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ON LONG MINIMAL ZERO SEQUENCES
IN FINITE ABELIAN GROUPS

WEIDONG (GAO* (Betjing) and ALFRED GEROLDINGER (Graz)
[Communicated by: Attila Pethd]

1. Introduction

Additive number theory, graph theory and factorization theory provide in-
exhaustible sources for combinatorial problems in finite abelian groups (cf. [Mal,
Ma2, E-G, D-M, Na, An|}). Among them zero sum problems have been of growing
interest. Starting points of recent research in this area were the Theorem of Erdds—
Ginzgburg-Ziv and a question of H. Davenport on an invariant which today carries
his name..

This paper centres around the following problem: let G be a finite abelian
group and D(G) Davenport’s constant of G {cf. Section 3}. Consider a long minimal
zero sequence resp. a long zerofree sequence S; where in this context long means
that D(G) — |S]} is small. What can be said about the structure of §7 There are
simple, well known answers for cyclic groups and elementary 2-groups (cf. Propo-
sitions 4.1 and 4.2). QOur aim is to derive similar results for more general groups.
In Section 5 we study the action of the automorphism group and in Section 6 we
ask after the order of elements in §. If the rank of 7 is large, then all elements of
S may be pairwise distinct (Section 7). Conversely, if the exponent is large, then
one element occurs with high multiplicity (Section 8). In Section 9 we develop a
polynomial method which will be applied successfully to elementary p-groups in
Section 10.

Most of the raised problems seem to be deep and we just can provide first
answers. However, such structural questions arise naturally e.g. in {actorization
theory. Furthermore, solutions to them will allow further progress in determining
Davenport’s constant, a starting problem in this area (cf. Properties B and C in
Section 10).
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2. Notations

Let N denote the non-negative integers, N the positive integers and P C N,
the set of prime numbers. For a prime p € IP, let vp: Ny — N denote the p-adic
exponent. Then n =[] p p¥* (") for every n € Ny .

Throughout, finite abelian groups wil! be written additively. Forn € Ny ,Cp =
Z/nZ denotes the cyclic group with n elements. Whenever it is convenient, the ele-
mentary abelian p-group Cy with p € P and r € Ny will be viewed as r-dimensional
vector space over the fleld F, .

Let G be a finite abelian group. Then G = Cp, @ --- & C,. with 1 <
n1l ... |ns, where n. = exp(G) is the exponent of @ and r is the rank of G .
Indeed, r is the maximal p-rank of G resp. the minimal number of generators of G .
An {ordered) basis of G is an r-tuple (ei,...,e,) with ord{e;) =n; for 1<i<r
such that G = @]_, (e;) . Then every g € G has a unique representation

9= wvlge
k=1

with vz (g) € {0,...,np— 1} for 1<k <r,

In general, our notations and terminology will be consistent with the usual
one in factorization theory (cf. the survey articles by Chapman, Halter-Koch and
the second author in [An]). Let 7(G) denote the free abelian monoid with basis G .
The elements of F(G) will be called sequences. The monoid homomorphism

o F(Gy-—— G

! {
S = ng/ = Zgu
v=1 v=1

maps a sequence to the sum of its elements, Let S = Hi:z gv € F(G) be a sequence.
Then 5 has a unique representation of the form

S=1] ¢ e F(G)
9EG

and | S| = Zyequ,(S) = ! € N is called the length of S. We say that T € F(G) is
a subsequence of § (T divides S, S contains T ) and write T'| S, if v,(T) < vg ()
for every g € G (equivalently, ST~! € F(G)). As usual, we say that T,7" € yatey
are disjoint subsequences of S, if their product 77 divides S. Furthermore, we set

ged(S,T) = H gmin{ve($).vq(T)}
9€G

The identity element 1 € F(G) will be called the empty sequence, and we have
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[1| = 0. As usual, let
2(S) = {¢(T) | T a non-empty subsequence of S}

={>al0£1c{1,....0}

vel
= {Z meg |0 < my < 4y(8), Egeamy > 0}
gEG
denote the set of sums of non-empty subsequences of 5. We say that the sequence
Sis
squarefree, if v,(S) <1 forevery g€ G,
zerofree, if 0 & L(S),
a zero sequence, if g{9) = Zi}:l gu=0,
a minimal zero sequence, if it is a zero sequence and each proper subsequence
is zerofree,
a short zero sequence, if it is a zero sequence with 1 < |5| < exp(G).

In factorization theory zero sequences are called blocks. The set of blocks
B(G) = Ker(o) is a submonoid of F(G). Its irreducible elements are just the
minimal zero sequences, whose set will be deroted by U(G) . For more information
the reader is referred to [Ch] and the survey articles in [An|, in particular to [Ch-Ge].

For every 1 < k < r we set

!
w(S) =Y wlg) € N.
=1

Clearly, S is a zero sequence if and only if
v (5) =0 mod ng

foralll <k <r.

Every group homomorphism ¢: G — H extends in a canonical way to a
homomorphism

w: F(G) = F(H)
t !
S=1]o~ I e
v=1 w=1

and obviously, || = |¢(85)].

3. Davenport’s constant

In this section we summarize simple facts and well known theorems on Dav-
enport’s constant which will be used in the sequel without further quoting. A new
result will be given at the end of the section.
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For a finite abelian group G Davenport’s constant D(G) is defined as the
minimum of all d € Ny such that for every sequence S € F(G) with {S| > d it
follows that 0 € Z(S).

We set.
UGy ={s eu(& 18] = D(G)}.

LeMMA 3.1. Let G be a finite abelian group.

D(G) = max{| S| | S e U(@)}
=1+max{|S] | S € F(G),0¢(S)}
=1+max{|S| | S € F(G),E(S) =G\ {0}}.

2. IS =129 g, UG), then G = (g1, .., 9p(6)-1) -
3. If H < G is a proper subgroup, then D(H) < D(G) .

Proor. 1. Obvious.

2. Let §= Hf(?) g, €U(G). Then T = HD(G) ! g, is zerofree and (T =
G\{O} whence G =< $Ns-- 9D -1 > -

3. For every zerofree sequence S € F(H) and every g € G\ H the sequence
g5 € F{@) is zerofree which implies the assertion. O

For a finite abelian group G = Cp, ® - B Cp, with 1 <ny|... |n, we set

M(G) = 1+i(ni ~1).

g=z]

PROPOSITION 3.2, Let G=Ch, @ - @ Cy, withl<ny|...|n,.

1. M(G) < D(G) < 1+ exp(G) (1 + togg(giﬁ) .
2. If G is a p-group or r < 2, then M(G) = D(G).

Proor. 1. If (e1,...,€e,;) is a basis of G with ord{e;) = n; for 1 <: <r,
then § = []l_, e}~ is zerofree whence M(G) < D(G). The upper bound was

first proved by van Emde Boas and D. Kruyswijk (E-K], see also [A-G-P; Theorem
1.1} and [Me].

2. This was proved independently by J.E.Olson and D. Kruyswijk (cf. [OI1,
012, E1}). O

There are groups with M{G) < D(G) (cf. [G-S1} and [Ma]). However, the
reason for this phenomenon is completely unclear. It is unknown, if M(G) = D{(G)
holds for all groups of rank 3 (cf. Property B and [Ga5]}). Furthermore, it is
not known if there exists an n € N4 such that M(C3) < D(C}) (which implies
M(C%) < D(CF) for every 7 > 5) cf. [A-F-K; Conjecture A.5], [A-D1; Theorem 1.1]
and [B-S]. Against this background the following result should be seen.
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THEOREM 3.3. M(Ci@C574) < D(CiaChy ) for every odd n > 3 and every
2<i<4,

Proor. Let i € {2,3,4} and let n > 3 be odd. Further let (e;,...,e5) be a
basis of G = C} @ C2-* with ord{e;) = -+ = ord(e;) = 2 and ord{e;) = -+ =
ord{es} = 2n. We construct a sequence § with [§] =i+ 56— 2n-1D+1=M(G&),
and it has to be shown that 0 ¢ £(5). The cases ¢ = 3 and i = 4 were settled in
[G-S]. Hence we just have to consider the case i = 2.

We define g; = e1 +ejug for 1 <5 <3, =e3 +ej ford <j<6,97 =
es+ dey — Bes, gs = e; + 2ey — 2e5, 99 = ez + 2e3 + ey — Bey and gig = e + (n —
eg + (n+ 3les . We set

7
S=1]gi " %" *gi5 >
i=1

Assume that there are ly,...,lz € {0,1},l5,ls € {0,...,2n — 2} and lio €
{0,...,2n — 3} such that 370 %4 > 0 and 3,2, lig: = 0. This gives the following
system of congruences.

I L+l+ls+1ls =0 mod 2.

II ly+1s+1s+1ls + 110 =0 mod 2.

II I+l +17 + 20 =0 mod 2n.

IV Iy +15 + 307 + 2lg + 3lg + (n ~ 1}l1o = 0 mod 2n.

Vv l3‘|“£6—517—218—5194'(’”4‘3”10EO mod 2n.

Weseta=l +li+17+2ls. Since 0 < a <3+ 2(2n—2) =4n— 1, equation
IIT implies that o« € {0,2n}.

CASE 1. a=0. Thenly =1y =1 =1y = 0. Hence lo = I3 by IV, and
I3 = lg by V. Adding IV and V we obtain 2iy + 2I3 + 2l10 = 0 mod 2n, and thus
la + 13+ g = 0 mod n. From this we infer that Iy + I3 + l;1p € {0,n}. Since
Iy + I3 +11p is even by equation II, it follows that Iy = I3 = {35 = 0. Finally [ and IV
imply that I3 is even and 2{s = 0 mod 2n, and so Ig = 0. This is a contradiction

10
to Ei:l i;>0.

CASE 2. ¢ =2n. Adding III, IV and V we obtain

bﬂll +I2+l3+l4 +l5+l6—£7+2110 =0 mod 2?’?,,

and therefore b € {0,2n,4n}.
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Assume b = 0. Then l14 = 0. From Iy = 1, we infer that Iy = n — 1 and
[o =1y =0; then IV implies 3 = 0 mod 2, a contradiction. From I» = 0 it follows
that Iy = . =1l =0 and Iy =n; hence n = 0 mod 2 by IV, a contradiction.

Assume b=4n. Then lip = 2n—3,l; =--- = lg =1 and Iy = 0. Therefore
lg = n—1, and IV implies

2423+ {n-3)-3n+3=0 mod2n.

Hence 2lg + 2 = 0 mod 2n and thus [s = n — 1. Finally I gives 3+ {n~1) =0
mod 2, a contradiction.

From now on we assume b = 2n and distinguish the cases l; = 0 and iy =1.

CASE 2.1. l;=1. Sincea=2n,weobtainly +{, =1, lg=n—1, and
therefore l1g = n— bﬂﬁ‘é‘—’ﬁﬂﬁ . Then IV vields la+15 =1, and V yields I3+ = 1.
Hence l1g = n — 1, and we consider IV:

1+3+2+n—-3—-n+1=2l3+2=0 mod 2n.

From this we conclude that I3 = n —1. Finally we add I and II to obtain 3 +3(n —
1) = 0 mod 2, a contradiction,

CASE 2.2. I; = 0. Since ¢ = 2n, we obtain §) = Iy, Iy = n —{;, and
therefore lyg = n — Iy — &thatlatle  Then IV yields I + 1y + 5 = 1, and V yields
ll+l3+f(5 =1. Ifl]_ =1, then I = Iy =13 =1 zD,lg = lip =n—1, and from
IIit follows 1 + 2(n — 1) = 0 mod 2, a contradiction. Thus {; = 0, which implies
lg =nandlip =n—-1. Adding I and IT it follows 2+ s + n + (n 1) = 0 mod 2
ie. Iz is odd. Considering IV we obtain

1+2l+n—n+1=0 mod 2n,

which implies Ig = n ~ 1 =0 mod 2, a contradiction. D

4. Tools

PROPOSITION 4.1. Let G = CT withr > 1 and § € F(&).

1. S is zerofree if and only if § = Hle e; where ey, ..., e, are linearly indepen-
dent over Fy .

2. S e U*(@) if and only if S = [[[_,e: where (e1,...,e;) is a basis of G and
€p = Z::l E; .

Proo¥r, Obvious; a detailed argument may be found in [Ge2; Lemma 3.10].
O

PROPOSITION 4.2, Let G =C,, withn > 2 and S € F(G).

1. Suppose that S is zerofree of length |S| > %L . Then S contains some g € G
with v,(8) > 2|S| —n + 1. Furthermore, if |S| > 3 — 1, then ord(g) =n.
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2. If § is zerofree, then |{h € G| S contains h}| <n —|S].
8. S cU*(G) if and only if S = g™ for some g € G with ord(g) =n.

PROOF. 1. is proved in [B-E-N] and [Ga3; Lemma 2]. 2. and 3. are conse-
quences of 1. 0

For a finite abelian group G let n(G) denote the smallest integer / € N, such
that every sequence S € F(G} with | S| > ! contains a short zero subsequence.

LEMMA 4.3. Let G = C, & C,, for some prime p. Then we have

L 9(C, ®Cy) <3p—2,

2. Ewvery sequence in G of length 3p — 2 contains a zero subsequence of length p
or 2p,

3. Bvery zero sequence § € G with |S| > 2p contains o short zero subsequence.

ProoF. 1. and 2. see {012; Lemma 1.1].
3. This follows from [Gad; Lemma 7) (with # = C, and n = p). O

LEmMA 4.4, 9(Cr, & Crn)} < 3m -~ 2 for every m > 2.

ProoF. Let m > 2. We proceed by induction on the number of prime divisors
on m. If m is a prime, the assertion follows from Lemma 4.3. Suppose m = m;ms
with I < m;,ma < m and consider the exact sequence

0 — Cpy ©Crmy — C @ Cpy =5 Chy @ Cipy ~— 0.
Let S € F(G) be given with || = 3m — 2. Since
3m—2=(3m; ~3)mas + 3mz — 2 and 7(Cp, ® Cpr,) < g — 2

we can find 3my — 2 disjoint subsequences Si, ..., S3m, —2 of § with |S;| < mao and
g{p(8;)) =0 for 1 <i<3m; —2. Thus

G‘(S]_), cee ,O’(S;gmlfz) c Ker(go).

Since 7(Cm; ®Cm,) < 3my —2 there is asubset 7 C {1,...,3m; — 2} with 7] < my
such that [[;c; o(S;) is a zero sequence in Ker(w) C C, & C,y . Therefore ITic, S
is a zero subsequence of § with

IHS‘|:ZE5f|Sm1mz:m. (]

iel &7

PROPOSITION 4.5. Let G be a finite abelian group and S € F(G).

L. If|S] > |G|, then S contains a zero subsequence T with |T| < max{v,(S) |
g€ @G}
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2. If |S| > |G|, then S contains a zero subsequence T with |T'| < max{ord(g) |
g € G with v,(S) > 0}.

3. If|8| 2 |G| + exp(G) — 1, then S contains a zero subsequence T with |T| =
exp(@) .

Proof. 1. and 3. are proved in [Ga-Y]. 2. is a trivial consequence of 1. [

5. The action of the automorphism group

Let G be a finite abelian group. Then the endomorphism ring End{G) acts
on F(G) and on B(G). The automorphism group Aut(G) C End(G) acts even on
U(G) and on U*(G). For § € F(G) and 7 € Aut(G) we write ST instead of 7(5).

In this section we deal with the following question: determine the groups G,
for which Aut(G) acts transitively on U*(G) (i.e., for each two sequences §,.5" there
exists some automorphism T with §7 = §'). We answer the question for p-groups.

THEOREM 5.1. Let G = Chp, @---&Cp, be a finite abelian group, (e1,... &)
a basis of G,eq = Yo7, ¢; and A = e [[;_ el € U(G) = {S € UG]S =
M(G)}. Then the following conditions are equivalent:
a} uJ(G) — AAut(G) ,

b) G is either cyclic, an elementary 2-group or G € {C3 & C3,C2 ® C4}.

PROOF. b) = a) For cyclic groups and elementary 2-groups the assertion
follows from Propositions 3.2, 4.1 and 4.2.

Suppose G = C3 @ C3 and S € I'(G) . Since by [M-W; Theorem 3.4] S is not
squarefree, it follows that S = gfg2S' with g2 # {g1). By checking all possibilities
it follows that S’ € {galg1 + 92),(2g1 + g2)?} which implies the assertion.

Suppose G = Co @ Cy and S € U'(G}. @ has four elements of order four and
every sum of two such elements is either zero or has order two. Since D{C> ®C) =3,
it follows that 5 = hHLl g; with ord(h) = 2 and ord(g:) == -+ = ord{gs) = 4.
Because Hj=1 g; is zerofree, one element, say g = g1, occurs three times. Hence
S = hg®(g + h), which implies the assertion.

a) = b) Suppose that G is neither cyclic nor an elementary 2-group and
Gg{C®Cyq,C5®C3}. Then G = HaC, =(H,e,) withn = exp(G) > 3. Let
14, hs € U(H) with d = M(H).

For every h € H we set

d-1
S(hy =[] hi- a3 (h + en)(=h + en)(ha + en) € U'(G).

=1

It is sufficient to find some h € H \ {0} such that S(k) ¢ SAHC} with § = S(0}.
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CASE 1. |H| > 4. Take some h € H \ {0,hg,—hy}. Then for.every 7 €
Aut{@F) we have

Hg € Glug(S7) > 0} = [{g € Glvg(S) > 0} < [{g € G| ug(S(R)} > 0}
and hence S{h) # 57.

CASE 2. |H|{ € {2,3}. Then hy = - = hy,d = |H| and n > 6. Then for
every 0 # h € H we have :

max{vy(S)|g € G} =n--1>n~3 = max{v,(S(h)) |y € G}
and thus S(h) ¢ SAWSE) O

COROLLARY 5.2. For a p-group G the following conditions are equivalent:
a) Aut(G) acts transitively on U*(G),
b) G is either cyclic or an elementary 2-group or G € {C%,C & Cy}.

PROOF. Since for a p-group G Proposition 2.2 implies that U4*(G) = U'(G},
the assertion follows immediately from the previous Theorem. O

6. The order of elements in long minimal zero sequences

Let G be a finite abelian group. All explicitely constructed, minimal zero
sequences S € U{G) with |S| > M(G), which hitherto appear in the literature
(cf. [E1], [E2], [E3], [E-K], {Ma], [G-S1]}, and all such sequences in this paper (cf.
the proofs of the Theorems 3.3, 5.1 and 7.3) share the following property: they
contain elements of order exp(G) . Even more, some of them consist entirely of such
elements. We start with the following conjecture which will be proved to hold true
in various types of groups in Theorem 6.4.

CONJECTURE 6.1. Let G be a finite abelian group and S a minimal zero
sequence with | S| = D(G) . Then S contains some element g € G with ord(g) =
exp{G) .

A related question for a weighted form of Davenport’s constant is studied in
[G-82]. A local version of 6.1 can be verified easily as the next result shows.

PROPOSITION 6.2. Let G be a finite abelian group and S a minimal zero
sequence with | §| = D(G). Then max{u,(ord(g))|g € Gwithg|S} = v, (exp(G))
for every primepc P.

ProoF. Let T be a minimal zero sequence and suppose that there is a prime
p € P such that max{v,{ord(g)) | g € Gwithg| S} < v,(exp(G)) .



188 GAO and GEROLDINGER

It is sufficient to construct a sequence T’ € /(&) having the following prop-
erties:

a) IT| < |T'] .

b) max{v,(ord(g)) |g| 7} < max{v,(ord(g)}|g|T'}.

¢) max{v, (ord(g)) | g| T} = max{v,{ord(g)) | ¢ |7’} for all primes g € P\{p}.
Set T = H‘:'.;l g: with vy(ord{gy)) > --- > vy(ord(g)) and choose an element

g0 € G with ord(go) = p' " (oratn) . It is easy to check that

i
T =gt (g~ (- ] o

=2
satisfies the required properties. |

PROPOSITION 6.3. Let G = Cp, @ Cy, with 1 < | n and S ¢ minimal zero
sequence with |S| = D{G).
1. For every g € G with g | S we have m | ord{g).
2. If m < n and p is the smallest prime divisor of I, then S contains at least

m+n—2 (2'”—;-2 + 1) > m elements of order n.

ProoF. 1. Set S = ¢T.

First we deal with the case n = m and assume to the contrary that ord(g) =
| < n = lk. Consider the canonial epimorphism ¢ : €, & C,, = Cp @ O} and the
sequence p(T). Since |T| = 2n—2 = (21-3)k+(3k—-2) and n(C, ®Cy) < 3k-2 by
Lemma 4.4, there arc 2] — 2 disjoint short zero subsequences @(S1}, ..., »(Sz-2) of
o(T) € F(Cr®dCy). Set Sp—y =g. Then o(S;) € Ker(g) for 1 <i < 20—1. Since
Ker(p) ~ C; @ C) and D(C; ® Cy) = 20 - 1, there exists some § # I € {1,...,2 -1}
such that 3 ,o; 0(8:) = 0 € Ker(y). Thus [],c; S: is a proper zero subsequence of
S, a contradiction.

Suppose now m < n and consider the exact sequence
0 — Ca <> Cp @ Cp = O @ Cp — 0.
Then [T|=m+n—2=m (2 -2) + (3m — 2} and since 7{Cn ® Cpn) < 3m -2

ki

there are 2 — 1 disjoint short zero subsequences (S51),. .. yp(Sa_1) of o(T). Set
T=25 Hi;l 8, and consider the sequence (g - Sp). Clearly, ¢{g - Sp) is a zero
sequence with length

-

n

le(g- So)l = lg - Sol = 1+|T] - Z} T2 1+ m+n-2— (= -1)m=2m-1.

1= .
Since H;‘il_l o(S;) is a zerofree sequence in F(Ker(yp)) and D(Ker(yp)) = &, it
follows that ¢(g-Sp) is a minimal zero sequence. Therefore, the case m = n implies
that ord((g)) = exp(p(G)) = m whence m | ord(g).
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2. Suppose m < n, p the smallest prime divisor of — and consider the exact
sequence
0—=Cn®Cn > Cmn®C, 5 Ca — 0.
We write S in the form 5 = T-U where T is the subsequence consisting of elements g
with ord(g) <n. Hence,if g | 7', then by 1. m | ord(g) | n = mZ. By assumption,
3"—@ is a proper divisor of > whence Mﬂ < . Therefore ord(g) < 2 » Whence
ord(np( )} £ 2. Assume that

T > — (2m ~2) + —.
mp m

By Proposition 4.5 (part 2.) there exist 2m 1 disjoint zero subsequences {Ty), ...,
©(Tom—1) of p(T) with length [(T3)| < . Since 7' = H2m1 Lo(Ty) € F{Ker(p))

and D(Ker(p)) = 2m — 1, T' and hence Hzm YT} contains a non-empty zero
<2mb <n<n+m-—1=]|S whence

2m—1
subsequence. However, |]_[t’_"i T;
2m—1
T ™~ T} is a proper subsequence of S, a contradiction.

=1
Therefore, we infer that
Ut =1S| - |T|
>(m+n~1) - (£(2m~2)+%—1)

2 2
>m+n——(m +1)2m. O
m ¥y

THEOREM 6.4. Congjecture 6.1 holds for the following groups G :
a) G is @ p-group,
b) G is cyclic,
¢) G has rank two,
d) G is a direct sum of two elementary p-groups.

PROOF. a) follows from Proposition 6.2, b) from Proposition 4.2 and ¢) from
Proposition 6.3.

d) Let G =Cra@Csand 8 =TI5 a; 1, 6: [, & € U*{(G) with p,g €
P,r,s € No,kl,m € N,ord(a;) = p, ord{b;) = ¢ and ord{c;) = pg. Then Lemma,
3.1 implies that m > 1. O

7. Groups with large rank

Let G be a finite abelian group. Let D (G) be defined as the minimum of
all d € N such that for every squarefree sequence S € F(G) (equivalently, every
subset S C G) with |S| > d it follows that 0 € X(S). This invariant was first
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studied by Erdés and Heilbronn in 1964, for recent progress we refer to a paper by
Hamidoune and Zemor (cf. [E-H, H-Z, Wh]). Note that by the very definition we
have D,(G) < D(G).

In this section we show by an explicit construction that groups with large
rank r {e.g. with r > 2exp(G)) have squarefree minimal zero sequences of length
M(G). As a consequence we obtain that D,(G) = M(G) for p-groups with large
rank.

LeMMA 7.1. Let G be a finite abelian group of order |G| > 2.
1. There erists a squarefree zero sequence S € F(G) with |S| = |G| - 1.
2. Let0#£ g e€Goandl <k < J%L — 1 withk # 2, if G is an elementary

2-group. Then there exists a squarefree zero sequence S € F(G) with go 1 S
and | S| =k.

PROOF. Let r be the 2-rank of G and |G| = 2"m.
1. Ifr#1,weset g =0;ifr =1, let g’ denote the unique element of order

2. Then
S= J] geF®
geG\{7'}
satisfies the required properties.
2, fk =1, weset S =0¢€ F(G). From now on suppose k > 2. We
distinguish two cases.

CASE 1. (7 is not an elementary 2-group. Then m > 2 and for G' = {g €
G |ord(g) > 3} we have
G
G = |G| -2 =2 (m~1) =2t > %
with t € N+ . Set
G = {~gi,g:|1 <i <t}
and suppose gg = g1, if go € &' . Let k € {2,...,2t — 1} . For even k define
k/2
S = H(—Qi < 9s)
i=1
and for oddk define
(k—1)/2
S=0- J] (~gi-9)-
i=1

Clearly, S is a squarefree zero sequence of length k with go t 5.

CASE 2. @ is an elementary 2-group. Hence G = Cj and let (go =
€1,€2,...,€,) be a basis of G. We treat the case k = 3. Since

G| -1
< Ll 1=92 o
3< 1,
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it follows r > 3. Clearly, S = e2 - e3 - (€3 + e3) has the required properties. Now it
is sufficient to verify the following assertion.

Assertion: for every r > 4 and every k € {4,...,2"7! — 1} there exists a
squarefree zero sequence S € F(C5) with e t S5, |S| = k,0¢t S for even k and
0] S for oddk.

We proceed by induction on r. Let r = 4. For every k € {4,...,7} the
following sequence S, have the required properties:

Ss = (ea +eq)(es +eq)(ea +e3 +eq)ea,
Se = (e; +ea+e3)eztes)(er +ea+es+eq)er-ez ey,
S5=0'S4 and 57:0‘86.

Let r > 5; we conclude from r — 1 to 7. Obviously, it suffices to show
the assertion for even k. Let 4 < k =21 < 2" 1 — 1., If k = 4resp.§, take § =
S, resp.S = Sg as above. Suppose k > 8; then 4 < I € 2('—1~1 —1 and by induction
hypothesis there exists a squarefree zero sequence 5" = Hi:l a; € Fller,...,ep—1))
with e; 4+ 57,0t .5 for even [ and 0|5’ for oddl.

If [ is even, then
I !

$ =T e [(ai +en)
) =1 i=1
satisfies the required properties. Let ! be odd, suppose a; = 0 and choose some
beler,...,en1}\ {0,0.2,...,(1; 8] —@3,03 — Q3,...,0; —az2}. Then
I !
S=elb+e)(as+b) [Jai- [[lai+er)

i—=3 i=2

1

has the wanted properties.

PROPOSITION 7.2. Let G = Cp, @@ Ch, with 1 <mi|...|nr and I
@icrCn; with I € {1,...7} such that [[t, ni > 2ngs for every max{i|i € I}
k < r — 1. If there exists a squarefree zerofree sequence T € F(H) with |T |
M(H) — 1, then there exists a squarefree zero sequence S with | S| = M(G).

nin i

PROOF. It is sufficient to consider the case G = H@C,, where ged{n, exp(H}} =
min{n,exp(H)}, M(G) = M(H)+n—1and |H| > 2n. Then the general case follows
by induction.

Let H;;I a; € F(H) be a squarefree zerofree sequence with d + 1 = M(H).
Set by = — Ele a; and G = H® < e, >. By the previous lemma there exists a
squarefree zero sequence H?;f b, € F(H) such that bg # b; forevery 1 <4< <n-1.
Then, obvicusly

d n—1
S = Hai H(b; +€n)
i=1 i=0

is a squarefree minimal zero sequence with [ S| = M(G). O
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THEOREM 7.3. Let G = Cp, & - D C,,, ® CE withr > 0,8 > 0,1 <
ni|...|neln and ne. #n. Ifr+ 5 > n, then there exists a squarefree S € U(G)
with | S| = M(G).

Proor. Set n,1 = =npqsqp =ng=nand let (e, ....€m 15 Crpsp1 =
¢p) be a basis of G with ord(e;) = n; for 1 <i < r+s+1. By Lemma 7.1 there exist,
for every 1 < i < 7+ s, squarefree zero sequences A; = [[77 agl) ep € F(< ep >)

=1
with ept A4; if n; < n. Define

rts
s =1 s € F@)
i=0
where
ni—1 ]
S; = H (e; +a§”eg) for 1<i<r+s
=1
and
min{r n-—-1} n—1l—r s
Sy = H (E.’j + 60) H {6r+2jA1 -4 ers2 + 30) . ( Z ej + 80)
7=t g=1 j=max{n 2n—1—r}

We verify that S has the required properties. Clearly,
r+4s r+s

|S| = ]50] +le,-| =n+Z(ni—-l)=M(G).

For every 1 < i < r + s we have
(S =vi(9) +w(S)=(m;—~ 1) +1=0 modn,

and
r+sni—-1

vo(S) = Z Z ag.i) +15p{Sp) =0 modn.

=1 j=1
Hence S is a zero sequence.
For every 1 < i < r + s, the sequence 5; is squarefree since |4;| = |S;| =
— 1. By construction, []}" +5 S; and Sp are squarefree.

Since eg 1 A; for 1 <4 < r, it follows that ged (1‘[;’:19 S;, Hmln{r 1 ey o
eo)) = 1. Clearly, ged (]’[::13 S;, H?:_;_r(er-ﬁ-Qj—l Feres; + 60)) — 1 Set

r=+s

g= > ej +eo;

j=max{n ,2n—1—r}

ifr=nand s=0,then g =e, +eot [[I25S:, since eg } A, = A,. In all other
cases, our assumption r+ § > n implies

r+s— (max{n,2n~1-7r} 1) >2
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and hence gt [[717 S; . Therefore, gcd(HZf S; ,SO) = 1 and hence S is squarefree.

It remains to show that S is a minimal zero sequence. For every 1 < ¢ < r+s,

r+s
(HS) —?_Ll i —-niwl.

For every g € G with g| HH"?S there is an i € {1,...,r + s} with »;(g) > 1.
Thus [[;] S; is zerofree. Let 1 # 1" = UV be a zero sequence with U | HTHS
and V'|S,. Since HF S; is zerofree, it follows that 1 < |V | < |Sp| =n. Let
1<i<r+s;ifv;(V) >0 orged(S;,U) #1, then v;(V) = v;(Sp) =1 and S; | U .
However, this implies that

_ WV]=v{V)=uwp(T) =0 modn.

Therefore, | V| =n and T = § follows. O

COROLLARY 7.4, Let G = Cpy @ - @ Cp, & CEM withr > 0,5 20,1 <
n|...\n\nandn, #n. If G is ap-group and r + § > n, then D (G) = M(G).

ProorF. By the above Theorem we infer that
M(G) = D,(@) < D(@F) = M(G). O

8. Groups with large exponent

This section is dual to the previous one. We study groups with large exponent
and present two results showing that long minimal zero sequences in such groups
contain one element quite often.

THEOREM 8.1. Let G = C,, ® Chn be a finite nhelian group with integers
n>m+123,0:G > H=Cn&Cpn the canonical epimorphism and S € U*(G) .
If h¥ | o(S) for some k > m+1 and some h € H, then g*| S for some g € o7 (h).

REMARK. Let all notations be as above and suppose n > m?. Then T‘% =

matm=l > m and hence there exists an element h € H such that | o(S).

Proor. Obviously, Ker(y) is cyclic of order » and, by Proposition 3.2,
IS|=mn+m-—1.

Using Lemma 4.4 one can find n — 1 disjoint subsequences Wy,..., Wy of §
such that @(W1),...,@(W,—_1) are short zero subsequences of ¢(S) . In particular,
we have o(W;) € Ker(p) forevery 1 <i<n—1.

Since S is a minimal zero sequence and 1 < |W) ... Wh—1| £ (n—-1ym < | 5|

the sequences
W, ...W,_jand hence o(W)...o(W,_1)



194 GAO and GEROLDINGER

are zerofree. Now it follows from Proposition 4.2, that

(%) e(Wi1)=c(W) = - =a(Wy_1).

Suppose hF|p(S) for some k > m + 1 and some h € H. Then § contains a

subsequence g1 ...gx with ©(g1) = -+ = @(gz) = b and it suffices to verify that
g1="" =g

Assume to the contrary that this does not hold. Since & > m + 1, one can find a
subsequence U1 of g1 ...gx with length m such that o(U}) # o(W,). However,
plg:) = hfor 1 <i < k implies that o(U)) € Ker{y).

Since |U; | =m < n—1, we may assume that /) and W, are disjoint. Using
Lemma 4.4 again we obtain n —3 disjoint subsequences Vy, ..., V,_3 of S(U; W)L
such that o

eVi)eKer(p) and 1< |V <m
for 1 €4 € n—3. Similarly to the proof of {x) we infer that
o) =o(W)=c(V1) = = a(Vho3),

a contradiction. 1

THECREM 8.2. Let G = G'®Cy,y be a finite abelian group where G is a direct
summand with exp(G"Y[m andn > 4|G'| >4(m—-2). Let p: G - H =G & C,
denote the canonical epimorphism and let S € F(G) be a zerofree seguence with
| S| =exp(G) =mn. Then S contains a subsequence T with |T'| > (n —2{G'| +
1)m such that the following holds: if h* | (T for some k > m+1 and some h € H ,
then g* | T for some g € o~ (h).

REMARK. Let all notations be as above and suppose that n > m|G'| +
2|G'| —1. Then
[T S (n=21G"+1)m n-2|G]|+1
|H| = miG'| B G
and thus there exists an element h € H such that ™+ | (T).

Proor. Throughout, we shall use that Ker(y) is a cyclic group of order n..
Define 1 as the system containing all sets A of the following form:

A contains n ~ |G’ disjoint subsequences 5i,...,8,. ¢ | of S such that
|S;| = mando(S;) € Ker(yp) for everyl <i < n —|G'.
By applying Lemma 4.5 to ¢{5) we derive that ) # 0.

Let A= {S1,...,S—|¢/|} € Qand set h; = a(S;), for 1 <i<n— |G'].
Since S is zerofree, the same is true for hihy... hy,_ g . Using |G'| € § and
Proposition 4.2 we infer that

h;...hn,m'l Eti?vt,(h--A.Ga'n—[(;”l—t
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witht>n—-2|G"| +1,ord(a) =nand g; #afori=1,...,n— |G'| —¢.
Note that
t+n—-2|G'+122(n-2|G|+1)>n— |G| =|b1...hno]
therefore @ is the unique element which occurs at least n — 21G'| + 1 times in
hi...hp_|gr| , denote t by #{A)}, then t(A) is determined by A.
Choose some A €  with
t(A) = min{¢(B)| B € 0}
and set t = t{A4). Suppose 51,...,5; be the f sequences in 4 so that
o(S1) =--=0(S) =aq,
put T'=5;...5;, then
|T|=[S1] +-+|S:]| =mt>(n-2|C"|+1)m.
We make the following assertion:

Assertion: If W is a subsequence of 7' with o(W) € Ker{y) and |W| = m,
then o(W) = a.

First we show how the Assertion implies the Theorem. Suppose h¥|¢p(7)
for some k > m + 1 and some h € H. Then there are g1,...,9x € @ ' (h) such
that g1...g¢ |T. Let I C {1,...,k} with |[I| = m and W = [[,.;9;. Then
Yoicr @(g:) = mh = 0 whence 3, ;9 = c(W) € Ker(¢). Thus the Assertion
implies that (W) =a.

Since this is true for every such W it follows that ¢1 = +-- = gk -

PRrOOF OF THE ASSERTION. Assume to the contrary, that there exists a sub-
sequence W of T with length m such that (W) € Ker(y) but o (W) # a. Without
loss of generality, we may assume that S7,...,5, arethe all sequences of 57,...,5;
such that S; and W are not disjoint for 1 < ¢ < u. Since {W| = m, we have
u <m. Suppose A= {51,...,5u,Su+1,---,8,Q1,.-.,@n_yg |-t} and set

R=8SWS8u41...801...Qun.cr|-t) "
Applying Proposition 4.5 to R one can get w1 disjoint subsequences Py,..., P,
of R having length m such that
o(F;) € Ker(p)

forevery 1<i<u-—1.

ObViOUSlY, B = {S'u.-i-l:-”?StsQl:"')Qn—lG’ﬂ-—t: W;PIJ"':P'LL"“l} € Q.
By the choice of 51, ..., 5 we may infer that

o(Qi) #a

forevery 1 <i<n— |G'| —t. This together with ¢(W) # a shows that a occurs

1
def

VL 0(Surr) .. o{S)Q1) ... 0(Qn o | -1) o (W) (P1) . .. 0 (Pury)
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at most t — 1 times. Because #(B) > ¢(A) >t — 1 there exists an element b #
such that 68} | V. Using at~* |V we derive that
n— |G| =|Al=|VI>UB)+t—u>2t—-m
>2n—-2|G'|+1)-m
>n— |G| +n—-4}G)+{|G'|+2-m)
>n— |G|,

a contradiction. O

9. A polynomial method

There exists a huge variety of techniques in which polynomials are applied for
deriving consequences in additive group theory and combinatorial number theory
(for a survey cf. [All, Al2, Na]). In this section we discuss a polynomial method
for the investigation of the structure of zerofree sequences (cf. Proposition 9.2 and
Theorem 10.3).

Let R be a commutative ring with identity, I € N;, and A4 C R[X] =
R{X1,...,X)] a set of polynomials. Then the set
VAd)={ce R | fle)=0 forevery fe€ A}C R

of all common zeros in R! of the polynomials of A is called the variety of A. If
A=1{fi,..., fm}, then we set V(fi,..., fm) = V(A). For c € R let
eve :R{X]—R
f =fle
denote the evaluation homomorphism.

Suppose now that for every f € A we have V(f) # R! (i.e., f does not vanish
identically on R'). Then the set A is called single-valued, if A C ev;1(h) for some
e € R' and some b € R\ {0}. Define r(A4) as the minimal r € NU {co} such that
A =J_; A; with single-valued sets 4;.

Since V(f) # R', the set {f} is single-valued whence A is a union of single-
valued sets. Furthermore, we have r(A) =0 and onlyif 4 =@ and r(4) = 1 if
and only if A is single-valued.

Define

AW = {3 X0 £1C {1, 1}} S BIX)
el

and for a sequence S = Hi-:l ¢ € F(G) in a finite abelian group G set

A(S) = {ZXi e AQ)| Zgi=o,w¢1g{1,...,f}}.

iel i€l
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Our aim is to study sequences S by studying the r invariant of A(l) and A(S). In
this section we concentrate on r{A(!)) and shift the applications to the next section.

Before going into details we give a geometric interpretation of the r invariant
of a subset of homogenous linear polynomials, which was pointed out to us by the
referee. Let R be a comumutative ring with identity and A C H = {25.:1 c; X5 |
¢1,.-.,0 € R} aset of homogenous linear polynomials. Then there is a one-to-one
correspondence between the set A C R[X] and the set of points A = {(¢1,...,¢) |
E;'=1 ¢;X; € A} € R'. In particular, A{l) corresponds to the 2! — 1 non-zero
vertices of the unit cube {0,1}' C R, If

with the above assumptions, then

o) NH = {ZaJX 6H|Zaj.c,3—b}

for every 1 < i < r. Thus a point @ € R' corresponds to a polynomial of the
above set, if and only if @ lies on the affine hyperplane defined by Zj.zl ci X = b
Therefore, r{A) is the minimal number of hyperplanes covering A and r{A(}) is
the minimal number of hyperplanes covering all non-zero vertices of the unit cube
{0, 1} of the ring R. For some historical remarks of this covering problem we refer
to the introduction in [Al-Fu]. In a recent paper ([Al2, Theorem 6.3]) Alon showed
that r{A(l)) > ! for integral domains R (for R = Z/pZ this was done by Gao in
[Gal] and for R = R the reals by Alon and Fiiredi in [Al-Fu, Theorem 1]). We study
the r invariant of A(l) by a fresh approach suitable for arbitrary commutative rings
with identity which leads to a new proof of #{A(l}) = ! for integral domains (see
Prop. 9.4, part 3.).

LEMMA 8.1, Let R be a commutative ring with identity, I € Ny and A C
R[X]| with V(f) # R' for every f € A.

1 r(A) < |A] .

2. r(A) < |eve(A)| for every ¢ € R with 0 ¢ ev,(A).

3. r(AUB) <r{A)+r(B) for every subset B C R[X] with V(f) # R' for every
feB.

4. If BC A andr(B) <r(A), then A\ B #0.

Proor. 1. holds, since A = Jse4{f} and {f} is single-valued.
2. and 3. are obvious.

To verify 4. let B C A with r(B) < r(A). Then 3. implies that r(B) <
r(A) <r(B)+r(A\ B} whencer{A\ B)#0and A\ B # (. a
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PROPOSITION 9.2. Let R be a commutative ring with identity, G a finite
abelian group and S € F(G) a sequence with length | € Ny. If r(A{l) \ A(S)) <
r(A(l)), then S is not zerofree.

Proor. If r{A(l) \ A(S)) < r(A(l)), then Lemma 9.1.4 implies that A({) \
(A A(S)) = A(S) # 0. Thus S contains a proper subsequence with sum zero
i.e., S is not zerofree. O

LEMMA 9.3. Let R be a commutative ring with identity end L,k € Z with
I>k>1.
1. The following polynomial 2dentzty holds in R[X,Y;;11<i<k,1<j<]]:

S CoMI(x- ) - -x*

B JC{1,....1} i=1 JEJ

2. Let C € My (R) be a matriz with column vectors c¢1,...,¢; € RF and b =

(b1,...,bt) € R* a column vector such that Hfﬂl b¥ #£ 0. Then there ezists
a subset O # J C {1,...,1} such that the vectors 3, ;¢; and b are different
in all coordinates.

Proor. 1. Obviously,

k
b (ﬂl)lJiH(X_Zn,j) ZZC(IJ i1t o Yimde

BAJC{L,....l} i=1 jeJ r=0 i,j

where c(i,j) € R[X] and the sum runs over all i= (i1,...,%y) € {1,...,k}" and all
i=0hrye-ndr) €4{L,...,0}". Ir =0, then

i
{
— S vk L yk Ay — %k
c®= > (nIIxF=XPY (1) (V)_ Xk,
BATC{ 1,0} v—=1
Let 1 <r < k,i= (i1,..-,%) and j = (j1,...,7). If not all of the i,...,i, are
pairwise distinct, then c(i,j) = 0. Otherwise, if {j1,...,jr} = J and |J'| =4
with1 <d<r<k<l, then
e(i,j) = Z (—) =1y xhr
JCIC 1,0}
I—d

= (-1 Xk (= (‘ ;d) 0.

r=0
2.Forl<i<kand1<j<I[weset

Cl,j

k
cj = I T = H b, and Yi,5 = Ci,j H by,

v—1 =
Ck,j vi
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Then 1. implies that

> (=pll ﬁ(ﬂi—zyi,j) =—zF£0.

BAJC{1,....4} jed
Therefore there exists a non-empty subset J C {1,...,} such that
B
[I(=~ Y vs) 20
i=1 jeJd
whence & # 3, ;95 and 3. 5 ¢i; # b for every 1 <i < k. a

PROPOSITION 9.4. Let R be a commutative ring with identity and [ € N, .
1. For every 1 < k <1 we have

1< r(A(R) < r(AD) < r{AR) + (- &) < L.

2. If char(R) = n, p a proper prime divisor of n andl > p+1, then r(A(]) < L.
3. If R is an integral domain, thent(A(l)) =1.

Proor. 1. Since A{1) = {X,} is single-valued, it follows that r(A(1)) = 1.
If1 <k <, then A(k) ¢ A(l) whence r(A(k)) < r(A())) by Lemma 9.1.3. We
show that r(A(l+ 1)} < r(A())+ 1 from which the remaining assertions follow by
induction. Since B = {X;41}+(A(1)U{0}) is single-valued and A(I+1) = A(UB,
Lemma 9.1.3 implies that r(A(l + 1)) < r(A{) + 1. :

2. Suppose char(R) = n,Z/nZ <+ R and p a proper prime divisor of n.
For 1 <i<p4lset A= {3,  X:|ITC{1....p+1}}I =i} whence A(p +
1) = Uf:ll A;. For 1 <4 < p+1 we have eve(4;) = i + n% # nZ where ¢ =
(1+nZ,...,1+nZ) whence A; is single-valued. Furthermore, 4; U4, is single-
valued, since eve(A1) = 2 +nl = eve(A4,11) where ¢ = (3’}' + nZ,...,%—{«nZ).
Since A(p+ 1) = (A U A1) UL, A;, it follows that 7(A(p + 1)) < p. Thus 1.
implies that r(A(l)) <l —1for every { > p + 1.

3. Let R be an integral domain and assume to the contrary, that k = r(A(l)) <
. Then

k
Al = U A;
=1
with single-valued sets A41,..., Ay . Hence there are elements ¢; = (¢ 1,...,¢;) €
R! such that for every 1 <i < k,
eve, (A;) = b for some b; € R\ {0}.

Therefore, for every ¢ # J C {1,...,1} there is some i € {1,...,k} such that
ZjEJ Xj € A; and hence

(Z Xj) (ci) = Zci,j = b;.

JEJS jeJ
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This is a contradiction to Lemma 9.3.2 (where the matrix ¢ is built from the row
vectors e1,...,¢x € R and b= (by,...,0:)). 0

10. Elementary abelian p-groups

Elementary p-groups may be viewed as vector spaces over the finite field
Fp. This allows to apply vector space methods and many combinatorial problems
simplify considerably. Apart from being of interest for their own rights, a profound
knowledge of elementary p-groups often makes it possible to study problems on
arbitrary abelian groups by inductive methods ie., if G = Cp, @ --- & Cn, with
plni] ... In,, one considers the exact sequence

™
O-——>C‘;—>G—>@Cm/p—>0.
i=1
Combinatorial properties of elementary p-groups have been studied very extensively.
Hence we just can refer the reader to [A-L-M], [M-W] or [Pe] to catch an impression
of the progress achieved in this area.

Our first aim is to derive a structural result (Theorem 10.3) for maximal
zerofree sequences, which heavily depends on the work of Section 9. We start with
a lemma.

LEmMma 10.1. Let G = C;,R = Z/pZ with p prime, 7 € Ny and S =
I, 0: € F(G). Thenc(A@D\A(S)) <r{p-1).

PROOF. Let (e1,...,e,) be a basis of G and g; =3, cuier with ¢, ; € Z
for every 1 < i <. Forevery v € {1,...,7} and every m € {1,...,p — 1} the set

Ay = {ZX,- €AW |B#TC{L,...,1} with > (e +pE)=m +pZ}
iel i€l
is single-valued, since for ¢, = (¢,1 + PZ,...,cv1 + PL) € R' we have
eve, (Avm) = O _(Cvi+pL) =m+pl € R\ {0}.
icl
Obviously, it is sufficient to verify that
r p—1
A0NA® € U U Avm
r=1 m=1
Let f = 3. ,c; X € A(I)\ A(S) be given. Then > icy gi # 0 which implies that there
is some v € {1,...,7} such that 3",. coie0 0. Thus 3 . ;(eni + pZ) = m + pZ
forsome me{l,...,p—1}ie, f €4y m- 0
In order to show how our method works we give a new proof of the following
well known result.
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COROLLARY 10.2. D(C}) =r(p— 1)+ 1 for p prime and r € Ny .

PROOF. By Proposition 3.2:1-it is sufficient to verify that D(C) < T{}p"— 1)+
1=1. Let § = []'_, 9 be a sequence in F(C7). We have to show that S is not
zerofree. Lernma 10.1 and Proposition 9.4 imply that

r(AD\A(S)) <r(p - 1) <I=r{AQ).

Hence S is not zerofree by Proposition 9.2. (|

THEOREM 10.3. Let G be an elementary p-group and S € F(G) a zerofree
sequence with | S| = D(G) — 1. Then each two distinct elements of S are linearly
independent.

PRrOOF. Suppose G = O with p prime, r € Ny, R = Z/pZ, S = g¢’' H2=1 g
with | = D(G) — 3 = r(p — 1) — 2 and suppose that {(g) = (¢'). We have to
show that g = ¢'. For r = 1 this follows from Proposition 4.2. Suppose r > 2 and
choose a basis (g = eg,es,...,e,) of G. Then g; = cie; + h; with ¢; € Z and
hi € H=1{ea,...,e;) foreveryl <i<landlet T = ]"[2=1 h; € F(H). Then
Lemma 10.1 implies that

r(ADNAT)) < (r - 1)p-1).
Lemma 9.1.3 and Proposition 9.4 yield that
L=r(A()) < r(A(D\ AT)) +r(AT))
whence
(AN >I-(r-1){p-1)=p-3.

Since 0 ¢ E(Hizl gi) , 1t Tollows that
0¢ {S ci+pBl0ATC (L, I} with Y hi =0 € H} = ev(A(T))
icl icl
for ¢ = (¢; + pZ,...,c + pZ) € R.. Therefore by Lemma 9.1.2 we infer that
feve(A(T)) | 2 r(A(T)) 2 p-3.
By assumption, g' = eg with ¢ € {1,...,p—1} and hence (g¢') = {g,cg, (1+ _

c)g}. Since S = gg' H:‘,_—.l 9; is zerofree and [ev.(A(T))| > p — 3, it follows that
[2(gg')| < 2. This implies that ¢ = 1 whence g = ¢'. O

The following result was anticipated by van Emde Boas in [E2; pp. 18].

PROPOSITION 10.4. Let G = C} for some odd prime p and somer > 2. If
S € U*(G) with max{v,(S)|g € G} = p—1 and if max{v,(T)|g € Ci}=p—1 for
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every 1 <i < r and every T € U*(C}), then

r—1 ,p—1

yi r—1
S= H (H (eg + Zak Jek)) H (er + Eagek)
i=1 j=1 k=1
for some basis (e1,...,er) of G and integers ag»%):r € Z such that Ez~k+1 Z:o 1 (1) )+
?_ (r} = lmodp for every 1 <k <vr—1.
C'onversely, every sequence of such a form lies in U*(G) .

Proor. Consider a sequence S of the above form. Forevery 1 <k <r -1

we have
r—1 p-1

(S =p—1+ Z Za +Za . = Omodp
i=k+1 j=1
and obviously _
2.(8) = p = Omodp.

Hence S is a zero sequence. Let S’ be a zero subsequence of S.. Let m € {1,...,r}
be maximal with v,,(S') > 0. Then v,,(S") = Omodp implies that m = r. We
consider step by step v,(S"),v,-1(5") ... to infer that S’ = 5. Thus S is a minimal
zero sequence and obviously |S| = (r — D)(p — 1) + p = D(G).

Conversely, let S € U"(G) be given with max{v,(5) lg € G} = p—-1 and
suppose that max{vy(T)|g € C}} = p—1forevery 1 <i<randeveryl € u*(Cy).
We proceed by induction on r.

Let 7 = 2. Suppose that v, (S) = p— 1 for some e; € . Choose some

eh € G\ (e1). Thus (e1,€}) is a basis of G and

»
S=et H(a}el + bjes)
=1
with integers al,..., a5, b1, ..., by
Since for every 1 < j < p the sequence e‘l’_l(a}el) € F(C,) contains a zero
subsequence, it follows that b; 20 forall1 <j < p.
Assume to the contrary, that not all b; are equal. Then, by Proposition 3.2
there exists some § # I € {1,...,p} such that [];.;bie5 is a zero sequence in
F(Cp). Then

e’f H(aiel + btelz)

il
with 0 <k <p-1and k= -3 ,-;af mod p, is a proper zero subsequence of s,
a contradiction. Therefore, by =+ = b, = b.
Finally, set e; = afe; + beh. Then (eq,es) is a basis and
r
-1 H(ijel + e3)

j=1
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with integers a1,...,a,. Obviously, 355_, a; =1 mod p.

To do the induction step, let + > 3 be given. We conclude from r—1tor.
Suppose S = e? 1T for some 0 # e; € G and some T € F(@). Extend e; to a basis
{e1,....,ep) 0f G = €7 and consider the canonical epimorphism

w: G H=08,<e >

with ©{e:) = 0 and @{e;) = e; for 2 < i < r. Then ¢(S) = 0P~ (T ; clearly, o(T)
is a zero sequence with [@(T)| = D(Cy~'). Let T be a subsequence of T' such
that ©(7") is a minimal zero subsequence. Then there is some I € {0,...,p ~ 1}
such that e{T" is a zero subsequence of S. This implies that S = P '7T = &l 7"
whence T = T" and »(T") is a minimal zero sequence in C7~!. Therefore, induction
hypothesis reveals the structure of ¢(T) which implies the assertion. a

CoROLLARY 10.5. Let G = C,@Cy, for some odd primep and S =T[;_, ¢/ €
U*(G) with pairwise distinet g; andm, > - - > m, > 1.
I.3<s<p+1.
2. Ifmi=p—1,then S =™’ [1%_,(ase1 +e3) for some basis (e1,e2) of G and
infegers ar,...,ap € Z with 37, a; = 1 modp. Conversely, every sequence
of such a form lies in U*(G).

3. For every j € {3,...,p} there is o sequence in U*{G) containing exactly j
distinet elements.

ProOF. L. Since |S| = D(G) =2p-1=37_ m; < s(p—1), it follows that
s 2 3. If p= 3, then there are g1,...,94 € G with & = {0,91,—91,.-.,92, — g4}
whence s < 4. Suppose p > 5 and set S = g:T. By Theorem 10.3 | {g € G |v,(T) >
0}| is bounded by the number of one-dimensional subspaces of F2 which equals

ff_;ll = p+ 1 whence
HoeGlv(T) >0 <p+1<2p-2=|T]
Therefore T is not squarefree which implies m; > 2 and thus s = | {g € G| v,(S) >
0] = [{g € Glvy(T) >0} <p+1.
2. This follows from Proposition 10.4.

3. Let (e;,e2) be abasisof G and § € {3,...,p}. We give an explicit example
of some §; € U*{() containing exactly j distinct elements. If § is odd, then
.-,‘_;;l
Si=eleb TP o)+ eg) T (Ger + ea)(~ies + e0)
§==2
has the required properties. For even j we set

j—4

1 p—(i— -1 3 L .
S; =¢€} 133 i-2) (37_2_.31 + 62) (p;- e; + ez) H(zel + ez)(—iey + en).

i=1
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For every integer n > 2 we cousider the following two properties:

PROPERTY B. Every sequence S € U*(C, & Cy) contains some element
(n — 1) times.

ProprerTY C. Every sequence S € F{(C, & Cy) of length 3n — 3 which does
not contain a short zero subsequence has the form S = o™ 10"~ 1™ ! for some
abeceC,@C,.

Recall that every element g contained in a sequence S € U*(Cn & Cp) has
order n by Proposition 6.3. By Theorem 10.3 a prime p satisfies property B if
and only if every sequence S € U*(C, & C,) contains p — 1 elements of a proper
subgroup H C C, ® Cp. If a prime p satisfies property B, then the structure of all
sequences S € U*(C}p & Cyp) is completely determined by Corollary 10.5. Property
B has been verified for 2,3,5 and 7 and we conjecture that it holds for all primes.

In [E1] van Emde Boas studies a variant of Property C and conjectures that
it holds for all primes {cf. page 4 and page 36). The equivalence of the van Emde
Boas-Property and of Preperty C above was shown in [Ga5; Lemma 4.7]. Property
¢ has been verified for 2,3,5 and 7. Its significance stems from investigations of
Davenport’s constant for groups of rank 3 (cf. [E3] and [Ga5]). Furthermore, if two
integers k, ! satisfy Property C, then so does their product kI {cf. {Ga6]).

As a final result in this paper we show that every prime, which satisfies Prop-
erty B, also satisfies Property C. Both properties hold for p = 2. Hence from now
on we restrict to odd primes. Let p be an odd prime. For ¢ € Z let |al, € {1,...,p}
be such that a = |al;modp. The following fact follows from Lemma 4.3.3 and will
be used several times: if a sequence in F(Cp & Cp) has no short zero subsequence,
then it deoes not contain a zero subsequence of length 2p.

We start with a lemma.

LEMMA 10.6. Let G = C, & Cp for some odd prime p and
S = a?~ P I8, & € F(G) a sequence which does not contain a short zero sub-
sequence. If p satisfies Property B, then ¢, = -~ =¢p-1.

ProoF. Let S be as above and suppose that it does not contain a short zero
subsequence. Then (e; = a,es = b) is a basis of ¢ and S has the form

p—1
—1 -1
S=el e I | (zie1 + yie2)
i=1
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with z;,9; € {1,...,p}. Since S has no zero subsequence of length p or 2p, the
same is true for

p—1
Sep = (31 — 82)p—10p_1 ]:[ (221‘61 + (yz - 1)62) s
i—l
Therefore
p—1
(er — e2)P ™! [ (ziler — e2) + (s + 4 — Dea)
3=1

is zerofree. Therefore Hf;ll (zi + yi — l)ez is zerofree in < ey >=~ (), whence
1+ =00 2 2po1 + Yp-_1modp.
Since for every 1 <i<p-—1
e el (wen + yien)

is a zero subsequence of S of length 2p + 1 — (z; + ;) , it follows that x; + y; < p.
Thus

T+ = =Tp-1 +Yp-1 =N
for some m with 2 <m <p.
Ifm=2,thenx; =y = -- = 2p_1 = yp—1 = 1 and the assertion is proved.
Suppose m = p. If [],.; zie1 is a zero sequence for some § # 7 C {1,...,p—

1}, then the same is true for [lic;yviea and thus [],.,(zies + yies) would be a
. . -1 .

zero sequence. Since S contains no short zero subsequence, [, ey is zerofree

whence xp = -+ = 2.1 . Therefore y; = --- = y,_1 and the assertion is proved.

Suppose that 3 < m < p— 1. Then there is a unique ¢t € {2,...,p — 2} such
that ¢(m — 1) = lmodp; thus |tm|, = ¢+ 1. Obviously, it is sufficient to show
that for every subset I C {1,...,p— 1} with {T| == ¢ all z; resp. all y; withi € I
are equal. :

Let IC{l,...,p— 1} with [I| =t and consider the sequence
S; = ef—|2ielm |pe:!29— [Zieryilp H(miel 4 yies).
iel
Clearly, 57 is a zero subsequence of § of length
|Sr| =2p+t— | Bierzi|p — | Bicrvilp
=2p+t— |Zierzi|p — |tm — Lierzi|p
B { p+t—ltm|,=2p—1,tm|, > | Zicrzi |,
p+t—(p+ jtmip)=p~1,|tm|; £ | Zier2i|p
However, since S has no short zero subsequence, we infer that |tm |, > [ Zierzi |,

and that S; is a minimal zero sequence. Thus Sy € U*(GF). Since t < p— 2 and
{zie1 +yiea|i € I1N{e1,ea) =0, Property B implies that either

p— |Zicrzi|lp=p—lorp— |Sicryi| =p—1.
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Therefore either
— | Ziery: — | 3¢ i
eg [ Tierpilp I‘Iyi(32 or e | Ziermi|p Hﬂlim
iel el
is a minimal zero sequence which implies that either all y; are equal to 1 or all z;
are equal to 1. O

THEOREM 10.7. Ewery prime having Property B also satisfies Property C.

PRrROOF. We may suppose that p is an odd prime and set G = Cp, © C;,. Let
S € F(G) be a sequence of length 3p — 3 which does not contain a short zero
subsequence. Since by Lemma 4.3.2 the sequence 0.5 contains a zero subsequence
of length p or 2p, the sequence S contains a zero subsequence T' of length |T'{ €
{p—1,p,2p—1,2p}. Therefore |T'| = 2p—1 and T is a minimal zero sequence.
Hence by Property B there is some b € G with #~! | T and thus

2p—2

S=t"1 ] -
i=1

Since § has no zero subsequence of length p or 2p, the same is true for
2p-—2

Sy =0t [ (e - ).
=1

Therefore H?£;2(ci—b) is zerofree and ¢ [ [27]* (ci—b) €U*(G) with e=— S22 (g —

i=1

b). Next we use Property B. If there is some g € G such that el Hz.if {c; —b),

T
then b?=1(g + b)?~1| S and the assertion follows from Lemma 10.6. Hence suppose

that
2p—-2

i H(Ci—b)

and without restriction we may further suppose that ¢ =¢; — b. Since S contains
no short zero subsequence, we infer that ¢ + b €< b >. Therefore (e; = c1 =
¢+ b,es = b) is a basis of G and S has the form

r
S = ‘311)_2'3123—:l H(l‘iﬁ‘l + yiez)

i=1
with z;,9; € {1,... ,p} .
Setting
»
Seg_ = Op_l(el — 62)p_2 H(w,;el + (yt - 1)62)
4=1

and arguing as above we infer that

P
(61 —e9)P 2 H(:ciel + (i — 1)ea)

=1
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is zerofree. Therefore
P

(er — ) [] (miler — e2) + (& + 3i — Dez)
i=1
is a minimal zero sequence, since

2p—-2 2p—-2

O=c¢c; — b+ Z(ci—b):clﬁ—b—l—Zci
i=1

i=1

r
=e) +ex -t (p- Qe+ P (ziey + yiea).
i==1
Clearly, (e; — ez, e2) is a basis of G whence [T, (z; +y; — 1)ez € U*(< e2 >) which
implies that
14y == zp + yymodp.
Let 1 <{<p;ife; =1and y; = p, then e?7'eZ™!| S and the assertion follows
from Lemma 10.6. We exclude this case and assert that
(*) 3S5El+y1:"'=$p+ypgp_1-
Assume to the contrary that z; +y; > p+ 1. Then z; > 2 and
P-Ti

el eh TV (xier + yieo)

is a zero subsequence of S with length 2p+1 — (z; + ;) < p, a contradiction. Thus
nntpm=---=rptypy=m
for some m with 2 <m <p.

Assume that m = p. There is a non-empty subset I C {1,...,p} such that
Zierwie; = 0. This implies that Eicryse2 = 0 whence [[;o;(wie1 + yiez) is a short
zero subsequence of §, a contradiction.

Assume that m = 2;thenz; = y; =...2p = yp, = 1 whence []}_, (z:e1+yse2)
is a short zero subsequence of S, a contradiction.

Therefore () is proved. Hence there is a unique ¢t € {2,...,p — 2} such that
t(m — 1) = lmodp and thus |tm|,=¢+1.

Let I C {1,...,p} be a subset with |I| =t and Z,c;x; Z lmodp. Then
2 < [ Ziermi|p £,

p=1 3 . xile p—] ) ., wl :
SI = el ZIEI Peg E;e! P H(;Ij.i(jl + yi62)
icl
is a minimal zero subsequence of S with length | S;| = 2p — 1; thus either all &;

are equal to 1 or all y; are equal to 1 (argue as in Lemma 10.6).
Therefore, for every subset T C {1,...,p} with |I| = ¢ we have:

(%) eitherY;crz; = lmodp orall z;are equal tolorm — 1.
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Assume to the contrary, that there are three distinct elements among z1, ...,
xp; without restriction z,_2 # Zp_1 # @p # Tp—2. Since £ ~1 < p — 3, it follows
that | {z; + E:;i zi|p— 2 < j<p}| =3, a contradiction to (wx).

Therefore, [T7_; #ie1 = (ze1)*(2'er)” withz, 2’ € {1,...,p},z # &' ,u+v=p
and 0 <v <u.Ifv <1, then 4> p—1 and Lemma 10.6 implies the assertion.

Assume to the contrary, that 2 < v < u. Ift > 3, one can choose ug
{2,...,u—1} and vy € {1,...,v — 1} such that ug + vy =t because t < p — 2
u+ v — 2. However,

M

T + vox' # (ug — L)z + (vg + 1)z’

which contradicts (**). Hence suppose t = 2. Using {**) we infer that z +z' =
lmodp. Thus z + z # z + ¢’ = 1lmodp whence z € {I,m —1}. We argue in a
similar way for z’ and obtain {z,z'} = {1,m — 1} . Therefore m = z +2' = Imodp,
a contradictionto 3 <m <p—-1. |
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