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1. INTRODUCTION

This is a survey article on the theory of non-unique factorization.
This field has its origins in algebraic number theory. Today, problems
involving the factorization of elements into irreducibles are studied in
general integral domains using a huge variety of techniques (see [A-A-
Z1], [A-A-Z2] and [A-A-Z3]). In this paper, we consider factorization
properties of Krull domains, including integrally closed noetherian
domains and rings of integers in algebraic number fields. We restrict
our interest to sets of lengths and the invariants derived from them.
Our results are valid mainly for Krull domains with finite divisor class
group.

Although our emphasis and the main applications of the theory
of non-unique factorization lies in ring theory, this paper is written
in the language of monoids. The reason for this is not for higher
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generality, but usefulness and simplicity. We start in chapter 2 with
Krull monoids by discussing their sets of lengths and various con-
stants which control these sets. We gather in this chapter many re-
sults which have appeared in the literature using different notation
and terminology. In chapter 3, we study block monoids. These are
suitably constructed monoids which provide the opportunity to un-
derstand and describe more clearly the invariants which have been
previously introduced. Having these monoids at our disposal, we can
reduce ring theoretical problems to problems in finitely generated
monoids and are able to apply geometrical methods. There is an-
other striking example of the usefulness of this approach. Results for
Krull monoids can be applied to investigate one-dimensional noether-
ian domains R which are not integrally closed, but have non-zero
conductor AnnR(R/R). In chapter 4, we give a short account of the
analytic aspects of non-unique factorization. Chapter 5 is devoted
to the investigation of the combinatorial problems which arise during
the work in chapters 2, 3 and 4.

2. KRULL MONOIDS

We divide this chapter into two sections. In Section 2.1, we develop
the algebraic properties of Krull monoids and provide a wide array
of examples. In Section 2.2 we begin discussion of sets of lengths
and define several combinatorial constants which play a key role in
describing the arithmetic of a Krull monoid.

2.1 Definition and Examples of Krull monoids

Throughout this paper, a monoid is a commutative and cancella-
tive semigroup with unit element. Our main interest lies in monoids
which are multiplicative monoids of integral domains. Let R be
an integral domain. Then R• = R \ {0} denotes its multiplica-
tive monoid, R× = R•× the unit group of R , P(R) the set of
maximal ideals of R , I(R) the multiplicative monoid of integral in-
vertible ideals of R (with usual ideal multiplication as composition)
and H(R) ⊆ I(R) the submonoid of principal ideals. Furthermore,
H(R) ' R•/R× , the embedding H(R) ↪→ I(R) is a homomorphism
and I(R)/H(R) = Pic(R) is just the Picard group of the domain
R .
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For a non-zero ideal f ⊆ R we set

If(R) = {I ∈ I(R) | I + f = R}

and
Hf(R) = If(R) ∩H(R) .

Clearly, If(R) (resp. Hf(R) ) is a submonoid of I(R) (resp.
H(R) ).

We use the standard notions of divisibility theory as developed in
[Ja; section 2.14] or in [Gi; chapter 1]. Furthermore, our notation is
consistent with F. Halter-Koch’s survey article in this volume [HK9].
For the convenience of the reader, we briefly recall some concepts. If
not stated otherwise, monoids will be written multiplicatively.

For a family of monoids (Hp)p∈P

∐

p∈P

Hp = {(ap)p∈P ∈
∏

p∈P

Hp | ap = 1 for almost all p ∈ P}

denotes the coproduct of the Hp . For every Q ⊆ P we view∐
p∈Q Hp as a submonoid of

∐
p∈P Hp . If all Hp are infinite cyclic

(i.e., Hp ' (N0,+)), then
∐

p∈P Hp is the free abelian monoid with
basis P and will be denoted by F(P ) . In this case, every a ∈ F(P )
has a unique representation

a =
∏

p∈P

pvp(a)

with vp(a) ∈ N0 and vp(a) = 0 for almost all p ∈ P . Furthermore,

σ(a) =
∑

p∈P

vp(a) ∈ N0

is called the size of a .

Let D be a monoid. Then D× denotes the group of invertible
elements of D . D is called reduced, if D× = {1} . Clearly,
Dred = D/D× is reduced. Q(D) denotes a quotient group of D
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with D ⊆ Q(D) . The root closure D̃ of D and the complete
integral closure D̂ of D are defined by

D̃ = {x ∈ Q(D) |xn ∈ D for some n ∈ N}

and

D̂ = {x ∈ Q(D) | there exists some c ∈ D such that cxn ∈ D for all n ∈ N} .

D is called root closed, if D = D̃ and completely integrally closed
if D = D̂ . Clearly,

D ⊆ D̃ ⊆ D̂ ⊆ Q(D) .

A submonoid H ⊆ D is called saturated, if a, b ∈ H , c ∈ D and
a = bc implies that c ∈ H (equivalently, H = D ∩Q(H)).

A monoid homomorphism ϕ : H → D induces a monoid ho-
momorphism ϕred : Hred → Dred and a group homomorphism
Q(ϕ) : Q(H) → Q(D) .

Let ϕ : H → D be a monoid homomorphism. Then ϕ is called
a divisor homomorphism, if a, b ∈ H and ϕ(a) |ϕ(b) implies that
a | b . The following conditions are equivalent (cf. [G-HK2; Lemma
2.6]).

i) ϕ is a divisor homomorphism,
ii) ϕred is a divisor homomorphism,
iii) ϕred is injective and ϕ(H) ⊆ D is saturated.

Definition 2.1. A divisor homomorphism ϕ : H → D into a free
abelian monoid D is called a divisor theory (for H), if for all α ∈ D
there are a1, . . . , an ∈ H such that α = gcd{ϕ(a1), . . . ϕ(an)} . The
quotient group C(H) = Q(D)/Q(ϕ)

(Q(H)
)

is called the divisor
class group of H .

Dedekind domains serve as a classic example of a divisor theory.
For, if R is a Dedekind domain, then R• has a divisor theory ϕ :
R• → I(R) given by α → αR . The prime divisors of I(R) are
just the prime ideals of R and the divisor class group is the usual
ideal class group of R. The definition of a divisor theory given above
goes back to Skula (see [Sk1]). For a survey on monoids with divisor
theory the reader is referred to [HK1].
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Let H be a monoid. It follows directly from the definition that
H admits a divisor theory if and only if the reduced monoid Hred

admits a divisor theory. Recall the following two facts.
i) if H admits a divisor homomorphism into a free abelian group,

then H admits a divisor theory.
ii) if ϕ : H → D and ϕ′ : H → D′ are divisor theories for H ,

then there exists a monoid isomorphism φ : D → D′ such that
ϕ′ = φ ◦ ϕ . In particular, the divisor class group of H just
depends on H (and not on ϕ).

Both i) and ii) can be proved using the theory of divisorial ideals
in H . Proofs may be found in the book of Gundlach ([Gu; chapter
9]). Using the same methods one can also show if H admits a divisor
theory, then the canonical homomorphism ∂ : H → Iv(H) into the
monoid of integral divisorial ideals of H is a divisor theory.

An alternate proof of i) and ii) involves defining families of mo-
noid homomorphisms. A family (ϕp : H → N0)p∈P of monoid
homomorphisms is a defining family for H, if

H =
⋂

p∈P

Q(ϕp)−1(Z)

and the intersection is of finite character (cf. [G-HK2; HK2]). If H
has a defining family of the above type, it has a defining family of
essential surjective homomorphisms (ψp : H → N0)p∈P (cf. [HK2]).

We summarize our discussion in the following theorem. The re-
maining equivalences can be found in [G-HK1; Theorem 1] and [Cho;
Proposition 2].

Theorem 2.2. For a monoid H following conditions are equivalent:
1. H admits a divisor theory.
2. The canonical homomorphism ∂ : H → Iv(H) into the monoid

of integral divisorial ideals is a divisor theory.
3. H is completely integrally closed and satisfies the ascending

chain condition on divisorial ideals.
4. H = H××T and T is a saturated submonoid of a free abelian

monoid.
5. H admits a divisor homomorphism into a free abelian monoid.
6. H has a defining family (ϕp : H → N0)p∈P .
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7. H has a defining family (ψp : H → N0)p∈P where all ψp

are essential and surjective.

Definition 2.3. A monoid H satisfying the equivalent conditions
of the previous theorem is called a Krull monoid.

The notion of a Krull monoid was introduced by L. Chouinard in
[Cho]. It is important for our purposes due to the following result
which was stated by Skula in [Sk2] and first proved by Krause in [Kr]
(a simple proof appears in [HK2; Satz 5]).

Theorem 2.4. An integral domain R is a Krull domain if and only
if its multiplicative monoid R• is a Krull monoid. If R is Krull,
then the divisor class group of the Krull monoid R• is the usual
divisor class group of the Krull domain R .

We present a series of examples of Krull monoids which are not
multiplicative monoids of Krull domains, but none the less are of
interest.

a) Krull rings Let R be a Marot ring. Then R is a Krull
ring (in the sense of [Hu]) if and only if the multiplicative monoid of
regular elements of R is a Krull monoid (cf. [HK7]).

b) Hilbert monoids The monoid structures of several classical
objects in commutative algebra and number theory are represented in
the following construction. We will start in a very abstract way and
specialize to well known examples which at first may seem unrelated.
Let R be a Dedekind domain. Then I(R) is a free abelian monoid
with basis P(R) (i. e., I(R) = F(P(R)

)
). Let Γ0 be a monoid,

Γ ⊆ Γ0 a submonoid and π : R• → Γ0 a monoid homomorphism.
Then

H = RΓ,π = π−1(Γ) ⊆ R•

is a submonoid. Suppose Γ ⊆ Γ×0 is a subgroup. Then H× =
H ∩R× ,

H/H× ' {aR | a ∈ H} ⊆ H(R) .

and H ↪→ R• is a divisor homomorphism, since H = Q(H) ∩ R• .
Therefore H admits a divisor theory (i. e., H is a Krull monoid).
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Let {1} ⊆ Γ′ ⊆ Γ ⊆ Γ×0 be subgroups. Then

R{1},π ⊆ RΓ′,π ⊆ RΓ,π ⊆ RΓ×0 ,π ,

RΓ,π ⊆ RΓ×0 ,π is saturated and there is a natural epimorphism

ρ : C(RΓ′,π) → C(RΓ,π) .

Conversely, let H ⊆ RΓ×0 ,π be a saturated submonoid with R{1},π ⊆
H . We show that H is of the form RΓ,π for some subgroup Γ ⊆ Γ×0 .
Since H ⊆ RΓ×0 ,π is saturated, we have

H = Q(H) ∩RΓ×0 ,π .

Let Q(π) : Q(R•) → Q(Γ0) be the extension of π to the quotient
groups. Then R{1},π ⊆ H implies that Ker

(Q(π)
) ⊆ Q(H) and

thus Q(H) = Q(π)−1
(Q(π)Q(H)

)
. Clearly,

Γ = Q(π)
(Q(H)

) ⊆ Γ×0

and
H = Q(π)−1(Γ) ∩ π−1(Γ×0 ) = π−1(Γ) .

After these preliminaries we consider monoids Γ0 of arithmetical
interest. Let

f∗ = f ω1 . . . ωm

be a cycle of R . Hence, f∗ is a formal product of an ideal f ∈ I(R)
and m distinct ring monomorphisms ω1, . . . , ωm : R → R . For
1 ≤ i ≤ m we set σi = sgn ◦ ωi where sgn : R → {−1, 0, 1}
denotes the signum function.

We say that a, b ∈ R are congruent modulo f∗ , if a ≡ b mod f
and σi(a) = σi(b) for 1 ≤ i ≤ m . This defines a congruence relation
on R . For every a ∈ R we denote by [a] the congruence class
containing a and by R/f∗ the set of all congruence classes. Clearly,
R/f∗ is a (not necessarily cancellative) semigroup with [a][b] = [ab]
for all a, b ∈ R . Let π : R• → R/f∗ = Γ0 denote the canonical
epimorphism and let Γ ⊆ Γ×0 be a subgroup. Then

Rf∗,Γ = π−1(Γ) = {a ∈ R• | [a] ∈ Γ}
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is a Krull monoid, called the Hilbert monoid associated to f∗ and
Γ . We may identify the reduced Hilbert monoid (Rf∗,Γ)red with

Hf∗,Γ(R) = {aR | a ∈ R• , [a] ∈ Γ} ⊆ H(R) .

Furthermore, the embedding

Hf∗,Γ(R) → If(R)

is a divisor theory (cf. [HK2; Proof of Satz 7]). If Γ = (R/f∗)× , we
simply write Hf∗(R) instead of Hf∗,(R/f∗)×(R) .

This construction was first illustrated by F. Halter-Koch in [HK2]
and generalizes the original examples of D. Hilbert. Clearly,

(R/f)× = {a + f ∈ R/f | a ∈ R , aR + f = R} .

In [HK2; Hilfssatz 2 and Satz 7] it was verified that

(R/f∗)× = {[a] ∈ R/f∗ | a ∈ R , aR + f = R}

and that there is an exact sequence of groups

0 → (Z/2Z)m → (R/f∗)× → (R/f)× → 1 .

Hence we have that

Hf∗(R) = {aR | a ∈ R , [a] ∈ (R/f∗)×}
= {aR | a ∈ R , aR + f = R}
= {aR | a ∈ R , [a] ∈ (R/f)×} = Hf(R) .

We consider the following simple cases.
i) If m = 0 , f = (1) = R , f∗ = f = R , then Hf(R) = H(R) .
ii) Let R = Z and ω1 : Z ↪→ R be the embedding f = fZ for

some f ∈ N . Then

Rf∗,{1} = {a ∈ Z | a > 0 , a ≡ 1 mod f} = 1 + fN ,

the classical Hilbert monoid.
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iii) Let R be the ring of integers in an algebraic number field
K , ω1, . . . , ωr1 : K → R the real embeddings of K , f = (R)
and f∗ = ω1 . . . ωr1 . Then

H = Rf∗,{1} = {a ∈ R• |ωi(a) > 0 1 ≤ i ≤ r}

is the monoid of totally positive algebraic integers in K . Its
divisor class group C(H) is called the ideal class group in the
narrow sense (cf. [Na2; p.94]).

Let K be a global field (i. e., either an algebraic number field or an
algebraic function field in one variable over a finite field). Let S(K)
denote the set of all non-archimedean places and for some ν ∈ S(K)
let Rν be the corresponding valuation domain. For a finite subset
S ⊂ S(K) , S 6= ∅ in the function field case,

R = RS =
⋂

ν∈S(K)\S
Rν ⊆ K

is called the holomorphy ring of K associated with S . R is a
Dedekind domain with quotient field K . A cycle f∗ of R (in the
sense of class field theory) is a cycle

f∗ = fω1 . . . ωm

with f ∈ I(R) , m ≥ 0 and ω1, . . . , ωm : K → R real embeddings
(m = 0 in the function field case). Then

Hf∗,{1} = {aR | a ∈ R , a ≡ 1 mod f∗}

is the principal ray modulo f∗ . Its divisor class group

C(Hf∗,{1}) = If(R)/Hf∗,{1}(R)

is a finite abelian group, called the ray class group modulo f . It gives
rise to the following sequence of finite abelian groups:

0 → Hf(R)/Hf∗,{1}(R) → If(R)/Hf∗,{1}(R) → If(R)/Hf(R) = I(R)/H(R) → 0.
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c) Submonoids of orders in Dedekind domains Let R be
a Dedekind domain and o ⊆ R an order in R . Thus, o is one-
dimensional noetherian, R is the integral closure of o (in some
quotient field of o) and R is a finitely generated o-module. Let

f = Anno(R/o) = {a ∈ o | aR ⊆ o}
denote the conductor of o . If o 6= R , then o is not integrally closed.
Thus o is not a Krull domain and hence H(o) fails to be a Krull
monoid. However, H(o) contains a divisor closed submonoid that
is Krull which yields information on the factorization properties of
H(o) . This submonoid can be described as follows. The extension
of ideals

ψ : If(o) → If(R)
I 7→ IR

is a monoid isomorphism with

ψ−1(J) = J ∩ o for all J ∈ If(R)

(cf. [G-HK-K; §3]). Therefore If(o) is free abelian. The embedding

Hf(o) ↪→ If(o)

is a divisor theory and hence Hf(o) is a Krull monoid.
Note that in general, ψ

(Hf(o)
) 6= Hf(R) .

d) Block monoids Let G be an additively written abelian
group and G0 ⊆ G a nonempty subset. Then

B(G0) =
{ ∏

g∈G0

gng ∈ F(G0) |
∑

g∈G

ngg = 0
}
⊆ F(G0)

is called the block monoid over G0 . Clearly, the embedding i :
B(G0) ↪→ F(G0) is a divisor homomorphism and hence B(G0) is a
Krull monoid. Block monoids are the appropriate tool for studying
factorization questions in Krull domains and will be discussed further
in chapter 3.

e) Root closed finitely generated monoids Krull monoids
are completely integrally closed and hence root closed. For finitely
generated monoids the converse holds.
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Proposition 2.5. Let H be a monoid.
1. H is finitely generated if and only if H̃ is finitely generated.
2. Suppose that H is finitely generated. Then H is a Krull

monoid if and only if H = H̃ .

Proof. See [Le], [HK6; Theorem 5] and [G-HK2; Proposition 6.1]. ¤

Let H be a finitely generated monoid such that H̃ is reduced.
By the above theorem, H̃ is a saturated submonoid of a finitely
generated free abelian monoid. Changing to additive notation, we
may suppose that

H ⊆ (Ns, +) ⊆ (Zs,+) ⊆ (Qs, +)

which allows us to study H by geometrical methods. For example,
it turns out that

H̃ = cone(H) ∩ Zs

where cone(H) denotes the convex cone generated by H . It was
this geometrical point of view which was used in the proof of Theorem
2.5.

Hence, finitely generated monoids H ⊆ Zs with H = cone(H) ∩
Zs are Krull monoids. In particular, this is the case for the set of
solutions of linear diophantine inequalities. Let m, s ∈ N , A ∈
Mm,s(Z) and

H = {x ∈ Zs|Ax ≥ 0} ⊆ Zs.

Then H is a root closed monoid which is finitely generated by [HK6;
Theorem 1] and thus is Krull.

2.2 Sets of lengths in Krull monoids

Let H be a monoid. An element u ∈ H \H× is called irreducible
(or an atom), if for all a, b ∈ H u = ab implies that a ∈ H× or
b ∈ H× . Let A(H) denote the set of atoms of H . If ρ : H →
Hred is the canonical epimorphism, then ρ

(A(H)
)

= A(Hred) and
ρ−1

(A(Hred)
)

= A(H) . The free abelian monoid

Z(H) = F(A(Hred)
)
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with basis A(Hred) is called the factorization monoid of H .
Furthermore, the canonical homomorphism

π = πH : Z(H) → Hred

is called the factorization homomorphism of H and for a ∈ H the
elements of

ZH(a) = Z(a) = π−1(aH×) ⊆ Z(H)

are called factorizations of a . We say that H is atomic if π is
surjective (equivalently, H is generated by A(H)∪H×) . So, when
studying factorizations we may restrict ourselves to reduced monoids.

Let H be a reduced atomic monoid. For an element z =∏
u∈A(H)

unu ∈ Z(H) ,

σ(z) =
∑

u∈A(H)

nu ∈ N0

is called the length of the factorization z . For a ∈ H ,

LH(a) = L(a) = {σ(z) | z ∈ Z(a)} ⊆ N0

denotes the set of lengths of a . Furthermore, we call

L(H) = {L(a) | 1 6= a ∈ H}

the system of sets of lengths of H . L(H) is a subset of the power
set of N . By definition we have

i) L(a) = {0} if and only if a = 1 .
ii) L(a) = {1} if and only if a ∈ A(H) .
We say that H is half-factorial if for all a ∈ H any two

factorizations of a have the same length. Such monoids gained
interest after Carlitz [Ca] showed (using different terminology) that
a ring of integers in an algebraic number field is half-factorial if and
only if its class number is less than or equal to two. Further results
concerning domains that are half-factorial can be found in [Sk2] [Z1]
and [Z2]. We will return to this topic later in chapter 5.
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Lemma 2.6. Let H be a reduced atomic monoid.
1. Then the following conditions are equivalent:

i) H is half-factorial.
ii) #L(a) = 1 for all a ∈ H .
iii) L(H) =

{{n} |n ∈ N}
.

2. If H is not half-factorial, then for every N ∈ N there exists
some a ∈ H with #L(a) ≥ N .

Proof. The proof of 1. is obvious. For the proof of 2., see [HK9;
Lemma 2.2]. ¤

Let H be a Krull monoid with divisor theory ϕ : H → D . We
define

D(H,D) = sup{σ(ϕ(u)) |u ∈ A(H)} ∈ N ∪ {∞}.

Hence, D(H,D) is the maximum number of prime divisors of D
dividing the image of some irreducible element of H . The following
lemma lists some basic facts relating these concepts.

Lemma 2.7. Let H be a Krull monoid with divisor theory ϕ :
H → F(P ) and divisor class group G .

1. H is atomic.
2. An element a ∈ H is prime in H if and only if ϕ(a) ∈ P .
3. H is a finite-factorization monoid (i. e., all sets Z(a) are

finite).
4. All sets L ∈ L(H) are finite.
5. The following statements are equivalent:

i) H is factorial.
ii) D(H, D) = 1 .
iii) #G = 1 .

Proof. See [HK1; Korollar 2 and Satz 10] and [HK5; Corollary 3]. ¤

We restrict ourselves to arithmetical questions dealing with lengths
of factorizations. For information on other arithmetical invariants,
the reader is referred to [Ge10]. We introduce some arithmetical
invariants which help describe the structure of sets of lengths. We list
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some of their most elementary properties but offer a more thorough
treatment after the introduction of block monoids.

We divide our discussion into four problem areas. Throughout, let
H be a reduced atomic monoid.

a) The µk - functions We compare the minimum and the supre-
mum of sets of lengths. Let k ∈ N . We define the following three
invariants:

µk(H) = sup{supL | minL ≤ k , L ∈ L(H)} ,

µ
′
k(H) = sup{supL | k ∈ L , L ∈ L(H)} and

µ∗k(H) = sup{supL | minL = k , L ∈ L(H)} ,

using the convention sup ∅ = 0 if there is no L ∈ L(H) with
min L = k . By definition we have

µ∗k(H) ≤ µ
′
k(H) ≤ µk(H) .

Let a ∈ H with minL(a) = l ≤ k . Choose some u ∈ A(H) . Then
k ∈ L(auk−l) and

supL(auk−l) ≥ supL(a) + (k − l) ,

which implies µ
′
k(H) ≥ µk(H) . Thus µ

′
k(H) = µk(H) .

Lemma 2.8. Let H be a reduced atomic monoid and k ∈ N . If
µk(H) < ∞ , then µ∗k(H) = µk(H) .

Proof. Suppose µk(H) < ∞ and let a ∈ H be given with minL(a) ≤
k and maxL(a) = µk(H) . For some u ∈ A(H) we set b =
auk−min L(a) . Then

minL(b) ≤ minL(a) + k −minL(a) = k

and

µk(H) ≥ maxL(b) ≥ maxL(a) + k −minL(a) ≥ µk(H) ,

which implies that k = min L(a) and hence µ∗k(H) = µk(H) . ¤

The invariant µk(H) was introduced in [G-L] and special aspects
of the µk-function have been investigated in various terminology. We
point out the relationship between these concepts, but first gather
some elementary properties of µk(H) .
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Lemma 2.9. Let H be a reduced atomic monoid.
1. µ1(H) = 1 and k + l ≤ µk(H) + µl(H) ≤ µk+l(H) for all

k, l ∈ N .
2. If µk(H) = k for some k ∈ N , then µl(H) = l for all

1 ≤ l ≤ k .
3. H is half-factorial if and only if µk(H) = k for all k ∈ N .

Proof. The proofs of 1. and 3. are clear by the definition. To verify
2., suppose µk(H) = k for some k ∈ N . Then for every 1 ≤ l < k
we have that

l ≤ µl(H) ≤ µk(H)− µk−l(H) ≤ k − (k − l) = l . ¤

An atomic monoid H is said to be k-half-factorial for some
k ∈ N , if µk(H) = k . This property has been investigated in a series
of papers (see [Ch-S3],[Ch-S4] and [Ch-S6]) and the interested reader
is referred there for specific constructions. The following lemma shows
that in finitely generated monoids there exists a constant k ∈ N such
that k-half-factoriality implies half-factoriality. Some efforts have
been made to determine the minimal k ∈ N with this property. We
return to this problem in section 3.1 and chapter 5.

Proposition 2.10. Let H be a finitely generated monoid. Then
there exists some k ∈ N such that H is half-factorial if and only if
H is k-half-factorial.

Proof. We may suppose that H is reduced. Clearly, if H is half-
factorial, then it is m-half-factorial for all m ∈ N . So it remains to
show the converse.

Let H be generated by u1, . . . , us ∈ H and consider the set

S = {(m,n) ∈ N2s
0 |

s∏

i=1

umi
i =

s∏

i=1

uni
i 6= 1} .

By Dickson’s Theorem (see [Re; Satz 2]) the set of minimal points
S0 ⊆ S is finite. For m ∈ Ns

0 we set

|m| =
s∑

i=1

mi .
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Obviously, it is sufficient to verify that if

|m| = |n| for all (m,n) ∈ S0 (∗)

then H is half-factorial.
Suppose that (∗) holds and assume to the contrary that H is not

half-factorial. Then there exists some a ∈ H with

a =
s∏

i=1

umi
i =

s∏

i=1

ui
ni ,

minL(a) = |m| < |n|
and |m| minimal. Then (m,n) 6∈ S0 and hence there exists some
(m′,n′) ∈ S0 with m′ ≤ m and n′ ≤ n . But then we have

s∏

i=1

u
mi−m′

i
i =

s∏

i=1

u
ni−n′i
i ∈ H

and |m−m′| < |n−n′| , a contradiction to the minimality of |m| . ¤

A further arithmetical concept closely related with the µk-function
is the concept of elasticity. Let H be an atomic monoid. The
elasticity %(H) of H is defined as

%(H) = sup
{ sup L

minL
|L ∈ L(H)

}
∈ R≥1 ∪ {∞} .

A detailed study of elasticity is contained in an article by David An-
derson in this volume ([An1]). It is easy to see that

%(H) = limk→∞
µk(H)

k

(cf. [HK8; Proposition 1]).
In section 5.3 we shall review what is known concerning µk(H)

for Krull monoids H .

b) Distances of successive lengths Our next topic deals with
possible distances of successive lengths of factorizations for elements
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a ∈ H . For a finite set L = {x1, · · · , xr} ⊆ Z with x1 < · · · < xr

we set
∆(L) = {xi − xi−1 | 2 ≤ i ≤ r} ⊆ N ,

and
∆(H) =

⋃

L∈L(H)

∆(L) ⊆ N .

Hence, ∆(H) is the set of distances of successive lengths. The proof
of the following property of ∆(H) is not difficult and can be found
in [Ge6; Lemma 3].

Lemma 2.11. Let H be a reduced atomic monoid. Then min∆(H) =
gcd∆(H) .

By definition we have that H is half-factorial if and only if
∆(H) = ∅ . A monoid H is called d-congruence half-factorial, if
for all a ∈ H and any two factorizations z, z′ ∈ Z(a) we have

σ(z) ≡ σ(z′) mod d

(cf. [Ch-S2]). Hence H is d-congruence half-factorial with d ∈ N
minimal if and only if min∆(H) = d . We will consider the d-
congruence half-factorial property, as well as the set ∆(H) , in more
detail in section 5.2.

c) Structure of sets of lengths An atomic monoid is either
half-factorial or sets of lengths can become arbitrarily large. Hence,
an obvious question is to describe such sets for Krull monoids. While
in general these sets may not be perfect arithmetic progressions, they
are almost arithmetic in the following sense.

Definition 2.12. A subset L ⊂ Z is called an almost arithmetical
progression bounded by M ∈ N , if

L = {x1, . . . , xα , y + δ1 , . . . , y + δη , y + d ,
y + δ1 + d , . . . , y + δη + d , y + 2d ,

·
·
·

y + δ1 + (k − 1)d , . . . , y + δη + (k − 1)d , y + kd , z1 , . . . , zβ} ,
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where α, β, η, k, d ∈ N0 , x1 < · · · < xα < y ≤ y + kd < z1 < · · · <
zβ , 0 < δ1 < · · · < δη < d and max {α, β, d} ≤ M .

The following Theorem solves the characterization question and
can be found in [Ge2, Satz 1].

Theorem 2.13. Let H be a Krull monoid which has only finitely
many divisor classes containing prime divisors. Then there exists
some M ∈ N such that every L ∈ L(H) is an almost arithmetical
progression bounded by M .

This result is sharp in the sense that all the parameters in Defi-
nition 2.12 are necessary (see [Ge9] for an example which illustrates
this). Hence, the result raises further questions concerning the param-
eters of almost arithmetical progressions. The only invariant which
has been investigated thus far deals with possible distances in arith-
metical progressions. To be more precise, for H as in Theorem 2.13
let

∆1(H)

denote the set of all d ∈ N such that for all N ∈ N there exists
some L ∈ L(H) with #L ≥ N and with

L = {x1, . . . , xα, y, y + d, . . . , y + kd, z1, . . . zβ}

where x1 < · · · < zβ , α ≤ M and β ≤ M with M as in Theorem
2.13. Notice that ∆1(H) ⊆ ∆(H) , and that there are examples
of differences which appear in ∆(H) which do not appear as a
distance in arbitrarily long almost arithmetic progressions. We return
to ∆1(H) in section 5.2.

d) Systems of sets of lengths In algebraic number theory, the
ideal class group G is considered as a measure for the deviation of
the ring of integers R from being a unique factorization domain. G
is thought to determine the arithmetic of R . A definition of a type of
arithmetic equivalence is given by F. Halter-Koch in [HK1; Korollar
4].

In [Na2; problem 32], W. Narkiewicz asked for an arithmetical
characterization of the ideal class group of a ring of integers in an
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algebraic number field. Various answers to this question have been
given by J. Kaczorowski, F. Halter-Koch, D.E. Rush, A. Czogala, U.
Krause and others (see [Ge6 and Ge7 for a survey]). However, it is
still unknown if it is possible to characterize the ideal class group by
using only lengths of factorizations. To be more precise, we formulate
the following problem:
Problem: Let H and H ′ be Krull monoids with finite divisor
class groups G and G′ such that each divisor class contains a prime
divisor. If #G ≥ 4 , does L(H) = L(H ′) imply that G = G′ ?

We shall not consider this problem further but add the following
remarks.

Remark. 1. Suppose that H and H ′ are the multiplicative
monoids of the rings of algebraic integers R and R′ . A positive an-
swer to the Problem implies that sets of lengths completely determine
the arithmetic of a ring of integers.

2. The analogous question for arbitrary orders in algebraic number
fields (“do sets of lengths determine the arithmetic of an arbitrary
order”) has a negative answer (see [HK9; Example 3]).

3. Clearly, the assumption that each class contains a prime divisor
is necessary for obtaining a positive answer.

4. The Problem is answered positively for cyclic groups in [Ge4].

3. BLOCK MONOIDS

Let G be an additively written abelian group and ∅ 6= G0 ⊆ G a
subset. Let < G0 > denote the subgroup and [G0] the submonoid
generated by G0 . If we define the content homomorphism

ι : F(G0) → G
∏

g∈G

gng 7→
∑

g∈G0

ngg,

then
B(G0) = {S ∈ F(G0) | ι(S) = 0}

is called the block monoid over G0 . It is a Krull monoid, since the
embedding B(G0) ↪→ F(G0) is a divisor homomorphism. We also
have the following (see [HK1; Satz 4 and Korollar] for a proof).
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Proposition 3.1. Let G be an abelian group and G0 a nonempty
subset. Then the following holds:

1. The embedding B(G0) ↪→ F(G0) is a divisor theory if and only
if < G0 >= [G0 \ {g}] for every g ∈ G0 .

2. If #G ≤ 2 , then B(G) is factorial.

3. If #G ≥ 3 , then B(G) ↪→ F(G) is a divisor theory with class
group (isomorphic to) G and each class contains exactly one
prime divisor.

3.1 The block monoid associated to a Krull monoid

Let H be a reduced Krull monoid, ϕ : H → D = F(P ) its
divisor theory and π : D → C(H) = G the canonical epimorphism
onto its divisor class group. Let G0 ⊆ G denote the set of classes
containing prime divisors (i. e., G0 = {g ∈ G | g ∩ P 6= ∅} ). We
define a monoid epimorphism

β : F(P ) → F(G0)

p 7→ [p]

which maps each prime divisor onto its divisor class. This induces a
monoid epimorphism

β = β ◦ ϕ : H → B(G0)

and we obtain the following commutative diagram

H
ϕ→ D = F(P ) π→ G

↓ β ↓ β ‖
B(G0) ↪→ F(G0)

ι→ G

.

β : H → B(G0) is called the block homomorphism and B(G0) the
block monoid associated with the Krull monoid H (resp. with the
divisor theory ϕ : H → D). The significance of this construction can
be seen from the following lemma.



Krull Domains and Monoids 93

Lemma 3.2. Let H be a reduced Krull monoid, a ∈ H and
β : H → B(G0) the corresponding block homomorphism. Then we
have

1. a is irreducible in H if and only if β(a) is irreducible in
B(G0) , β

(A(H)
)

= A(B(G0)
)

and β−1
(A(B(G0)

))
= A(H) .

2. LH(a) = LB(G0)

(
β(a)

)
and L(H) = L(B(G0)

)
.

3. D(H, D) = D(B(G0),F(G0)) .
4. %(H) = %

(B(G0)
)
, ∆(H) = ∆

(B(G0)
)
, ∆1(H) = ∆1

(B(G0)
)

and µk(H) = µk

(B(G0)
)

for every k ∈ N .

Proof. The proofs of 3. and 4. are immediate consequences of 1.
and 2. Proofs of 1. and 2. may be found in [Ge2; Proposition 1].
Alternatively, notice that β satisfies the assumption of the Transfer
Lemma in [HK9]. ¤

Lemma 3.2 states that sets of lengths (and hence all invariants deal-
ing with lengths of factorizations) in a Krull monoid may be studied
in the associated block monoid. Let us mention an important ap-
plication: it is sufficient to prove the structure theorem for sets of
lengths in Krull monoids (Theorem 2.13) for block monoids. We give
a further example to illustrate how the Lemma 3.2 works.

Proposition 3.3. Let H be a Krull monoid with divisor class group
G and let G0 ⊆ G denote the set of classes containing prime
divisors. Suppose that G0 is finite. Then there exists a constant
k ∈ N such that H is half-factorial if and only if H is k-half-
factorial.

Proof. By Lemma 3.2 it sufficient to prove the assertion for B(G0)
instead of H . Since G0 is finite, B(G0) is finitely generated (cf.
[Ge2; Proposition 2]). Now Proposition 2.10 implies the result. ¤

Block monoids were introduced by W. Narkiewicz in [Na1] and
first used systematically in [Ge2]. Consequently, block monoids have
been attached to arbitrary divisor homomorphisms ϕ : H → D (cf.
[Ge8]). For an overview the reader is referred to [HK9].

We use the following notation throughout the remainder of this
article.
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Notation: L(G0) = L(B(G0)
)
, ∆(G0) = ∆

(B(G0)
)
,∆1(G0) =

∆1

(B(G0)
)
,
D(G0) = D(B(G0),F(G0)), µk(G0) = µk(B(G0)) and

%(G0) = %(B(G0)) .
For an abelian group G and a subset ∅ 6= G0 ⊆ G , D(G0) is

called the Davenport constant of G . By definition we have

D(G0) = sup{σ(B) |B ∈ A(B(G0))}

Davenport’s constant plays a central role in factorization theory (cf.
[Ch]). Its properties will be discussed in section 5.1.

3.2 Realization theorems

As noted above, it is easy to see that block monoids admit a divisor
theory. However, it is surprising that conversely every reduced Krull
monoid is isomorphic to a block monoid. A proof of the following can
be found in [G-HK1; Theorem 2].

Theorem 3.4. For a monoid H the following conditions are equiv-
alent:

1. H is a Krull monoid.
2. There exists an abelian group G and a subset ∅ 6= G0 ⊆ G

such that H ' H× × B(G0) .

Further realization theorems for Krull monoids as arithmetically
closed submonoids of special type are derived in [G-HK1; section 4].

By Lemma 3.2, sets of lengths in a Krull monoid just depend on
the pair (G,G0) . So one might ask for which pairs (G,G0) there
exists a Krull monoid H with divisor class group (isomorphic) G
such that G0 is the set of classes containing prime divisors. If there
is such an H , we say that the pair (G,G0) is realizable by H .

Theorem 3.5. Let G be an abelian group, (mg)g∈G a family of
cardinal numbers and G0 = {g ∈ G|mg 6= 0} . Then the following
conditions are equivalent:

1. There exists a Krull monoid H with divisor theory ϕ : H →
F(P) , divisor class group C and a group isomorphism ψ : G →
C such that mg = card(P ∩ ψ(g)) for all g ∈ G .



Krull Domains and Monoids 95

2. G = [G0] , and for all g ∈ G0 with mg = 1 we have G =
[G0 \ {g}] .

Proof. [HK1; Satz 5] ¤

Building on the work of L. Claborn, A. Grams and L. Skula char-
acterized pairs (G,G0) which are realizable by Dedekind domains.

Theorem 3.6. Let G be an abelian group and G0 ⊆ G a nonempty
subset. Then the following conditions are equivalent:

1. There exists a Dedekind domain R with ideal class group G
such that G0 is the set of classes containing prime ideals.

2. G = [G0] .

Proof. See [Gr; Theorem 1.4]. The result is also proved independently
in [Sk2; Theorem 2.4]. ¤

4. ARITHMETICAL KRULL MONOIDS

Let R be the ring of integers in an algebraic number field and P
some factorization property. Then one might ask for an asymptotic
formula for the number of elements α ∈ R (counted up to asso-
ciates) satisfying property P and with norm N(α) bounded by
x . The prototype of these questions is to count the primes p ∈ N
with p ≤ x . Such quantitative aspects of non-unique factorizations
in algebraic number fields were first considered by E. Fogels in the
forties. Systematic investigations were started by W. Narkiewicz in
the sixties (see [Na2; Chapter 9]).

Quantitative investigations of phenomena of non-unique factoriza-
tions are interesting mainly for holomorphy rings in global fields (in-
cluding rings of integers in algebraic number fields and in algebraic
function fields in one variable over a finite field). However, it has
turned out that most of the results can be derived for very gen-
eral structures in the setting of abstract analytic number theory. It
was this axiomatic procedure which recently allowed the extension
of results from principal orders to arbitrary orders in global fields
(see [G-HK-K]). A further advantage of the axiomatic method is that
it allows us to describe and investigate the combinatorial structures
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which are responsible for the various phenomena of non-unique fac-
torization. Abstract analytic number theory is carefully presented in
the monograph by J. Knopfmacher [Kn], who introduced the notion
of an arithmetical formation. Our definition will be slightly different.

Definition 4.1. 1. A norm (function) | · | on a reduced monoid
H is a monoid homomorphism | · | : H → (N, ·) satisfying | a | = 1
if and only if a = 1 .

2. An arithmetical Krull monoid (an arithmetical formation)
consists of a triple [D, H, | · | ] where D = F(P ) is a free abelian
monoid, H ⊆ D a saturated submonoid with finite divisor class
group G and a norm | · | : D → N satisfying the following axiom:
for every g ∈ G

∑

p∈P∩g

| p |−s =
1

#G
log

1
s− 1

+ hg(s)

where hg(s) is regular in the half-plane Re(s) ≥ 1 and in some
neighborhood of s = 1 .

Examples and Remarks. 1. Let K be an algebraic number field
and R a holomorphy ring in K (e.g., the ring of algebraic integers
in K). For every ideal I ∈ I(R) we set | I | = #(R/I) . Then
| · | : I(R) → N is a norm function.

Let f∗ = fω1 . . . ωm be a cycle of R with f ∈ I(R) , m ≥ 0
and real embeddings ω1, . . . , ωm : K → R . Let π : R• → (R/f∗)×

denote the canonical epimorphism, Γ ⊆ (R/f∗)× a subgroup and
H = Hf∗,Γ(R) the reduced Hilbert monoid associated with f∗ and
Γ (see chapter 2). Then Chebotarev’s density theorem implies that

[If(R) , H , | · | ]

is an arithmetical Krull monoid (see [HK4; Proposition 3]).
2. Let K be an algebraic number field, R its ring of integers

and o ⊆ R an order with conductor f . For every I ∈ If(o) we have
(o : I) = (R : IR) and hence | · | : If(o) → N is a norm function.
The embedding

Hf(o) ↪→ If(o)
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is a divisor theory with divisor class group isomorphic to Pic(o) .
Thus

[Hf(o) , If(o) , | · | ]
is an arithmetical Krull monoid (cf. [G-HK-K; Prop. 3 and Remark
after Definition 4]).

3. Suppose that in the above definition we just require that the
functions hg(s) are regular in the open half-plane Re(s) > 1 . Then
examples 1. and 2. can be carried out not only in algebraic number
fields but in global fields. However, the asymptotic results are weaker.
Apart from this, further variants of the analytical axiom have been
studied. However, all axioms are modelled on the concrete situation
in algebraic number fields or algebraic function fields (in one variable
over a finite constant field). The reader is referred to [G-HK-K] or
[G-K].

Let [D, H, | · | ] be an arithmetical formation. For a subset Z ⊆ H
let

Z(x) = #{a ∈ H | | a | ≤ x , a ∈ Z}
denote the associated counting function. Quantitative theory of non-
unique factorizations studies Z(x) for subsets Z of arithmetical
interest. We restrict ourselves to subsets Z which give information
on sets of lengths. Among others, the following sets have been studied
for every k ∈ N

Mk(H) = Mk = {a ∈ H | maxL(a) ≤ k} ,

Gk = {a ∈ H |#L(a) ≤ k}

and

P = {a ∈ H |L(a) is an arithmetical progression with distance 1} .

We say a subset L ⊂ Z is an arithmetical progression with distance
1 , if L = {x, x + 1, . . . , x + m} for some x ∈ Z and m ∈ N0 .
Moreover, note that

M1 = {a ∈ H | a is irreducible} .
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For all these sets Z , the asymptotic behaviour of Z(x) is of the
form

Z(x) ∼ Cx(logx)−A(log logx)B (∗)
with C ∈ R>0 , 0 ≤ A ≤ 1 and B ∈ N0 . As usual, f ∼ g for two
real valued functions f and g means that

lim
x→∞

f(x)
g(x)

= 1 .

We give a brief outline of a proof of formula (∗) . We do it in a
manner which allows us to obtain combinatorial descriptions of the
involved exponents A and B . We proceed in three steps.

a) Block monoids Due to the following lemma, it is sufficient
to study the sets Z in the associated block monoid.

Lemma 4.2. Let H be a Krull monoid with divisor class group G
such that each class contains a prime divisor and let β : H → B(G)
denote the block homomorphism. Then for each set Z we have

Z(H) = β−1
(
Z

(B(G)
))

(i. e., Z(H) = {a ∈ H |β(a) ∈ Z
(B(G)

)} ).

Proof. This follows immediately from Lemma 3.2. ¤

b) Combinatorial part Let G be a finite abelian group and
Z = Z

(B(G)
) ⊆ B(G) . Our aim is to reveal the structure of Z .

For this we introduce the following combinatorial tool.

For a subset Q ⊆ G and a function σ : G \Q → N0 we set

Ω(Q, σ) = {S ∈ F(G) | vg(S) = σ(g) for all g ∈ G \Q} .

and
|σ | =

∑

g∈G\Q
σ(g) ∈ N0 .
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Lemma 4.4. Let Z = Mk or Z = Gk for some k ∈ N . Then
there exist finitely many pairs (G1, σ1), . . . , (Gr, σr) such that

Z =
r⋃

i=1

Ω(Gi, σi) . (∗∗)

Further we have:
i) the representation (∗∗) is unique.
ii) if Z = Mk , then G1 = · · · = Gr = ∅ .
iii) if Z = Gk , then ∆(G1) = · · · = ∆(Gr) = ∅ .

Proof. The existence and uniqueness of the representation (∗∗) is
proved in [HK4; Proposition 9].

ii) Suppose that Ω(G0, σ0) ⊆ Mk . If g ∈ G0 , then B =
(gord(g))k+1 ∈ B(G) ∩ Ω(G0, σ0) but B 6∈ Mk . This shows that
G0 = ∅ .

iii) Suppose that Ω(G0, σ0) ⊆ Gk . If ∆(G0) 6= ∅ , there exists
some B ∈ B(G0) with #L(B) ≥ 2 . Thus Bk+1 ∈ Ω(G0, σ0)∩B(G)
but Bk+1 6∈ Gk . This shows that ∆(G0) = ∅ . ¤

The previous result gives rise to the following definition.

Definition 4.5. Let G be a finite abelian group.
1. For every k ∈ N let Dk(G) = sup{σ(B) |B ∈ B(G) , maxL(B) ≤

k} .
2. η(G) = max{#G0 |∆(G0) = ∅} .

Clearly, D1(G) = D(G) is just Davenport’s constant of G . The
next lemma gives information on the structure of the set P .

Lemma 4.6. Let G′ = G \ {0} and A∗ =
∏

g∈G′ g . Then for all
A ∈ B(G) with A∗ |A we have A ∈ P i. e.,

B(G) \ P ⊆
⋃

g∈G′
Ω(G \ {g} , σg)

with σg : {g} → N0 and σg(g) = 0 for all g ∈ G′ .

Proof. See [Ge9]. ¤
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c) Analytical part The above combinatorial results show that it
is sufficient to study the asymptotic behaviour of functions Ω(Q, σ)(x)
in order to obtain results for Z(x) . A function of the form Ω(Q, σ)(x)
was first investigated by P. Remond for algebraic number fields (for
citations and historical remarks the reader is referred to Narkiewicz’s
book [Na2; chapter 9]). The main analytical tool for these investiga-
tions is a Tauberian theorem of Ikehara-Delange. For the proof of the
following lemma, see [HK4; Proposition 10].

Lemma 4.7. Let Q ⊆ G be a subset and σ : G \ Q → N0 a
function with |σ | > 0 if Q = ∅ . Then, for x tending to infinity,

#{a ∈ D |β(a) ∈ Ω(Q, σ) , | a | ≤ x} ∼ Cx(logx)−η(log logx)d

where

η =
#(G \Q)

#G
and d =

{ |σ | Q 6= ∅
|σ | − 1 Q = ∅ .

Theorem 4.8. Let [D, H, | · | ] be an arithmetical Krull monoid.
Then we have for every k ∈ N

1. Mk(x) ∼ Cx(logx)−1(log logx)Dk(G) for some C ∈ R>0 .
2. Gk(x) ∼ C(logx)

η(G)−#G
#G (log logx)B for some C ∈ R>0 and

some B ∈ N0 .
3. P (x) = H(x) + O

(
x

(logx)1/#G

)
, in particular

lim
x→∞

P (x)
H(x)

= 1.

Proof. See [HK3], [Ge3], [Ge2; Satz 2] and [G-K; Theorem 7]. ¤

5. COMBINATORIAL PROBLEMS IN ABELIAN GROUPS

In chapters 2 and 4, we discussed arithmetical questions in Krull
domains and defined invariants which describe their arithmetic. As
explained in chapter 3, all these notions depend solely on the divisor
class group of the domain and the distribution of prime divisors in
the divisor classes. This final chapter is devoted to the investigation
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of these group theoretical constants. The resulting problems belong
to the zero sum area, a part of additive group theory or combinatorial
number theory.

Let G be an abelian group. We use additive notation throughout
this section. Let S = (g1, . . . , gl) be a finite sequence of elements
of G . Usually, one says that S is a zero sequence, if

∑l
i=1 gi = 0

and that S is a minimal zero sequence, if
∑

i∈I gi 6= 0 for each
proper subset ∅ 6= I ⊂ {1, . . . , l} . To be consistent with the previous
chapters, we view S as an element of the free abelian monoid F(G)
and use multiplicative notation. Hence,

S =
l∏

i=1

gi =
∏

g∈G

gvg(S) ∈ F(G)

and σ(S) = l denotes the number of elements of S . By definition,
S is a zero sequence if and only if S is a block and S is a minimal
zero sequence if and only if S is an irreducible block. We define

−S =
l∏

i=1

(−gi) ,

and, for every subset G0 ⊆ G set −G0 = {−g | g ∈ G0} . The cyclic
group of order n ∈ N will be denoted by Cn and

Cn = {a = a + nZ | 0 < a < n} = {1, . . . , n− 1} .

For a real number x ∈ R let [x] ∈ Z be the smallest integer d ∈ Z
with d ≤ x .

5.1 On Dk(G)

Throughout section 5.1, let G is a finite abelian group and suppose
that G =

⊕r
i=1 Cni where n1 | n2 | · · · | nr . Then nr is the

exponent of the group and r is the maximal p-rank of G . We call
r the rank of G . If k is a positive integer, set

Mk(G) =
r−1∑

i=1

(ni − 1) + knr

and M1(G) = M(G) .
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Proposition 5.1. Let k be a positive integer and G be as above.
1. Mk(G) ≤ Dk(G) ≤ kD(G) ≤ knr(1 + log #G

nr
) .

2. If G1 ( G is a proper subgroup, then Dk(G1) < Dk(G) .
3. If G = G′ ⊕G′′ , then Dk(G′) +D(G′′)− 1 ≤ Dk(G) .

Proof. The upper bound for D(G) was first shown in [E-K]. For a
simplified proof see [A-G-P; Theorem 1.1]. Proofs of all other asser-
tions may be found in [HK3]. ¤
Proposition 5.2. Let k be a positive integer and G be as above.

1. If rank r ≤ 2 , then Mk(G) = Dk(G) .
2. If G is a p-group, then M(G) = D(G) .

Proof. The assertions for D(G) were derived independently by Ol-
son and Kruyswijk (see [Ol] and [E-K]). Halter-Koch proved 1. for
arbitrary k in [HK3]. ¤

There are infinitely many groups of rank four with M(G) < D(G)
(see [G-S]). It is still an open problem whether there are groups of
rank three with M(G) < D(G) . For recent results for groups of rank
three the reader is referred to [Ga].

5.2 On ∆(G0)

Proposition 5.3. Let G be a finite abelian group.
1. Let ∅ 6= G0 ⊆ G be a subset. If D(G0) ≥ 3 , then ∆(G0) ⊆

{1, . . . ,D(G0) − 2} . If G0 = −G0 , then {ord(g) − 2|g ∈
G, ord(g) > 2} ⊆ ∆(G0) .

2. ∆(G) = ∅ if and only if #G ≤ 2 . ∆(G) = {1} if and only if
G ∈ {C3, C

2
3 , C2

2} . In all other cases we have #∆(G) ≥ 2 and
1 = min ∆(G) .

3. ∆(Cn) = {1, . . . , n− 2} for every n ≥ 3 .

Proof. The proofs can be found in [Ge2; Proposition 3 and the Ex-
ample prior to Proposition 4] and [G-K; Proposition 4]. ¤

Suppose that G is a torsion abelian group and G0 ⊆ G a subset.
We say that G0 is half-factorial, if ∆(G0) = ∅ (equivalently, the
block monoid B(G0) is half-factorial). Our first aim is to gather some
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results on half-factorial subsets. For a sequence S = g1g2 · · · gt of
elements in G we set

k(S) =
t∑

i=1

1
ord(gi)

.

k(S) is known as the cross number of S . For properties of this in-
variant and its relevance in factorization theory the reader is referred
to [Ch] and [Ch-G].

The following result was obtained independently in both [Sk2; The-
orem1] and [Z1; Proposition 1].

Proposition 5.4. Let G be an abelian torsion group and G0 ⊆ G .
The following statements are equivalent:

1. G0 is half-factorial.
2. k(B) = 1 for all irreducible blocks B ∈ B(G0) .

Proof. Assume that k(B) = 1 for all irreducible blocks . If U1, . . . , Ur ,
V1, . . . , Vs are irreducible blocks in B(G0) and U1 · · ·Ur = V1 · · ·Vs ,
then k(U1 · · ·Ur) = k(V1 · · ·Vs) implies that r = s .

Assume that k(B) 6= 1 for some irreducible block B = g1 · · · gl ∈
B(G0) . Let m = lcm {ord(g1), . . . , ord(gl)} , niord(gi) = m and
Ui = g

ord(gi)
i be an irreducible block in B(G0) for each 1 ≤ i ≤ l .

Since
k(B) =

n1 + · · ·+ nl

m
6= 1

we have
Bm = Un1

1 · · ·Unl

l .

Thus Bm has factorizations of two different lengths. ¤

Proposition 5.5. Let G be a direct sum of cyclic groups. Then
there exists a half-factorial subset G0 such that 〈G0〉 = G .

Proof. Since G is a free Z-module, it has a basis G0 , which has the
required property. ¤

The question of whether Proposition 5.5 holds for all abelian groups
is still open. The arithmetical relevance of this problem lies in its
combination with the realization theorems in section 3.2. Given an
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abelian group G which is a direct sum of cyclic groups, Proposition
5.5 thus provides a half-factorial Dedekind domain with class group
G . A discussion of some other classes of abelian groups for which the
assertion of 5.5 holds can be found in [M-S].

Proposition 5.6. Let n be a positive integer, p a prime and
G0 ⊆ Cpn a nonempty subset of Cpn . Then G0 is half-factorial
if and only if there exists an automorphism ϕ of Cpn such that
ϕ(G0) ⊆ {1, p, . . . , pn−1} .

Proof. See [Sk2; Prop. 3.4] and [Z1;Corollary 5]. ¤
We characterize small half-factorial subsets of cyclic groups.

Proposition 5.7. Let n be a positive integer and G0 ⊆ Cn with
0 /∈ G0 .

1. Suppose G0 = {a + nZ, b + nZ} and set

n1 =
n gcd(a, b, n)

gcd(a, n) gcd(b, n)
.

Then G0 is half-factorial if and only if n1 ≤ 2 or
a

gcd(a, n)
≡ b

gcd(b, n)
(mod n1).

2. Suppose G0 = {1, a, b} with 1 ≤ a, b < n . Then G0 is
half-factorial if and only if a | n and b | n .

Proof. The proof of 1. is [Ge1; Proposition 5]. For the proof of 2.,
see [Ch-S1; Theorem 3.8]. ¤

Example. There is no analogue for the case #G0 = 4 . Consider
G = C30 and G0 = {1, 6, 10, 15} . If

B = 15 · 10 · 10 · 6 · 6 · 6 · 6 · 1
then k(B) = 2 and hence ∆(G0) 6= ∅ by Proposition 5.4 [Ch-S1,
Example 11].

In chapter 4 we defined
η(G) = max{#G0 |G0 ⊆ G,G0 half-factorial} .

This invariant was first studied by J. Sliwa [Sl], and then by J. Kac-
zorowski and the first author. However, very little is known about
η(G) . We restate one result from [G-K; section 13].
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Proposition 5.8. For a prime p and an integer r ∈ N we have

1 + (r − 2[
r

2
]) + p[

r

2
] ≤ η(Cr

p) ≤ 1 + [p
r

2
] .

Next we study subsets G0 of finite abelian groups G which are
not half-factorial. As pointed out in section 2.2, a central point is
to determine min ∆(G0) . There is an algorithm for doing so [Ge1;
Proposition 3].

Proposition 5.9. Let G0 = {g1, . . . , gm} ⊆ G where G is finite
abelian and ∆(G0) 6= 0 . Let B1, B2, . . . , Bψ be the irreducible blocks
in B(G0) and suppose that d = min ∆(G0) . Then d is the solution
of the following linear, integral optimization problem: minimize

ψ∑

i=1

xi

under the restrictions
ψ∑

i=1

vgj (Bi) · xi = 0

for every j ∈ {1, . . . ,m} and

ψ∑

i=1

xi > 0

where xi ∈ Z for every i ∈ {1, . . . , ψ} .

For a cyclic group G and G0 ⊆ G containing a generator,
min∆(G0) can be determined easily from the irreducible blocks in
B(G0) [Ge1; Proposition 7].

Proposition 5.10. Let n ≥ 3 and G0 ⊆ Cn a subset with 1 ∈ G0

and ∆(G0) 6= ∅ . Then

min ∆(G0) = gcd{ 1
n

n−1∑

i=1

i · vi(B)− 1 | 0 6= B ∈ B(G0) irreducible} .
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Example. We consider some special cases of the last result.
i. min∆({1, n− 1}) = n− 2 .
ii. If n is odd then,

a. min∆({1, n+1
2 }) = 1 .

b. min∆({1, n−1
2 }) = n−3

2 .
Alternate calculations for these values can be found in [Ch-S2;

Theorem 4] and [Ch-S1; Theorems 4.5 and 4.6].

If in addition G0 consists of only two elements, then there is an
explicit formula for min ∆(G0) not involving irreducible blocks of
B(G0) . This result is obtained by methods of diophantine approxi-
mation in [Ge1; Theorem 1].

Proposition 5.11. Let n ≥ 3, a ∈ {2, . . . , n−1} with gcd(a, n) = 1
and l ∈ {1, . . . , n− 1} such that al + 1 ≡ 0 (mod n) . Suppose the
continued fraction expansion of n

l = [a0; a1, . . . , am] . Then

min ∆({1, a}) = gcd{a− 1,
al + 1

n
− 1, a0 − 1, a2, . . . , a2s}

where s is determined explicitely.

Proposition 5.3 indicates that for any finite abelian group G with
#G ≥ 3 we have min ∆(G) = 1 . The next result shows that, apart
from very few exceptions, there are always subsets G0 ⊆ G with
min∆(G0) > 1 . The proof can be found in [Ch-S1; Corollary 4.14].

Proposition 5.12. Let G be a non-trivial finite abelian group.
Then there exists a nonempty subset G0 ⊆ G with min∆(G0) > 1
if and only if G 6∈ {C2, C3, C2 ⊕ C2, C3 ⊕ C3} .

We close with a result on ∆1(G) . The proof can be found in [Ge1;
Propositions 1 and 2].

Proposition 5.13. Let G be a finite abelian group. Setting

S = {min∆(G0) | ∅ 6= G0 ⊆ G, ∆(G0) 6= ∅}

we obtain
S ⊆ ∆1(G) ⊆ {d | d|s for some s ∈ S}.
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5.3 On µk(G)

We freely use the elementary properties of µk(G) mentioned in
section 2.2.

Proposition 5.14. Let k ∈ N and G be a non-trivial finite abelian
group.

1. µ2k(G) = kD(G) .
2. kD(G) + 1 ≤ µ2k+1(G) ≤ kD(G) +

[
D(G)

2

]
.

3. µ2k−1(G) + D(G) ≤ µ2k+1(G) .
4. Let m ∈ N such that

µ2m+1(G)−mD(G) = max {µ2r+1(G)− rD(G)|r ∈ N} .

Then
µ2m+2i+1(G) = µ2m+1(G) + iD(G)

for all i ≥ 1 .

Proof. Set G′ = G\{0} 6= ∅ and let U ∈ B(G) be irreducible with
σ(U) = D(G) .

For 1. and 2., we obviously have maxL((−U)kUk) = kD(G) and
hence µ2k(G) ≥ kD(G) . Similarly, max L((−U)kUk+1) ≥ kD(G)+1
and thus µ2k+1(G) ≥ kD(G)+1 . To prove the remaining inequality,
let B ∈ B(G′) be given with min L(B) = ` ∈ {2k, 2k + 1} . Then

2max L(B) ≤ σ(B) ≤ D(G)min L(B) = `D(G)

implies

max L(B) ≤
[
`D(G)

2

]
.

For 3., let B ∈ B(G′) with minL(B) ≤ 2k− 1 and max L(B) =
µ2k−1(G) . Then min L(B(−U)U) ≤ 2k + 1 and max L(B) ≥
D(G) + µ2k−1(G) . This implies µ2k+1(G) ≥ D(G) + µ2k−1(G) .

For 4., induction on 3. implies that, for all i ≥ 1 ,

µ2m+2i+1(G) ≥ µ2m+1(G) + iD(G).

By definition of m we infer that

µ2m+2i+1(G)− (m + i)D(G) ≤ µ2m+1(G)−mD(G),
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which implies the assertion. ¤

Part 1. above improves a result found in [Ch-S5; Lemma 4], where
it is shown using different notation that µ2kD(G)(G) = kD(G)2 for
every integer k ≥ 1 . For elementary 2-groups we are able to explicitly
compute µ`(G) for all positive integers ` .

Proposition 5.15. Let G = Cr
2 be an elementary 2-group of rank

r ≥ 1 and let ` ≥ 2 . Then

µ`(G) =
[
`D(G)

2

]
.

Proof. By Proposition 5.14, the assertion holds if ` is even. So let
` be odd. Proposition 5.14 part 2. implies that µ`(G) ≤

[
`D(G)

2

]
.

By Proposition 5.14 part 4, it is sufficient to verify that

µ3(G) ≥ D(G) +
[
D(G)

2

]
.

Let e1, . . . , er be a generating system of G and e0 =
∑r

i=1 ei .
Note that by Proposition 5.2 we have D(G) = r + 1 . We give 3
irreducible blocks U1 , U2 and U3 such that

max L(U1U2U3) = D(G) +
[
D(G)

2

]
.

Set U1 =
∏r

i=0 ei .

Case 1 Suppose r = 2k + 1 . Then set

U2 =

(
k+1∏

i=1

ei

) (
k∏

i=1

ei + ei+k+1

)(
2k+1∑

i=k+1

ei

)

and

U3 =

(
2k+1∏

i=k+2

ei

) (
k∏

i=1

ei + ei+k+1

)(
2k+1∑

i=k+1

ei

)
e0.
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Case 2 Suppose r = 2k . Then set

U2 =

(
k∏

i=1

ei

) (
k∏

i=1

ei + ei+k

)(
2k∑

i=k+1

ei

)

and

U3 =

(
k∏

i=1

ei + ei+k

)(
2k∏

i=k+1

ei

)(
k∑

i=1

ei

)
. ¤

Proposition 5.16. Let G be a bounded abelian torsion group with
exponent m and G0 ⊆ G a nonempty subset. Then µm(G0) = m
if and only if µk(G0) = k for all positive integers k .

Proof. Suppose that µk(G0) 6= k for some integer k . Then by
Proposition 5.4 there exists some irreducible block

B =
l∏

i=1

gi ∈ B(G0)

with cross number k(B) 6= 1 . Thus

Bm =

(
l∏

i=1

gi

)m

=
l∏

i=1

(
g
ord(gi)
i

) m
ord(gi)

where m 6= mk(B) , and hence µm(G0) 6= m . ¤
In general, the exponent of the group is the minimal possible m

such that the above result holds. This can be seen from the following
example.

Example. Let k ≥ 4 be given. Then there exists a finite abelian
group G (depending on k ) and a subset G0 for which µk(G0) = k
but µk+1(G0) 6= k + 1 . The argument runs as follows.

Let m > k+1 and set G = ⊕k
i=1Cm . If e1, . . . , ek is a Z-module

basis for G and e0 = −∑k
i=1 ei , then G0 = {e1, . . . , ek, e0} has

the required property (see [Ch-S3; Examples 2.6 - 2.9]).

In special cases, the value m obtained in Proposition 5.16 can be
improved, as the following result demonstrates.
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Proposition 5.17. Suppose that G is a non-trivial finite abelian
group and G0 ⊆ G a nonempty subset which satisfies any of the
following conditions:

1. G = Cpn for p a prime integer and n a positive integer.
2. G = Cpq for distinct prime integers p and q .
3. #G ≤ 15 .
4. G is cyclic and G0 contains a generator.

Then µ2(G0) = 2 if and only if µk(G0) = k for all integers
k ≥ 1 .

Proof. The proofs of 1., 2. and 3. are slight modifications of [Ch-S3;
Theorem 3.2], [Ch-S3; Corollary 3.5] and [Ch-S4; Theorem 1]. For 4.
see [Ch-S6; Theorem 1]. ¤
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