) ⊂ V (x)} = {y ∈ R# | V (y) ∩ X(R) ⊂ V (x) ∩ X(R)}

and that

Φ |[[x]]
R#

: [[x]]R# →
∏

p∈V (x)∩X(R)

R#
p (∗)

is a cofinal divisor homomorphism whose class group is a subgroup of the
class group of R ([19], Proposition 3.2 and Theorem 3.4). Since each Rp is

a one-dimensional, local noetherian domain, R#
p is a v -noetherian G-monoid

by Proposition 4.14. Since V (x) ∩X(R) is finite, (∗) and Theorem 4.9.2 imply
that the local monoid [[x]]R# is a v -noetherian G -monoid.

Local monoids allow to obtain finiteness results for arithmetical invari-
ants (such as the catenary degree or local tame degrees) under very moderate
finiteness assumptions on the class group of R (see [18], Section 5 and [19],
Section 4).
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