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Abstract. We study the relationship between divisor theories and systems of valuations,
and characterize monoids with quasi divisor theories of finite character by systems of essential
valuations. Throughout, we avoid ideal theory but use divisor theoreticai methods.

1. The notion of divisibility, which is fundamental for all arith-
metical investigations, is a purely multiplicative one, and there are
several fundamental papers making allowance for this point of view,
cf. [8], [12], [1].

There are two different concepts for a description of the arithmetic
of a domain without unique factorization: ideals and divisors. The
ideal-theoretic point of view was first described by A. CLIFFORD [2]
and later on in [7] and [1], where, more generally, ideal systems (in
particular t-ideals) were considered. The first axiomatic treatment of
divisors was given by L. SKULA in [12]; however, in order to prove
uniqueness of a divisor theory, he was forced to fall back upon
ideal-theoretic concepts and to refer to [2]. In [6], the second author
stressed the connection between divisor theories and valuations and
succeeded in giving a proof for the uniqueness of a divisor theory
avoiding ideal-theoretic tools.

It is the aim of this paper to do the same for quasi divisor theories
as introduced in [1] and investigated in [10] and [4]. We start with
a proof of Lorenzen’s Realization Theorem for GCD-monoids (cf.
[9; Theorem 1.9]) which works entirely in the language of monoids
and monoid homomorphisms. For convenience of the reader we
explicitely formulate the connection between the language of quasi
divisor theories and the language of t-ideals in Proposition 3 (cf. [7;
IT §2 Prop. 7]).

1991 Mathematics Subject Classification: 13A05, 13A18, 13F05, 20M 14.
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The central topics are the following: the uniqueness theorem for
quasi divisor theories (Theorem 2) cf. [7; II §3 Corollary of Theorem
3] and [1; Theorem 4]); a description of quasi divisor theories of
finite character by valuations (Theorem 3) first proved in [4]; a
new criterion for the minimality of families of defining essential
valuations of finite character (Corollary 1); and a fresh approach
towards the Realization Theorem of Krull-Kaplansky-Jaffard—
Ohm (Corollary 2).

2. All monoids in this paper are assumed to be commutative and
cancellative, and they are written multiplicatively. Our main reference
for the theory of monoid homomorphisms is [3]; for the notions of
divisibility theory in monoids we refer to [5; §6]. For a monoid H, we
denote by 2(H) a quotient group of H with H = 2(H) and by H* the
group of invertible elements of H; H is called reduced if H™ = {1}.

Let ¢: H— D be a monoid homomorphism. We set

H,={u""ve2(H)|u,veH, o(u)|p(v)};

furthermore, ¢ is said to be
a) a divisor homomorphism, if u,ve H and ¢(u)| ¢(v) implies u|v.
b) essential, if u,veH and ¢(u)|@(v) implies u|vs for some
sep”Y(D*).

Definition 1. Let H be a monoid.

a) H is called a GCD-monoid if any two elements of H possess
a unique greatest common divisor in H (equivalently: H is reduced,
and any two elements of H possess a greatest common divisor in H).
If H is a GCD-monoid, then any finitely many elements a,,...,a,e H
possess a unique greatest common divisor in H, denoted by
(ays...,a,)y-

b) A homomorphism of GCD-monoids ¢: H—D is called a
GCD-homomorphism if ¢((a, b)y) = (¢(a), ¢(b)),, for all a,be H.

¢) H is called a valuation monoid if for any a,be H we have a|b
or bla (equivalently: if xe2(H)\H, then x~'eH). Clearly, any
reduced valuation monoid is a GCD-monoid.

d) A valuation of H is a surjective homomorphism ¢: H — V into
a reduced valuation monoid V.

Let (D,),., be a family of GCD-monoids, and
D'=[]D,<[]D;=D.

iel iel



On Quasi Divisor Theories and Systems of Valuations 57

Then D and D' are GCD-monoids, and for any (a;),, (b;)ic;€D We
have

((@iers bi)ie)p = (@i, bi)p,)ier-

In particular, the injection D’ =, D and the projections D — D, are
GCD-homomorphisms.

Proposition 1. Let D be a GCD-monoid, V a reduced valuation
monoid and @:D — V a monoid homomorphism. Then ¢ is essential if
and only if ¢ is a GCD-homomorphism.

Proof. Let ¢ be essential, a,be D and d = (a, b),. We may assume
that ¢(a)|@(b); then there exists some zeD such that ¢(z)=1 and
a|bz, say bz = ac for some ceD. This implies

dz = (az, bz)p = (az,ac)p = a(z, c)p,
and consequently a|dz, whence ¢@(a)|@(dz)= @(d). On the other
hand, d|a implies ¢(d)|¢p(a) and therefore @(d) = p(a) =(p(a), (b)), .
Assume now that ¢ is a GCD-homomorphism, and let a,be D
be such that ¢(a)|@(b). If d = (a, b),p, then ¢(d) = (p(a), (b)), = @(a).
Let zeD be such that a = dz; then a|bz, and ¢(d)p(z) = @(a) = ¢(d)
implies p(z)=1. W

Definition 2. Let p=(p;: H— D;);,; be a family of monoid homo-
morphisms. Then we define

p=I1p:H-T]D,
by
p(a) = (pi@))er-

The family p resp. the homomorphism p is said to be of finite
character if

p(H)< [[D;

iel

(equivalently: For any zeH, we have p,(z)=1 for all but finitely
many iel). The family pis said to be a defining family for H if

H=(\H,

iel

(equivalently, p is a divisor homomorphism; cf. [3; Proposition 3.2]).



58 A. GEROLDINGER and F. HALTER-KOCH

4

Definition 3. Let D be a GCD-monoid. By a realization of D we
mean a defining family of essential valuations of D. D is called of
finite character if it possesses a realization of finite character.

Theorem 1 (Lorenzen’s Realization Theorem). Every GCD-
monoid has a realization.

Proof. Let D be a GCD-monoid. For S = D, we set
S™!-D={s"'a|seS,aeD} = D).

A submonoid S < D is called divisor closed if aeS, beD and b|a
implies beS. Since D is a GCD-monoid, every xe 2(D) has a unique
representation x = a~ 'b, where a,beD and (a,b),=1;if ScDis a
divisor closed submonoid, then xeS~*-D if and only if aeS, which
implies (S™!'D)*nD=S and that D—,S '-D is an essential
homomorphism. _

If 1+#aeD, then a standard argument using Zorn’s Lemma
shows that there exists a maximal divisor closed submonoid S, = D
such that a¢S,. By construction,

D= () s;'D,
1+# aeD
and it is sufficient to prove that the monoids S_ !-D are valuation
monoids; for then the canonical family

(D=8, D>(S; D). D) ), 4 aep

is a realization of D.

Let 1 # aeD be given, and suppose that S_ - D is not a valuation
monoid. Then there exist elements b,ce D\S, such that (b,c), = 1.
By the maximality of S,, we obtain a|b"u and a|c™v for some m,neN
and u, veS,. Putting r = max(m, n) and w = uveS,, we infer

al(b'w,c’'w)p=w
and hence a€S,, a contradiction. W
3. Now we define the notion of a quasi divisor theory and prove
some results concerning the extension of valuations which imply

the uniqueness of quasi divisor theories; cf. [1; Theorem 1 and
Cor. 1] and [4; Prop. 3.4].

Definition 4. By a quasi divisor theory (QDT for short) we mean
a divisor homomorphism ¢: H— D into a GCD-monoid D with the

following property:
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D) For any aeD, there exist elements u,,...,u,e H such that
a=(0uy,...,0u,)p. A QDT 0: H— D is called of finite character if D
is of finite character.

Proposition 2. Let 0: H— D be a QDT, and let p=(p;: D - V)i
be a realization of D; for i€l, set 0;= p;o0: H— V;. Then 0 = (0,);; is
a defining family of essential valuations of H. If p is of finite character,
then so is 0.

Proof. Clearly, if p is of finite character, then so ist d. Since
(I Li;p:) and @ are divisor homomorphisms, ([ ],.,0:) = ([ ]..,p:)°0 is
also a divisor homomorphism, and therefore 4 is a defining family.

It remains to prove that the homomorphisms 0, are essential and
surjective. We fix some iel, and we first prove the following:

(*) For any beD, there exists some weH such that b|éw and
pi(b) = 0,(w).
Indeed, if beD, then there exist u,,...,u,eH such that b=
=(0uy,...,0u,)p. By Proposition 1, p; is a GCD-homomorphism,
and therefore
pi(b) = (pi(0u,), ..., pi(Ou,))y, = (0i(uy), - .., 0;(uy))y, = 0i(n,)

for some 1 < v < n, and clearly b|du,, whence (*) holds.

Since p; is surjective, (*) implies that 0, is surjective.

In order to prove that 0; is essential, let u,ve H be such that
0;(u)|0;(v). Since 0; is surjective, there exists some zeH such that
0,(v) = 0(uz). If ¢ = (0(v), 0(uz))p, then

pi(c) = (p;°d(v), Pi°6(“z))v.» = 0;(v) = 0;(uz),
which implies b = ¢~ 'd(uz)e D and p,(b) = 1. From c|d(v) we obtain
o(u)|c ™ 10(uz)d(v) = bo(v).

Now (*) implies the existence of some weH such that b|d(w) and
pi(b) = 0,(w) = 1. Some d(u)|0(v)0(w) = d(vw), we infer ujuw. W
Proposition 3. Let 0:H—D be a QDT, v,,...,v,eH, d=
=(0vy,...,00,)p and {v,,...,v,}, the t-ideal generated by v,,...,v,.
Then {v,,...,v,}, = {xeH| d|0x}.
Proof. By definition we have

{v1s...s 0.} = (\ yH= N u~'vH.

ye2(H) u,veH
{v1,ecc,on} < yH {uvy,...,uvn} = vH
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For all u,veH it holds that {uv,,...,uv,} = vH if and only if dv|dou.
Hence we have to verify that for all xeH the following two
conditions are equivalent:

i) d|ox.

i) For all u,ve H dv|ddu implies that v|xu.

Clearly, i) implies ii). Conversely, let xe H be given with d{ox.
Then, by Proposition 2, there exists an essential valuation ¢: D -V
such that @(d){p(0x). Since ¢ is a GCD-homomorphism we infer
that

@(d) =(@(0vy),.., @(dv,))y = ¢(0v))

for some je{l,...,n}. There are uy,...,u,eH with d"‘avj=
=(0u,,...,0u,,), and hence

1=o(d™'0v;) =(@(0uy),..., p(0uy))y = ¢(0u))

for some ie{l,...,m}. Thus 0v;|d0u; but vj{xu; since @(dv;) =
= @(d)(0x) = p(0(xu;)). W

Proposition 4. Let 0: H — D be a QDT and ¢: H— V an essential
valuation. Then there exists a unique essential valuation @: D — V such
that ¢p-0 = .

Proof. Passing from H to H/H™ and identifying the latter
monoid with 0H, we may assume that Hc D is a saturated
submonoid (i.e. H=DnN2(H)) and 0 =(H <, D) (cf. [3; Lemma
2.4]). If ¢: D - V is an essential valuation satisfying ¢|H = ¢, then ¢
is a GCD-homomorphism by Proposition 1. If aeD and u,,...,u,e H
are such that a=(uy,...,u,)p, then @(a)=(Pp(u,),...,opu,))y =
=(p(uy),-..,o(u,))y. Therefore ¢ is uniquely determined by ¢.

For aeD, choose u,,...,u,e H such that a=(u,,...,u,)p, and
define ¢(a) = (¢(u,),...,o(u,)),. We must prove that this definition
does not depend on the choice of u,,...,u,. We may assume that
o(u,)|e(u,) for all 1 <v<n, and then we must prove that ¢ (u,)| ()
for all ueH such that au (in D). Let ue H such that a|u (in D) be
given, say u=ab, where beD. Let v,,...,v,eH be such that
b=(vy,...,v,)p and @(v,)|@(v;) for all 1 <j < m; then

u=ab=({uv;|]1 <i<n1<j<m})y.

For all i,j we have o(u,v,)|¢(y;v;), and since ¢ is essential, there
exists some ze H such that ¢(z) = 1 and u, v, |u;v;z for all i and j. Let



On Quasi Divisor Theories and Systems of Valuations 61

y:j€H be such that u;v;z =u, v, y;; then
uZ=({uinZ|1 <i<n,1 Sjgm})]):
={uvy;ll<isn1<j<m})p,=uvc

for some ceD. This implies u,|uz (in D and hence also in H), and

consequently ¢(u,)| ¢(uz) = @(u).

If a,beD and u,,...,u,, vy,...,v, are such that a =(u,,...,u,)p
and b=(vy,...,v,)p, then ab=({yv;|1 <i<n1<j<m}), and
therefore

@(ab) = ({(P(uivj)ll ignl<jsmy), =
=(@Wy),..., o))y (@(vy),..., @V))y = @(a)@(b).
Thus ¢ is a monoid homomorphism; clearly, ¢|H=¢ and ¢ is
surjective.

It remains to prove that ¢ is essential. Let a,beD be such that
@(a)|@(b), and choose elements u,,...,u,, v,,...,0,eH satisfying
a=(u1’°--a“n)ba b z(vla""vm)D, (P(u1)|(P(ui) for 1 Sisn and
¢(v,)]@(v;) for all 1 <j < m. Then we have, for 1 <j<m,

@(uy) = ¢(a)| ¢(b) = o(vy) | (v));

since ¢ is essential, there exists some teH such that u,|tv;, and
consequently

(Ugsee s Uy)pl(tVs e st Uy s U)pl(E Uy s Uy p (Vs - v s V)
Putting ¢ =(t,u,,...,u,)p, We obtain a|bc, and since c|t and @(t) =
o(t)=1,alsop(c)=1. W

Proposition 5. Let 0:H—D be a QDT and (¢;:H-V) a
defining family of essential valuations of H. For i€l, let ¢p;: D — V; be
the (unique) essential valuation satisfying @;°0 = @,;. Then (9;);c; is a
defining family of D.

Proof. Let a,beD be such that ¢@;(a)|@,(b) for all iel. Let
ceD and u,u,,...,u,6H be elements satisfying ac =0u and bc =
=(0u,,...,0u,)p. For any iel, ¢; is a GCD-homomorphism by
Proposition 1, and therefore

@i(u) = @(0u) = py(ac)| @i(bc) = (¢(Ouy ), ..., p(du,))y, =
=(@i(u)s .., 9i(Uy))y,s
whence ¢,(u)|@;(u,) for all 1 <v<n and all iel. Since (¢;);; is a
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defining family of H, we infer u|u, for 1 <v < n, and consequently
ac|bc, whence a|b. B

Theorem 2 (Uniqueness of QDTs). Let 0:H—D and ¢:H — D'
be QDTs. Then there exists a unique isomorphism ®: D — D' satisfying
0’ =®00.

Proof. By general reasons, it is enough to prove that there
exists a unique GCD-homomorphism ®: D — D’ satisfying ¢’ = ®- 4.
If ® is such a GCD-homomorphism, aeD and u,,...,u,eH are
such that a=(0u,,...,0u,),, then ®(a)=(D(0u,),...,P(0u,))p =
=(0'uy,...,0'u,)p; consequently, @ is uniquely determined.

In order to prove the existence of @, let (p;:D'—>V});; be a
realization of D. By Proposition 1, all p; are GCD-homomorphisms,
and hence

P=npi3D"’V=l_[ Vi
iel iel
is a GCD-homomorphism. For iel, ¢,=p;°0' is an essential
valuation by Proposition 2, and by Proposition 3 there exists a
unique essential valuation ®;: D — V; satisfying ®,°0 = ¢,. By Pro-
position 1, each ®; is a GCD-homomorphism, and hence ® =[], ®,
is a GCD-homomorphism. Now we assert that ®(D) < p(D’); then
p 1e®:D— D' is the desired GCD-homomorphism.

Indeed, let aeD and u,,...,u,e H be such that a = (0u,,...,0u,)p;

then

®(a) = (®(u,), ..., P(0u,))y = (p(Q'uy), ..., p(0'uy))y =
= p((0'uy,...,0u,)p)ep(D). W

4. Next we characterize monoids having a QDT of finite
character by families of essential valuations, cf. [4; Theorem 3.8].
For the relevance of this result, cf. [4; §5].

Theorem 3. Let H be a monoid. Then the following assertions are

equivalent:

a) H possesses a QDT of finite character.

b) There exists a defining family of essential valuations of finite
character of H.

Proof. a)=>b) follows from Proposition 2 and Theorem 1.
b)=>a) Let (¢;);; be a defining family of essential valuations of
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finite character, and set
o=[losH-V=]]V,<[]V.
iel iel iel
Let &(H) be the set of all finite subsets ¢J # A = H. We make &(H) into
a semigroup by setting AB = {ablac A,beB}. For A={a,,...,a,}€
€& (H), we define

polA) =(p(a,),..., o(a,))yeV.

Then p, is a semigroup homomorphism and induces a monomor-
phism
p:D=68H) =V,
where the congruence relation = on &(H) is defined by
A=B ifand onlyif py(A)=py(B).
For Ae&(H), we denote by [A]eD the equivalence class of A, and
for A={a,,...,a,}, weset [a,,...,a,] =[A]eD.

We define 0: H— D by d(a) = [a]; then 0 is a monoid homomor-
phism, pod= ¢, and we shall prove that 0 is a QDT of finite
character.

CLAIM 1: 0 is a divisor homomorphism.

If u,veH and Ou|dv, then pcd(u)|p°d(v), whence ¢(u)|@(v) and
hence u|v, since ¢ is a divisor homomorphism.

CLAIM 2: p is a divisor homomorphism.

To prove this, we must show that 4, Be §(H) and py(A4)|po(B) (in
V) implies [4]|[B] (in D). Let A ={a,,...,a,} and B={b,,...,b,}
be given; for iel, let v(i)e{1,...,n} be such that

eilay,) = (pla,),-.., pila,))y..
Now we assert that there exists a family (z;),, in H having the
following properties:
avmlbﬂz,. and a,,laz, forall iel,[l<u<ml<k<n
o(z;)=1 forall iel;
{z;liel} is a finite set.
For1<i<n,setl;={iel|v(i)=1}.Ifiel,, 1 <u<m,1<k<n,then

vi(a,i)|@i(b,) and ¢,(a,;)|@i(a,); since g; is essential, there exists an
element z;e H such that ¢,(z;) = 1, a,;,|b,z; and a, ;)| a,z;. Since (@;);er
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is a family of finite character, one fixed z;, does the job for all but
finitely many i€/, and therefore we may assume that the set {z;|iel}
is finite.

Having constructed our family (z;),, let y; ,€H be such that
b,z; = a,;y; ,; then the set {y, ,|iel, 1 <pu<m} is also finite, and we
see that

indeed, for any i,jel, 1<k<n and 1 <u<m we find ¢ a,y;,) =
= @b, )p;a,; z,4), and hence ¢(b,)|@;(a.y;,) with equality if i = j
and k = v(i).

CLAIM 3: For 4,Beé(H), [AuB] is a GCD of [A] and [B]
in D.

Indeed, if A, Be§(H), then

p([AV B]) = po(A L B) = (po(A4), po(B))y = (p([A]), p([B]))y,

and consequently [AuUB] is a GCD of [A] and [B], since p is a
divisor homomorphism.

From CLAIM 3 we see that D is a GCD-monoid, and if 4 =
={a,...,a,}€&(H), then

[41=([a,],...,[a,])p=(0ay,...,0a,)p,
and therefore disa QDT. N

Theorem 4. Let H be a monoid, (¢;: H— V,),.; a defining family of
essential valuations of finite character of H and y: H— V an essential
valuation. Then there exists some i€l such that ¢ '(1) =y ~'(1).

Proof. By Theorem 3 H possesses a QDT, and therefore we may
assume that H < D, where D is a GCD-monoid and (H <=, D) is a
QDT. Let ¢;: D - V; and §: D — V be the unique essential valuations
satisfying ¢@;|H = ¢; and ¥/|H =y (according to Proposition 4). By
Proposition S, (¢;);.; is a defining family of D, and it suffices to show
that ¢, (1) = ¢ (1) for some iel.

Assume to the contrary that, for all iel, there exists an element
a;eD such that @,(a;) = 1 and (a;) # 1. We assert that there exists a
finite subset {a,,...,a,} = {a;]iel} such that (a,,...,a,)p, = 1. Indeed,
fix some lel and consider the finite set E = {iel|@;(a,) # 1} U {l}; if
deD divides qa, for all keE, then @,(d)|p;(a;) for all keE and i€l,
whence @,(d)=1 for all iel. Since (p;);; is a defining family, we
conclude d = 1.
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Having a subset {a,,...,a,} with the required properties we infer
¥(a,) # 1 for all 1 <k <n and therefore also (Y(a,),...,¥(a,))y # 1.
This is a contradiction since ¢ is a GCD-homomorphism by
Proposition 1. W

Recall that a family of monoid homomorphisms (¢;: H— V)),
is called thin if i, jel, i #j implies H,¢ H, . A defining family of
monoid homomorphisms (¢;),.; is called minimal if for all jel the
family (¢;)icr\(; 1s not a defining family.

Corollary 1. Let H be a monoid and @ a defining family of essential
valuations of finite character of H. If @ is thin, then it is a minimal
defining family.

Proof. Set @ =(9;)ic1» fix some jel and apply Theorem 4 to the
family ((¢:)icr\(;y and the homomorphlsm @;. Observe that H,, c H,,
if and only if ¢, (1) =y ~'(1); cf. [3; Prop. 3.9]. W

5. Inthis final section we present a result implying the Realization
Theorem of Krull-Kaplansky—Jaffard—-Ohm (cf. [9; §8] and [11;
Theorem 2.1]).

Let R be an integral domain. We denote by R’ = R\{0} the
multiplicative monoid of R; then R* = R**. For a monoid homo-
morphism ¢: R"— D we set R, = R U {0}; further we recall from [3;
Definition 8.1] that ¢ is sald to be semiadditive; if ¢(z)|¢(u) and

@(2)| @(v) implies ¢(z)|¢(u + v) for all u,veR’ such that u + v #0.

Lemma 1. If D is a GCD-monoid, then 2(D) is torsion free.

Proof. Let ze 2(D) and neN be such that z” = 1. Then z=a"!b,
where a,beD, (a,b), = 1, and consequently a" = b". By [5; Theorem
6.4], we infer (a”,b"), = 1 which implies a" = 1 and hence a = 1 since
D isreduced. W

Lemma 2. Let K be an integral domain and H a monoid such that
the monoid ring K[H] is an integral domain. Let 0:H—V be a
valuation and let : K[H]" — V be defined by

‘/’(Clcl + "'Cucn) = (HCI, s 6cn)V’
if ¢y,...,c,€H are distinct and {,,...,{,€K". Then { is a monoid
homomorphism.

Proof. An element ue K[H]' is called §-homogeneous of degree
yeV, if u={,c, + -+ +{,c,, where {,,...,(,eK’, cy,...,c,eH are
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distinct and fc, =---=0c,=7. Every ueK[H] has a unique de-
composition u =u, + --- + u,, where u; is 8-homomeneous of some
degree y;e V such that y,,...,y, are distinct and y, |y, |---|7,; let us call
this decomposition the canonical one; clearly, y(u) = y,. Ifu,ve K[H]’
have canonical decompositions u=u; + - +u,, v=v; +--- + v,
then uv has canonical decomposition uv=w, + ---+w,, where
wy = v, This implies YY) = Y(u,)W(©,) = Y(w,) = Y(uw). W

Theorem 5. Let H be a reduced monoid, 0: H— D a QDT, K an
integral domain, R = K[ H] the monoid ring and ¢: R’ > D defined by

(p(CICI + -+ Cucn) = (acl’ s ’acn)D’

ifcy,...,c,eH are distinct and {,,...,{,€eK". Then ¢ is a semiadditive
monoid homomorphism, A = R, is an integral domain and A’/A™ ~ D.
If H=D and 0 = idp, then A is a Bezout domain.

Proof. Being injective, 0 extends to an injective group homo-
morphism 2(0): 2(H) — 2(D). Since 2(D) is torsion free by Lemma 1,
the same is true for 2(H), and hence R = K[ H] is an integral domain
by [5; Theorem 8.1].

Let (p;: D - V), be a realization of D, ¢;=p;°¢p: R" >V, and
0;= p;°0: H - V;; every 0; is an essential valuation by Proposition 2
and hence a GCD-homomorphism by Proposition 1. If u=
={,¢; + - +{,c,eR’ (where c,,...,c,eH are distinct and {,,...,{,e
€K’) then

(pi(Clcl + o+ Cncn) = pi((acl’ cees acn)D) = (aicla sy aicn)Vi:
and hence ¢; is a monoid homomorphism by Lemma 2. Consequently,
(H (,,,.) B (“ ”f)”’” R TTV,
iel iel iel

is a monoid homomorphism, and since [],_,p; is injective, ¢ is also
a monoid homomorphism:

It can be seen from the definition that ¢ is semiadditive, and
therefore A = R, is an integral domain by [3; Proposition 8.2]. Since
0 is a QDT, ¢ is surjective and induces an isomorphism

¢:A"JA* ->D

by [3; Lemma 2.2]. In particular, A* = Ker(¢) = Ker(2(¢)) where
2(¢): 2(R")— 2(D) is the unique group homomorphism extending ¢.
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It remains to prove that in the case H = D, 0 =id, A4 is a Bezout
domain. Let J = ,{u,,...,u, be a finitely generated ideal of 4 and
2@)(u,) =c,eD < A". Since 2(¢)|D =id), we obtain 2(¢)(c, 'u,)=1
which implies ¢, 'u,e4*, and consequently J = ,{c;,...,c,>. We
set ¢y =(Cy,...,C,)p, and we assert that J = cyA. Indeed, if ¢, = cyc,
with ¢ eD, then (c},...,c,)p =1 and therefore ¢, = + --- +c,ed™.
This implies

co=cy ey + - Hcel)co=cy ey + -+ e )ed
and hence c,A4 c J; the other inclusion is obvious. W
In particular we have proved

Corollary 2 (Realization Theorem of Krull-Kaplansky-Jaffard—
Ohm). For every GCD-monoid D there exists a Bezout domain A
such that D~ A"/A™.
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