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1 Introduction

Factorization theory for Mori domains and their semigroups of ideals splits into
two cases. The first and best understood case is that of Krull domains (i.e., of
completely integrally closed Mori domains). The arithmetic of a Krull domain
depends only on the class group and on the distribution of prime divisors in
the classes, and it can be studied — at least to a large extent — with methods
from additive combinatorics. The link to additive combinatorics is most powerful
when the Krull domain has a finite class group and when each class contains at
least one prime divisor (this holds true, among others, for rings of integers in
number fields). Then sets of lengths, sets of distances and of catenary degrees of
the domain can be studied in terms of zero-sum problems over the class group.
Moreover, we obtain a variety of explicit results for arithmetical invariants in
terms of classical combinatorial invariants (such as the Davenport constant of
the class group) or even in terms of the group invariants of the class group. We
refer to [I5] for a description of the link to additive combinatorics and to the
recent survey [32] discussing explicit results for arithmetical invariants.
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Let us consider Mori domains that are not completely integrally closed but
have a nonzero conductor towards their complete integral closure. The best in-
vestigated classes of such domains are weakly Krull Mori domains with finite
v-class group and C-domains. For them there is a variety of abstract arithmeti-
cal finiteness results but in general there are no precise results. For example, it is
well-known that sets of distances and of catenary degrees are finite but there are
no reasonable bounds for their size. The simplest not completely integrally closed
Mori domains are orders in number fields. They are one-dimensional noetherian
with nonzero conductor, finite Picard group, and all factor rings modulo nonzero
ideals are finite. Thus they are weakly Krull domains and C-domains. Although
there is recent progress for seminormal orders, for general orders in number fields
there is no characterization of half-factoriality (for progress in the local case see
[26]) and there is no information on the structure of their sets of distances or
catenary degrees (neither for orders nor for their monoids of ideals).

In the present paper we focus on monoids of ideals of orders in quadratic num-
ber fields and establish precise results for their set of distances A(-) and their set
of catenary degrees Ca(-). Orders in quadratic number fields are intimately re-
lated with quadratic irrationals, continued fractions, and binary quadratic forms
and all these areas provide a wealth of number theoretic tools for the investiga-
tion of orders. We refer to [25] for a modern presentation of these connections
and to [9I29] for recent progress on the arithmetic and ideal theoretic structure
of quadratic orders.

Let O be an order in a quadratic number field, Z*(O) be the monoid of
invertible ideals, and Z(O) be the monoid of nonzero ideals (note that Z(O) is not
cancellative if O is not maximal). Since Z*(O) is a divisor-closed submonoid of
Z(0), the set of catenary degrees and the set of distances of Z*(O) are contained
in the respective sets of Z(0). We formulate a main result of this paper and then
we compare it with related results in the literature.

Theorem 1.1. Let O be an order in a quadratic number field K with discrimi-
nant dix and conductor f = fOg for some f € N>g.

1. The following statements are equivalent:
(a) Z(O) is half-factorial.
(b) ¢(Z(0)) = 2.
(© <(2°(0)) =2
(d) Z*(O) is half-factorial.
(e) f is squarefree and all prime divisors of f are inert.
Suppose that T*(QO) is not half-factorial.
(a) If f is squarefree, then Ca(Z(O)) = [1,3], Ca(Z*(0)) = [2,3],
A(Z(0)) = A(Z(0)) = {1}.
(b) Suppose that f is not squarefree.
(i) Ifva (f) & {2,3} ordx #1 mod 8, then Ca(Z(0)) =
Cal(00) = [0, and ATOY — ATON 2]
(ii) If vo (f) € {2,3} and dx =1 mod 8, then Ca(Z(0)) = [1,5],
Ca(Z*(0)) = [2,5], and A(Z(0)) = A(Z*(0)) = [1,3].

2.
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We say that a cancellative monoid H is weakly Krull if ﬂPex(H) Hp = H and
{P € X(H) | a € P} is finite for each a € H (where X(H) denotes the set
of height-one prime ideals of H). Moreover, a cancellative monoid H is called
weakly factorial if every nonunit of H is a finite product of primary elements
of H. Let all notation be as in Theorem and recall that Z*(O) is a weakly
factorial C-monoid, and that for every atomic monoid H with A(H) # () we
have min A(H) = ged A(H).

There is a characterization (due to Halter-Koch) when the order O is half-
factorial ([I6, Theorem 3.7.15]). This characterization and Theorem or [30,
Corollary 4.6] show that the half-factoriality of O implies the half-factoriality
of Z*(0O). Consider the case of seminormal orders whence suppose that O is
seminormal. Then f is squarefree (this follows from an explicit characterization of
seminormal orders given by Dobbs and Fontana in [I0, Corollary 4.5]). Moreover,
Z*(0) is seminormal and if Z*(O) is not half-factorial, then its catenary degree
equals three by [I8, Theorems 5.5 and 5.8]. Clearly, this coincides with 2.(a) of
the above theorem. Among others, Theorem [I.1]shows that the sets of distances
and of catenary degrees are intervals and that the minimum of the set of distances
equals 1. We discuss some analogous results and some results which are in sharp
contrast to this. If H is a Krull monoid with finite class group, then H is a
weakly Krull C-monoid and if there are prime divisors in all classes, then the
sets Ca(H) and A(H) are intervals (23] Theorem 4.1]). On the other hand, for
every finite set S C N with min S = ged S (resp. every finite set S C N>o) there
is a finitely generated Krull monoid H such that A(H) = S (resp. Ca(H) = S)
([21] resp. [I1l Proposition 3.2]). Just as the monoids of ideals under discussion,
every numerical monoid is a weakly factorial C-monoid. However, in contrast
to them, the set of distances need not be an interval ([§]), its minimum need
not be 1 ([5, Proposition 2.9]), and a recent result of O’Neill and Pelayo ([28])
shows that for every finite set S C N>o there is a numerical monoid H such that
Ca(H)=S.

We proceed as follows. In Section [2] we summarize the required background
on the arithmetic of monoids. In Section 3] we do the same for orders in quadratic
number fields and we provide an explicit description of (invertible) irreducible
ideals in orders of quadratic number fields (Theorem . In Section (4| we give
the proof of Theorem [I.1] Based on this result we establish a characterization of
those orders O with min A(O) > 1 (Theorem which allows us to give the
first explicit examples of orders O with min A(O) > 1. Our third main result
(given in Theorem [5.2)) states that unions of sets of lengths of Z(O) and of Z*(O)
are intervals.

2 Preliminaries on the arithmetic of monoids

Let N be the set of positive integers, P C N the set of prime numbers, and for
every m € N, we denote by

p(m) = |(Z/mZ)X’ Euler’s o-function.
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For a,b € QU{—o00,0}, [a,b] = {z € Z | a < x < b} denotes the discrete interval
between a and b. Let L, L' C Z. We denote by L+ L' ={a+b|lac L,be L'}
their sumset. A positive integer d € N is called a distance of L if there exists a
k € L such that LN [k, k + d] = {k,k + d}, and we denote by A(L) the set of
distances of L. If ) # L C N, we denote by p(L) = sup L/ min L € Q> U {0}
the elasticity of L. We set p({0}) =1 and max® = min ) = sup ) = 0. All rings
and semigroups are commutative and have an identity element.

2.1 Monoids.

Let H be a multiplicatively written commutative semigroup. We denote by H*
the group of invertible elements of H. We say that H is reduced if H* = {1}
and we denote by Hyeq = {aH* | a € H} the associated reduced semigroup of
H. An element u € H is said to be cancellative if au = bu implies that a = b for
all a,b € H. The semigroup H is said to be

— cancellative if every element of H is cancellative.
— unit-cancellative if a,u € H and a = au implies that u € H*.

By definition, every cancellative semigroup is unit-cancellative. All semigroups
of ideals, that are studied in this paper, are unit-cancellative but not necessarily
cancellative.

Throughout this paper, a monoid means a
commutative unit-cancellative semigroup with identity element.

Let H be a monoid. A submonoid § C H is said to be divisor-closed if a € S
and b € H with b | a implies that b € S. An element v € H is said to be

— primeif u ¢ H* and, for all a,b € H, u | ab and u { a implies u | b.

— primary if w ¢ H* and, for all a,b € H, u | ab and u 1 a implies u | b" for
some n € N.

— drreducible (or an atom) if u ¢ H* and, for all a,b € H, u = ab implies that
a€ H orbe H*.

The monoid H is said to be atomic if every a € H \ H* is a product of finitely
many atoms. If H satisfies the ACC (ascending chain condition) on principal
ideals, then H is atomic ([I2, Lemma 3.1]).

2.2 Sets of lengths.

For a set P, we denote by F(P) the free abelian monoid with basis P. Every
a € F(P) is written in the form

a= H P with v,(a) € Ny and  vp(a) = 0 for almost all p € P.
peP
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We call [a| = > . pvp(a) the length of @ and supp(a) = {p € P | vj(a) > 0} C P
the support of a. Let H be an atomic monoid. The free abelian monoid Z(H) =
F(A(Hyea)) denotes the factorization monoid of H and

m: Z(H) — Hyeq satisfying m(u) = u for all u € A(Hyeq)
denotes the factorization homomorphism of H. For every a € H,

Zy(a) =Z(a) =7 (aH*) is the set of factorizations of a and
Ly(a) =L(a) ={|z|| 2 € Z(a)} is the set of lengths of a.

For a divisor-closed submonoid S C H and an element a € S, we have Z(S) C
Z(H) whence Zg(a) = Zg(a), and Lg(a) = Ly (a). We denote by

— L(H) ={L(a) | a € H} the system of sets of lengths of H and by
— A(H) =Upegn A(L) C N the set of distances of H.

The monoid H is said to be half-factorial if A(H) = 0 and if H is not half-
factorial, then min A(H) = ged A(H).

2.3 Distances and chains of factorizations.
Let two factorizations z, 2z’ € Z(H) be given, say

Z=UL .. UL ..Uy and 2 =up ... UupWy ... Wy,
where ¢,m,n € Ny and all u;,vj,wr € A(Hyeqa) such that v; # wy for all
j € [1,m] and all k € [1,n]. Then d(z, z’) = max{m,n} is the distance between
zand 2. If 7(2) = 7(2’) and z # 2/, then

1+ |[z] = |2']| < d(z,2") resp. 2+ ||z — |2'|| < d(z,2") if H is cancellative (2.1)

(see [12], Proposition 3.2] and [16, Lemma 1.6.2]). Let a € H and N € Ny. A finite
sequence zp, ..., zr € Z(a) is called an N-chain of factorizations (concatenating
zo and zy) if d(z;—1,2;) < N for all i € [1,k]. For 2,2’ € Z(H) with w(z) = w(2),
we set c(z,2') = min{N € Ny | z and 2’ can be concatenated by an N-chain of
factorizations from Z(7(z))}. Then, for every a € H,

c(a) =sup{c(z,2") | 2,2 € Z(a)} € NgU {oo} is the catenary degree of a.

Clearly, a has unique factorization (i.e., |Z(a)| = 1) if and only if c(a) = 0. We
denote by

Ca(H) ={c(a) | a € H,c(a) > 0} C N the set of catenary degrees of H,
and then

c(H) =supCa(H) € NgU {oo} is the catenary degree of H.
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We use the convention that sup® = 0 whence H is factorial if and only if
c(H) = 0. Note that c(a) = 0 for all atoms a € H. The restriction to positive
catenary degrees in the definition of Ca(H) simplifies the statement of some
results whence it is usual to restrict to elements with positive catenary degrees.
If H is cancellative, then Equation implies that min Ca(H) > 2 and

2+sup A(H) < c(H) if H is not factorial .

If H=1]],.; Hi, then a straightforward argument shows that

i€l
Ca(H) = | JCa(H;) whence c(H)=sup{c(H;)|i€T}. (2.2)
el

2.4 Semigroups of ideals.

Let R be a domain. We denote by q(R) its quotient field, by X(R) the set of
minimal nonzero prime ideals of R, and by R its integral closure. Then R\ {0}
is a cancellative monoid,

— Z(R) is the semigroup of nonzero ideals of R (with usual ideal multiplication),
— ZI*(R) is the subsemigroup of invertible ideals of R, and
— Pic(R) is the Picard group of R.

For every I € Z(R), we denote by v/T its radical and by N'(I) = (R:1) = |R/I| €
NU {oo} its norm.

Let S be a Dedekind domain and R C S a subring. Then R is called an order
in S if one of the following two equivalent conditions hold:

— q(R) = q(S) and S is a finitely generated R-module.
— R is one-dimensional noetherian and R = S is a finitely generated R-module.

Let R be an order in a Dedekind domain S = R. We analyze the structure of
Z*(R) and of Z(R).

Since R is noetherian, Krull’s Intersection Theorem holds for R whence Z(R)
is unit-cancellative (|20, Lemma 4.1]). Thus Z(R) is a reduced atomic monoid
with identity R and Z*(R) is a reduced cancellative atomic divisor-closed sub-
monoid. For the sake of clarity, we will say that an ideal of R is an ideal atom
if it is an atom of the monoid Z(R). If I,J € IT*(R), then I | J if and only if
J C I. The prime elements of Z*(R) are precisely the invertible prime ideals of
R. Every ideal is a product of primary ideals belonging to distinct prime ideals
(in particular, Z*(R) is a weakly factorial monoid). Thus every ideal atom (i.e.,
every I € A(Z(R)) is primary, and if /T = p € X(R), then T is p-primary. Since
R is a finitely generated R-module, the conductor f = (R: R) is nonzero, and we
set

P={peX(R)|ppf} and P*=X(R)\P.
Let p € X(R). We denote by

T}(R)={I € T"(R) | VI D p} and ZI,(R)={I € Z(R) | VI D p}
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the set of invertible p-primary ideals of R and the set of p-primary ideals of R.
Clearly, these are monoids and, moreover,

T,(R) CZ(R), T;(R) CTy(R), and I;(R)C I*(R)

are divisor-closed submonoids. Thus Z;(R) is a reduced cancellative atomic
monoid, Z,(R) is a reduced atomic monoid, and if p € P, then Z;(R) = Z,(R)

is free abelian. Since R is noetherian and one-dimensional,

a:I(R) = [ Zp(R), defined by o(I)= (I, N R)pex(r) (2.3)
pEX(R)

is a monoid isomorphism which induces a monoid isomorphism

) TR = [ Zi(R). (2.4)
pEX(R)

3 Orders in quadratic number fields

The goal of this section is to prove Theorem which provides an explicit
description of (invertible) ideal atoms of an order in a quadratic number field.
These results are essentially due to Butts and Pall (see [6] where they are given in
a different style), and they were summarized without proof by Geroldinger and
Lettl in [19]. Unfortunately, that presentation is misleading in one case (namely,
in case p = 2 and dx = 5 mod 8). Thus we restate the results and provide a
full proof.

First we put together some facts on orders in quadratic number fields and
fix our notation which remains valid throughout the rest of this paper. For
proofs, details, and any undefined notions we refer to [25]. Let d € Z \ {0,1} be
squarefree, K = Q(+/d) be a quadratic number field,

Vd, ifd=2,3 mod 4; 4d, ifd=2,3 mod 4;
W= 90vd e and dg = e
=%, ifd=1 mod 4. d, ifd=1 mod 4.

Then Ok = Zw] is the ring of integers and dg is the discriminant of K. For
every f € N, we define

e— frdk

T*€+fvdK
4 ’ N 2 '

e €{0,1} withe = fdxg mod 2, n= and

Then
Oy =20 fwl =7& 7L

is an order in Ok with conductor f = fOgk, and every order in Ok has this
form. With the notation of Subsection 2.4] we have

P ={peX(Of) | pDft={pZ+ fwZ|pePp]|f}.
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If « = a+bVd € K, then @ = a—bV/d is its conjugate, Nk la) = aa a’—b%d
is its norm, and tr(a) = a+a@ = 2a is its trace. Foran [ € Z(Oy), [ = {& | a € I}
denotes the conjugate ideal. A simple calculation shows that

Nig(r+7)=r*+er+n foreachr €Z.

If O is an order and I € Z*(0), then (Ok :IO0k) = (O:1) and if a € O\ {0},
then
(OIGO) = (OKZGOK) = |NK/Q(G)|

(see [I7, Pages 99 and 100] and note that the factor rings Ok /IOk and O/I
need not be isomorphic). For p € P and for a € Z we denote by <%) e {-1,0,1}
the Kronecker symbol of a modulo p. A prime number p € Z is called

— inert if pOg € spec(Ok).

— split if pOg is a product of two distinct prime ideals of Og.

— ramified if pOg is the square of a prime ideal of Ok.

An odd prime

inert if

dx
2 ’ inert ifdg =5 mod 8;
pis { split if %K =1; and?2is { split ifdg =1 mod 8;
ramified if (¢x) = 0. ramified ifdxg =0 mod 2.

P

Proposition 3.1. Let p be a prime divisor of f, O = Oy, and p = pZ + fwZ.

1. The primary ideals with radical p are exactly the ideals of the form
q=p"(pP"Z+ (r+17)Z)

with £,m € No, £4+m > 1,0 <7 < p™ and Ngg(r +7) = 0 mod p™.
Moreover, N(q) = p***+m™.
2. A primary ideal q = p*(p"Z + (r + 7)Z) is invertible if and only if

Nikjg(r+7) #0 mod pm T

Proof. 1. Let q be a p-primary ideal in O. By [25], Theorem 5.4.2] there exist
nonnegative integers £, m, r such that q = ¢(mZ+(r+7)Z), r < m and N q(r+
7) =0 mod m. Since q is nonzero and proper, we have fm > 1. We prove, that
¢m is a power of p. First observe that q C \/q = p implies that p | ém. Assume
to the contrary that there exists another rational prime p’ # p dividing ¢m,
say {m = p's. But then p’s € q, s € q and p’ € p = /9. A contradiction to
q being primary. Conversely, assume that q = p*(p™Z + (r 4+ 7)Z) for integers
{,m € No,£ +m > 1,0 < r < p™ and Ng,o(r +7) = 0 mod p™. By [25,
Theorem 5.4.2], q is an ideal of O. Since p € /q and p is the only prime ideal in

O containing p we obtain that \/q = a = p. The nonzero prime

a€spec(0),aDdq
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ideal p is maximal, since O is one-dimensional. Therefore, q is p-primary. It
follows from [25, Theorem 5.4.2] that N (q) = p**+™.

2. By [25, Theorem 5.4.2], q = p’(p™Z + (r + 7)Z) is invertible if and only if
ged(p™, 2r+e, %) =1.8Sincep | f and N q(r+7) = i((2r+6)2—f2d1<),
this is the case if and only if p { %, that is N g(r+7) # 0 mod p™+i.
O

If v € Z and y € N, then let rem(x,y) be the unique z € [0,y — 1] such that
y | — z. Let p be a prime divisor of f. Note that v,(0) = oo, and if ) # A C N,
then min(A U {co}) = min A. We set

Pr, =pZ + fwZ, I;(Of) = I}*pf’p(Of%Ip(Of) = Ipf’p((')f), and
Mip={(x,y,2) Ny | 2 <p¥, vy (z° + 22+ 1) >y}

Let % : My, x My, = Mgy, be defined by (u,v,w) * (z,y, 2) = (a,b, c), where

a=u+z+g, b=v+y+e—2g,

h? +¢h
¢ =rem (h - t—w,pb> , g =min{v,y,vp(w+ 2z +¢)},
e = min{g, v,(w — 2), v, (w? + cw +n) —v,v, (2> + 2 +n) —y},
- ify >
t € Z is such that tM =1 mod p™n{v}=9 and h = N 1 y=v
I w fo>y

Let &fp : My, — Z,(Oyf) be defined by & (2, y, 2) = p*(PYZ + (2 + 7)Z).
Proposition 3.2. Let p be a prime divisor of f and I,J € I,(Oy).

1. (Mg, %) is a reduced monoid and &y, is a monoid isomorphism.

2. If w,z € Z are such that vy(w? +ew+n) > 0 and v, (2% + ez +n) > 0, then
vp(w+z+¢) >0 and vy(w — 2) > 0.

3. N(IDHN(J) | N(IJ) and N(1J) = N(I)N(J) if and only if I is invertible or
J s invertible. If I and J are proper, then IJ C pOy.

4. If I € A(Z,(Oy)), then there is some I' € A(Z;(Oy)) such that N'(I.J) |
NI'T). If I € A(Z,(Oy)) is not invertible, then N'(I) | N(I') and N(I) <
N(I') for some I' € A(Z;(Oy)).

5. If I € A(Z;(Oy)), then I € A(Z;(Oy)) and IT = N(I)Oy.

Proof. 1. Let (u,v,w), (z,y,2) € M;,. Set g = min{v,y,v,(w + z + ¢€)} and
e = min{g, vp(w — 2),vp(w? + ew + ) — v,v,(2% + ez + 1) — y}. Note that
ged(p™{v¥} o + 2 + €) = p9, and hence there are some s,t € Z such that
sp™i vy} 4 t(w + 2 + ) = p9. This implies that t% =1 mod pmin{vy}t—y,
Seta=u+z+g,b=v+y+e—2gandlet h=zify>vand h=wifv > y.
Finally, set ¢ = rem(h — t%,pb). First we show that ¢ does not depend on
the choice of t. Let t € Z be such that t’% =1 mod p™ir{v:w}=9 Then
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pi{vvl=9 | ¢ — /. Note that min{v, y} +v,(h? +eh+n) > v+y+e, and hence

PPl (- t/)hu;#. Consequently, ¢ = rem(h — t/%,pb),
Next we show that (a,b,c) € My, It is clear that (a,b,c) € N3 and ¢ < p°.

It remains to show that v,(c* +ec+n) > b. Without restriction we can assume
that v < y. Then h = 2. Set k = z — tzupsig”". There is some 7 € Z such that

c=k+rp. Since ¢ +ec+n = k? 4+ ek +n+mp® for some m € Z, it is sufficient
to show that v, (k% + ek +n) > b.

Observe that k% + ek +n = Zztffjﬁ(pz" —tpI(2z +e) + 322 +ez+1n)) =
%(sp“*g +tp9(w — 2) + t2(2% + ez + n)). Note that g + v,(w — z) =
min{v+ vy (w —2), vp(w+ 2z +¢€) + vy (w—2)} = min{v+ vy (w — 2), vy (w? +cw +
n— (22 +ez+n))} > min{v + vy (w — 2), vy(2? + ez + 1), vp(w? +ew+n)} > 0.
Moreover, we have v, (2% + ez +1) > y +e. Therefore, v, (k? + ek +n) > v,(22 +
ez+n) —2g+min{v+g,9 + vp(w—2),vp(z2 +ez+n)} >y+e—29g+v=>0

Now we prove that p*(p*Z+(w+7)Z)p® (pYZ+ (2+7)Z) = p*(p*Z+(c+7)Z).
(Note that this can be shown by using [25] Theorem 5.4.6].) Set I = p*(p*Z+(w+
T)Z)p* (pYZ+ (2 +7)Z). Without restriction let v < y. Note that (w+7)(z+7) =
wz—n+(w+z+e)r. Set a =p(z+7) and f =wz —n+ (w+ z+¢e)7. We
infer that I = p“™®(p*™Z + p¥(w + 7)Z + oZ + BZ).

Moreover, pY(w + 7)Z + oZ = pY(w — 2)Z + oZ. Observe that sa + t8 =
pIz—t(224ez+n)+pI7. Set k = z—tzztfig”". Then sa+tS = p9(k+7). We have
a—p(k+71) =tp* 9(2%2+ez+n) and (w+z+¢)(k+7)— B = sp"9(22 +e2+n).
Set r = p'=9(2? + ez + n). Consequently, aZ + BZ = srZ + trZ + p?(k + 7)Z =
rZ + p9(k + 7)Z, since ged(s,t) = 1. Putting these facts together gives us I =
prEPYL 4 pY(w — 2) L+ 1L+ p?(k 4 T)Z).

We have ged(p*+Y, p¥(w — 2),7) = p® with £ = min{v + y,y + v, (w — 2),v —
g+vp(22+ez+n)} and p*tYZ+p¥(w — 2)Z+1rZ = p*Z. Note that £ = v+y—g+
min{g, v,(w—2z) —v+g,v,(2%2 +ez+n) —y} and v, (w—2) —v+g = min{v,(w—
2), Vp(w—2)+vy(w+z+e)—v} = min{v, (w—2), vp(w2+ew+n— (22 +ez+n))—v},
and hence £ = v +y — g + min{g, vy(w — 2), v, (w? + ew +n— (22 + ez + 1)) —
v,vp(22 +ez+1n) —y}.

CASE 1: v, (w? + ew + 1) > vp(22 + ez +n). Then v,(w? +ew +1n) —v >
vp(22 tez+n) —yand vy (w? +ew+n— (22 +e2+1n)) —v > v, (22 +ez+n) —y.

CASE 2: v, (2% + ez + 1) > vp(w? + ew +n). Then v,(w? + ew +n — (2% +
ez +1)) —v=vy(w? +ew+n)—v.

In any case we have min{v, (w?+ew+n—(22+ez+n))—v, v, (2% +e2+n)—y} =
min{v,(w?+ew+n)—v, v, (22 +ecz+n)—y}. Obviously, { = v+y+e—gand I =
putete (p”+y+e’29Z+(2—tz2t‘%“’ +7)Z). Consequently, I = p®(p*Z+ (c+7)Z).

So far we know that * is an inner binary operation on M ,. It follows from
Proposition 1 that &, is surjective. It follows from [25, Theorem 5.4.2] that
&5 p 1s injective. It is clear that (Z,(Oy), ) is a reduced monoid. We have shown
that &7, maps products of elements of My, to products of elements of Z,,(Oy).
It is clear that (0,0,0) is an identity element of My, and &;,(0,0,0) = Oy.
Therefore, (M, *) is a reduced monoid and &y, is a monoid isomorphism.
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2. Let w,z € Z be such that v,(w? +ew +n) > 0 and v,(22 + 2 +1n) > 0.
Then p | 22 + ez 4+ 1 = 2((22 + €)? — f%dk), and hence p | 2z + . Moreover
pluw+tew+n—(24+ez+n)=(w+z+e)(w—2), and thus p | w+ 2 + ¢ or
p | w— z. Since p | 2z + ¢, we infer that p | w+ z+ ¢ if and only if p | w — 2.
Consequently, min{v,(w + z + ¢), v,(w — 2z)} > 0.

3. By 1., there are (u,v,w), (z,v, 2), (a,b,¢) € My, such that I = p"(p*Z +
(w+7)Z), J = p*(pYZ+ (2+7)Z) and IJ = p*(p*Z+(c+7)Z) with a = u+z+g,
b=v+y+e—2g, g =min{v,y,v,(w+z+¢e)} and e = min{g, v, (w—z2), v, (w? +
ew +1n) —v,v,(2% + ez +n) — y}. It follows by Proposition 1 that N(I) =
P2ty N(J) = p** Y and N (1J) = p?et?t = p2uto)tviyte Tt s obvious that
NN () | N(IJ). Moreover, N(IJ) = N(I)N(J) if and only if e = 0. We
infer by 2. that e = 0 if and only if v = 0 or y = 0 or v,(w? + cw +1n) = v or
v, (2% +ez+n) = y, which is the case if and only if I is invertible or .J is invertible
by Proposition [3:1]2. If I and J are proper, then u+v > 0 and z +y > 0, and
hence a > 0 by 2. This implies that I.J C p(p*Z + (¢ + 7)Z) C pOy.

4. Let I € A(Z,(Oy)). Without restriction let I be not invertible. We have
I = p°Z + (r + 7)Z for some (0,b,7) € My, and b < v,(r? + er + n). Set
c=vp(r?+er+n)and I' = p°Z+(r+7)Z. Then I' € A(Z;(Oy)), N(I) | N(I'),
and N(I) < N(I') by Proposition There is some (z,y,2) € My, such that
J =p*(pYZ + (2 +7)Z). Then N(I'J) = p¢t22+Y and N (1J) = p*T2=+v+e with
e =min{b,y,vp(r+z+e),vy(r—2),c—b,v,(22+ez+n) —y} < c—b. Therefore,
NIT) | NI'T).

5 Let I € A(Z;(Oy)). If I = pOy, then I = pOy and N(I) = p* by
Proposition 1. Therefore, IT = N(I)Os. Now let I # pOy. There is some
(0,m,r) € My, such that I = p™Z + (r + 7)Z. Set s = p"™ —r — . It follows
that [ = p™Z+ (r +7)Z = p™Z+ (r + ¢ — 7)Z = p"Z + (s + 7)Z. Observe that
s’+es+n=r2+er+n+pm(p™—(2r+e)). Since p | r¥+er+n=1((2r+e)? -
f?dr), we have v,,(2r 4+ ¢) > 0, and hence v,(p™(p™ — (2r +€))) > m. Since
vp(r?+er+n) = m, we infer that v,(s*4+es+n) = m, and thus (0,m, s) € My .
Therefore, I € A(Z}(Oy)). Note that min{m,v,(r + s + &)} = m, and thus
IT =pmOy = N(I)Oy by 1. and Proposition 1. O

Proposition 3.3. Let p be a prime divisor of f and f' = p’»(). Set O = Oy,
0" =0y, P=Pyp and P' = Py, For g € Nlet g, : T,(Og) — Z((Og)p, ,)
be defined by w0g,(I) = Ip,, and (g, : Z((Oy)p,,) — Lp(Og4) be defined by
Cop(J)=JdNO,.

1. Op = Oh%,.

2. psp and Cyp are mutually inverse monoid isomorphisms.

3. There is a monoid isomorphism 6 : Z,(O) — I,(0') such that §(pO) = pO’
and 0|zx(0) : L;(0) — Z,(0’) is a monoid isomorphism.

Proof. 1.1t is clear that O C O" and P'NO = P. Therefore, Op C O%,. Observe
that O\ P = (Z\ pZ) + fwZ and O’ \ P' = (Z\ pZ) + f'wZ. It remains to show
that {f'w}U{z™! | 2 € (Z\ pZ) + f'wZ} C Op. Since %f’w = fw € O and
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% € Z\pZ C O\ P, we have f'w € Op. Therefore, O’ C Op. Now let a € Z\ pZ
and b € Z. Observe that a + bf'w € O’ C Op. Since w + W,ww € Z, we have
(a+bf'w)(a+bf'w) =a®+abf (w+©)+b*(f)*ww € Z\pZ C O\ P. Therefore,

1 +bf'w
atbflw T (a+bfa’w)(aibf’w) € Op.

2. It is clear that ¢y, is a well-defined monoid homomorphism. Note that (¢,
is a well-defined map (since every nonzero proper ideal J of Op is Pp-primary,
and hence JNO is P-primary). Moreover, (r,(Op) = O. Now let Ji, Jo € Z(Op).
Observe that J1Jo N O and (J; N O)(J2 N O) coincide locally (note that both
are either P-primary or not proper). Therefore, J1Jo N O = (J; N O)(J2 N O),
and hence (y,, is a monoid homomorphism. If J € Z(Op), then (JNO)p = J.
Therefore, ¢y, 0(y,p = idz(op)- If I is a P-primary ideal of O, then Ip N O = I.
This implies that (fj, 0 ¢y, =idz, ().

3.8et § =/ powysp. Then d : Z,(0) — Z,(O’) is a monoid isomorphism by 1.
and 2. Furthermore, we have by 1. that 6(pO) = (p p(0fp(PO)) = (4 p(POP) =
Crrp(PO'pr) = pOp, NO" = pO'.

Since O is noetherian, we have Z;(0) is the set of cancellative elements of
Z,(0). Tt follows by analogy that Z;(O') is the set of cancellative elements of
Z,(O"). Therefore, 6(Z;(0)) = Z;(0’), and hence dz:(0) is a monoid isomor-
phism. a

Lemma 3.4. Let p be a prime number, let k € Ny, let c,n € N be such that
ged(e,p) = 1 and for each £ € N let go = |{y € [0,p’ — 1] | y* = ¢ mod p'}|.

1. If p # 2, then pFc is a square modulo p™ if and only if k >n or (k <n, k is

even and (£) = 1).
2. 2%c is a square modulo 2" if and only if one of the following conditions holds.
(a) k>n.
(b) k is even and n =k + 1.
(c) kis even,n=k+2 and c =1 mod 4.
(d) k is even,n > k+3 and ¢ =1 mod 8.

4 if p=2L>3,c=1 mod 8

2 2,(¢) = —92/0=2c=1 mod 4
3 I CEN, theng =42 T@F2E)=Dor(p=2=2c=1 mod4)

1 ifp=2{=1

0 else

Proof. Note that p¥c is a square modulo p™ iff k > n or (k < n, k is even and ¢
is a square modulo p"~*).

1. Let p # 2. It remains to show that if ¢ € N, then c is a square modulo p*
if and only if (ﬁ) =1.If ¢ € N and ¢ is a square modulo p%, then ¢ is a square
modulo p, and hence (ﬁ) = 1. Now let (f}) = 1. It suffices to show by induction

that c is a square modulo p* for all ¢ € N. The statement is clearly true for £ = 1.
Now let £ € N and let € Z be such that 22 = ¢ mod p*. Without restriction
let v,(z? — ¢) = £. Note that p { z, and hence 2bz = —1 mod p for some b € Z.
Set y = 2 + b(x? — ¢). Then y? = ¢ mod p’**.
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2. It remains to show that if £ € N, then ¢ is a square modulo 2¢ if and only
if¢{=1lor({=2andc=1 mod4)or ({ >3 and c =1 mod 8). Let £ € N
and let ¢ be a square modulo 2¢. If £ = 2, then ¢ is a square modulo 4 and ¢ = 1
mod 4. Moreover, if £ > 3, then c is a square modulo 8 and ¢ =1 mod 8.

Clearly, if £ =1 or (¢ =2 and ¢ = 1 mod 4), then ¢ is a square modulo 2°.
Now let ¢ = 1 mod 8. It is sufficient to show by induction that c¢ is a square
modulo 2¢ for each ¢ € N>3. The statement is obviously true for £ = 3. Now
let £ € N>3 and let @ € Z be such that 22 = ¢ mod 2°. Without restriction let
vao(x? —¢) = L. Set y = x + 271, Then 3% = ¢ mod 2¢+1,

3. Let £ € N. By 1. and 2., it is sufficient to consider the case gy > 0. Let
ge > 0. Observe that g, = [{y € [0,p* —1] | y* =1 mod p*}| = |{y € (Z/p'Z)* |
ord(y) < 2}|. If p =2 and £ = 1, then (Z/p*Z)* is trivial, and hence g, = 1. If
(p=2(¢=2and c=1 mod4) or (p+#2and (7) = 1), then (Z/p*Z)* is a
cyclic group of even order, and thus g, = 2. Finally, if p =2,/ >3 and c =1
mod 8, then (Z/2¢Z)* = 7,/27 x Coi-2 is the product of two cyclic groups of
even order. Consequently, g, = 4. a

Lemma 3.5. Let p be a prime number, a,m € N, ¢ = pvgﬁ, M={zel0,pm—

1] | vp(x®—a) =m}, N = |M| and for each ¢ € N let g, = |[{y € [0,p* 1] | y*> = ¢
mod p*}|.

m/2 : ;
1. If m < vy(a), then N = P (") Zf mn Z,S even.
0 if m is odd
2. Let m = v,(a).
PN p—2) if p#2
2m/2-1 if p=2
(b) If a is not a square modulo p™**, then N = plm/2],

(a) If a is a square modulo p™*?, then N =

3. If m > vp(a) and a is not a square modulo p™, then N = 0.
4. If k € N is such that m = k + vp(a) and a is a square modulo p™, then
N = pr @27 (pgy — gpi1).

Proof. 1. Let m < vp(a). Observe that M = {z € [0,p™ — 1] | 2v,(xz) = m}.
Clearly, if m is odd, then N = 0. Now let m be even. We have M = {p™/2y |
y € [0,p™? —1],ged(y,p) = 1}, and thus N = [{y € [0,p™/ — 1] | ged(y,p) =
1} = o(pm/?

2. Note that M = {x € [0,p™ — 1] | 2v,(z) > m,2? # a mod p™T'} and
Hx € [0,p™ — 1] | 2vp(x) > m}| = pl™/2]. Set M' = {z € [0,p™ — 1] | 2> =a
mod p™ !} Then M’ = {z € [0,p™ — 1] | 2v,(z) > m,2? = a mod p™ T}
and N = pl™/2] — |M’|. If @ is not a square modulo p™*!, then M’ = (), and
hence N = pl™/2]. Now let a be a square modulo p™*!. Then M’ # (), and
thus m is even. Observe that M’ = {z € [0,p™ — 1] | 2v,(z) = m,2? = a
mod p™*t1} = {p™/2y | y € [0,p™/? —1],¥°> = ¢ mod p}. Therefore, |M'| =
Hy €[0,p™/? = 1] | y?> = ¢ mod p}| = p™/?>~{y € [0,p— 1] | y*> = ¢ mod p}|.
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If p # 2, then N = pl™/2 — |M/| = pm/2 — 2p™/2=1 = pm/2-1(p — 2) by
Lemma 3. Moreover, if p = 2, then N = 2lm/2] — |M/| = 2m/2 — gm/2=1 —
2/2=1 by Lemma 3.

3. This is obvious.

4. Let k € N be such that m = k+v,(a) and let a be a square modulo p™. It
follows by Lemma that vj(a) is even. Set r = v,(a)/2 and for 6 € {0,1} set
My = {x € [0,p™ — 1] | 2v,(z) = v,(a),2? = a mod p™*?}. Then M = {z €
[0,p™ — 1] | vp(x) = 7,vp(2? —a) = m} = My \ My. Since {z € [0,p™ — 1] |
vp(z) =7} = {p"y | y € [0,p**" — 1], ged(y, p) = 1}, we infer that My = {p"y |
y € [0,pFT"—1],4% = ¢ mod p**?}. Therefore, |[My| = |{y € [0,p*"—1] | y? =c
mod p** Y| = p"Ol{y € [0,p*" — 1] | y* = ¢ mod p***} = p"’g419. This
implies that N = |My| — |My1| = p"gr — " gr+1 = p" (PG — Grt1)- O

Theorem 3.6. Let O be an order in a quadratic number field K with conductor
f = fOk for some f € N>o, p be a prime divisor of f, and p = Py p.

1. The primary ideals with radical p are exactly the ideals of the form
q=p"(0"Z+ (r+71)Z)

with £,m € No, £+m > 1,0 < r < p™, and Ngg(r +7) = 0 mod p™.
Moreover, N(q) = p*+m.
2. A primary ideal q = p*(p"Z + (r 4+ 7)Z) is invertible if and only if

Nijo(r+7)#0 mod p™ .

3. A primary ideal q with radical p is an ideal atom if and only if ¢ = pO or
q=p"Z+ (r+7)Z with m € N and p™ | N o(r + 7).

4. Table gives the number of invertible ideal atoms of the form p™Z+ (r+71)Z
with norm p™; this number is 0 if m is not listed in the table.

m 2h 2vp (f) 2Vp(f)+1‘> 2vp (f) +1
1< h<vp(f)
p is inert p'r(D) 0
p is ramified| ¢ (pm/Q) p'rF)
p splits ’p“’(f)_l (r—2) 20 (pvp(”)

Table 1. Number of nontrivial invertible p-primary ideal atoms

5. The number of ideal atoms with radical p is finite if and only if the number
of invertible ideal atoms with radical p is finite if and only if p does not split.

Proof. 1. and 2. are an immediate consequence of Proposition [3.1

3. In 1. we have seen, that all p-primary ideals of O are of the form q =
pt(p"Z + (r + 7)Z). If both ¢ and m are greater than 0, then q is not an ideal



On monoids of ideals 15

atom. Indeed, q = (pO)*(p™Z+ (r+7)Z) is a nontrivial factorization. It remains
to be proven, that pO and p™Z + (r + 7)Z are ideal atoms.

Assume that there exist proper ideals a1, as of O such that pO = ajas. Since
pQO is p-primary, we have a; and as are p-primary. Using this information, we
deduce, that pO C p?, implying

p € pO C p? = (p*, pfw, fPw?) = p(p, fw, %wfw) = p(p, fw) = pp.

Therefore, 1 € p, a contradiction.

Assume that there exist proper ideals a1, ag of O such that p™Z+ (r+7)Z =
aias. Note that a; and as are p-primary. By Proposition 3, it follows that
p"Z+ (r + 7)Z C pO, a contradiction to r + 7 & pO.

4. By 1. and 3., the nontrivial p-primary ideal atoms of norm p™ are all
q=p"Z+(r+7)Z withm € N, 0 <r < p™ and Ng/g(r+7) =0 mod p™. By
2., an ideal of this form is invertible if and only if Ny q(r +7) #0 mod pmtL,

Thus if we want to count the number of invertible p-primary ideal atoms
of the form q = p™Z + (r + 7)Z we have to count the number of solutions
r € [0,p™ — 1] of the equation

vp(Nkjo(r+ 7)) = m. (3.1)

($)%dx ifp=2
f2dx  ifp#£2
Next we show that N = [{r € [0,p" —1] | v;,(r* —a) = m}|. Note that N q(r+
T) = % for each r € [0,p™ — 1]. If p = 2, then ¢ = 0, and hence
N o(r+7) = r?—a. Now let p # 2. Then v, (N g(r+7)) = v, ((2r+¢)*—a) for
each 7 € [0,p™ —1]. Let f: {r € [0,p™ —1] | vp(r*—a) = m} — {r € [0,p™ —1] |
vp(2r+e)?—a)=m}and g: {r € [0,p™ — 1] | vp((2r+e)> —a) =m} = {r €

Set N = |{r € [0,p™ —1] | vp(Ngo(r+7)) = m}| and a =

r—e

N if r —eis even
[0,p™ = 1] | vp(r* — a) = m} be defined by f(r) = {ip;”‘—s if r — ¢ is odd

and g(r) = rem(2r+-¢,p™) for each r € [0, p™ —1]. Observe that f and g are well-

defined injective maps. Therefore, N = [{r € [0,p™ —1] | v,(r? —a) = m}| in any

case. Set ¢ = ﬁ and for £ € N set go = [{y € [0,p* — 1] | ¥> = ¢ mod p‘}|. If

vp(a

m < vp(a), then the statement follows immediately by Lemma 1. Therefore,
let m > vp(a). In what follows we use Lemmas and without further
citation.

CASE 1: p = 2 and 2 is inert. We have va(a) = 2va(f) — 2, ¢ = dx =5
mod 8, g1 = 1, go = 2 and g3 = 0. If m = vy(a), then a is a square modulo
27+ and hence N = 2™/2-1 = x(2™/2). If m = vy(a) + 1, then a is a square
modulo 2™, and thus N = 2v2(9)/2=1(2g; — go) = 0. If m = va(a) + 2, then a
is a square modulo 2™, whence N = 2v2(9)/2=1(2g, — g3) = 2v2(@)/241 — gva(f)
Finally, let m > va(a) + 3. Then a is not a square modulo 2, and hence N = 0.

CASE 2: p = 2 and 2 is ramified. Note that va(a) € {2va(f),2va(f) + 1}.
First let vo(a) = 2vo(f). Then a = f2d with ¢ = d = 3 mod 4, g; = 1 and
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ge = 0 for each £ € N>o. If m = va(a), then a is a square modulo 2™+, and thus
N =2m/2=1 = gv2(N)=1 — ,,(2v2()) If m = vy(a) + 1, then a is a square modulo
2" and hence N = 2v2(9)/2-1(2g) — gy) = 2v2(/)_ Finally, let m > va(a) + 2.
Then a is not a square modulo 2™, and thus N = 0.

Now let va(a) = 2va(f) + 1. If m = va(a), then a is not a square modulo
2+ and hence N = 2L/2) = 2v2()) If m > vy(a), then a is not a square
modulo 2™, and thus N = 0.

CASE 3: p = 2 and 2 splits. Observe that va(a) = 2va(f) =2, c=dg =1
mod 8, g1 =1, go = 2 and g = 4 for each ¢ € N>3. If m = va(a), then a is
a square modulo 2™+ and hence N = 2™/2~1 = (5(27/2). Now let m > vy(a)
and set k = m — va(a). Note that a is a square modulo 2™, and hence N =
2v2(@)/2=1(2g, — griq). If m < vo(a) + 3, then N = 0. Finally, let m > va(a) + 3.
Then N = 2V2(a)/2+1 — gva(f) = 95(2V2(1)),

CASE 4: p # 2 and p is inert. We have v,(a) = 2v,(f), (5) = (dTK) = -1
and g, = 0 for each ¢ € N. If m = v,(a), then a is not a square modulo p™*!,
and hence N = pl™/2l = pv»(5) Tf m > v,(a), then a is not a square modulo

p™, and thus N = 0.

CASE 5: p # 2 and p is ramified. It follows that vp(a) = 2v,(f) + 1. If
m = v,(a), then a is not a square modulo p™*1, and thus N = plm/2) = pve(£),
If m > vp(a), then a is not a square modulo p™, and thus N = 0.

CASE 6: p # 2 and p splits. Note that v,(a) = 2v,(f), (§) = (dTK) =1 and
ge =2 for each £ € N. If m = v,(a), then a is a square modulo p™*!, and hence
N =pm/2=1(p - 2) = p»)=L(p — 2). If m > v,(a), then a is a square modulo
p™, and thus N = p'(@/2= 1 (pgy — g y) = 2p"» (D=1 (p — 1) = 20 (p» ().

5. It is an immediate consequence of 4. that the number of invertible ideal
atoms with radical p is finite if and only if p does not split. It remains to show that
A(Z,(0)) is finite if and only if A(Z;(0)) is finite. It follows from [T, Theorem
4.3] that Z(0O,) is a finitely generated monoid if and only if Z*(O,) is a finitely
generated monoid. Therefore, Proposition 2 implies that Z,(O) is a finitely
generated monoid if and only if Z;(0O) is a finitely generated monoid. Observe
that Z,(O) and Z;(O) are atomic monoids. Therefore, A(Z,(0)) is finite if and
only if Z,(0O) is a finitely generated monoid if and only if Z;(O) is a finitely
generated monoid if and only if A(Z;(0O)) is finite. O

4 Sets of distances and sets of catenary degrees

The goal in this section is to prove Theorem [I.I] The proof is based on the
precise description of ideals given in Theorem We proceed in a series of
lemmas and propositions and use all notation on orders as introduced at the
beginning of Section [3| In particular, O = Oy is an order in a quadratic number
with conductor fOk for some f € N>s.
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Proposition 4.1. Let H be a reduced atomic monoid and suppose there is a
cancellative atom v € A(H) such that for each a € H \ H* there are n € Ny
and v € A(H) such that a = u™v.

1. For all nym € Ny and v,w € A(H) such that u"v = u™w, it follows that
n=m and v =w.

For alln € Ng and v € A(H), it follows that max L(u"v) =n + 1.

c(H) =sup{c(w-y,u"-v) |neN andv,w,y € A(H) such that wy = u"v}.
If H is half-factorial, then c(H) < 2.

sup A(H) = sup{l — 2 | £ € N>3 such that L(vw) N [2,€] = {2,£} for some
v,we A(H)}.

Proof. 1. Let n,m € Ny and v,w € A(H) be such that v"v = v™w. Without
restriction let n < m. Since u is cancellative, we infer that v = ™ "™w. Since
v € A(H), we have n = m, and thus v = w.

2. It is clear that n+1 € L(u"v) for all n € Ny and v € A(H). Therefore, it is
sufficient to show by induction that for all n € Ny and v € A(H), max L(u"v) <
n+ 1. Let n € Ny and v € A(H). If n = 0, then the assertion is obviously true.
Now let n > 0 and z € Z(u"v). Then there are some z',2"” € Z(H) \ {1} such
that z = 2z’ - 2. There are some m/,m” € Ny and w’,w” € A(H) such that
7(2') = w™ w' and 7(2") = w™ w”. There are some ¢ € N and y € A(H) such
that w'w” = uly. We infer that u"v = ™+ "+t and thus n = m’' +m/” + ¢
by 1. Since m’,m” < n, it follows by the induction hypothesis that |2/| < m'+1
and |2”’] <m” + 1. Consequently, |z| < m/+m”" +2<m/+m"+0+1=n+1.

3. Set k = sup{c(w - y,u™ -v) | n € Ny and v,w,y € A(H) such that
wy = u"v}. Since ¢(H) = sup{c(z,7') | a € H,z,2" € Z(a)}, it is obvious that
k < c(H). It remains to show by induction that for all n € Ny and v € A(H),
it follows that c(u™v) < k. Let n € Ny and v € A(H). Since c(v) = 0, we
can assume without restriction that n > 0. Since c(u™v) = sup{c(z,u™ - v) |
z € Z(u™)}, it remains to show that c(z,u™ - v) < k for all z € Z(u"v). Let
z € Z(u"v).

CASE 1: For all w,y € A(H) \ {u}, we have w -y { z. There are some m € N
and w € A(H) such that z = u™ - w. We infer by 1. that z = u™ - v, and thus
c(z,u™ - v) =0<k.

CASE 2: There are some w,y € A(H) \ {u} such that w-y [ 2. Set 2’ = =
There exist m € N and a € A(H) such that wy = u™a. We infer that m < n
and u"v = 7(z) = m(w-y)w(2') = u™an(z’), and thus ar(z’) = v~ ™v. Observe
that c(z,u™ -a-2') < c(w-y,u™-a) < k. Since n —m < n, it follows by the
induction hypothesis that c(u™ -a- 2", u™-v) < c(a-z’,u™ "™ v) < k, and hence
c(z,u™-v) <k.

4. Let H be half-factorial, n € N and v, w,y € A(H) be such that wy = u"v.
We infer that n = 1, and thus c(w - y,u" - v) < d(w - y,u - v) < 2. Therefore,
c(H) <2 by 3.

5. Set N = sup{f¢ — 2 | £ € N>3 such that L(vw) N [2,4] = {2, ¢} for some
v,w € A(H)}. It is obvious that N < sup A(H). It remains to show that k < N

G D
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for each k € A(H). Let k € A(H). Then there are some a € H and r,s € L(a)
such that r < s, L(a) N [r,s] = {r,s}, and k = s — r. Let z € Z(a) with |z| =7
be such that v, (z) = max{v,(2') | 2 € Z(a) with |2'| = r}. Since r < maxL(a),
it follows by 2., that there are some v, w € A(H) \ {u} such that v-w | z. There
are some n € N and y € A(H) such that vw = u"y. Since v,(z) is maximal
amongst all factorizations of a of length r, we have n > 2. Consequently, there
is some ¢ € L(vw) such that 2 < £ <n+ 1 and L(vw) N[2,¢] = {2, ¢}. Note that
r+{¢—2 € L(a), and thus s < r + £ — 2. This implies that k <£—2 < N. m|

Theorem implies that, for all prime divisors p of f, Z;(Oy) and Z,,(Oy)
are reduced atomic monoids satisfying the assumption in Proposition 4.1

Lemma 4.2. Let p be a prime divisor of f.

1. Z(pPyp) = {A- Py | A= Pyy, or A € A(Z;(Oy)) such that N(A) = p*}
and 1 € Ca(Z,(0;)).

2. If I,J € A(Z;(Oy)) are such that N(I) = p* and N'(J) > p?, then I.J = pL
for some L € A(Z;(Oy)).

3.2 € Ca(Z3(0y)).

Proof. 1. Note that {I € Z,(Of) | N(I) = p} = {Psp}. First we show that
Z(pPsp) ={A-Psp| A= Psp, or Ae A(Z;(Oy)) such that N'(A) = p*}.

Let z € Z(pPy,). It follows from Proposition [£.1}2 that |z| < 2, and hence
|z] = 2. Consequently, z = A-B for some A, B € A(Z,(Oy)). By Proposition(3.2]1
there are some (u,v,w), (z,y,t) € My, such that A = p*(p"Z + (w + 7)Z) and
B =p"(pYZ+ (t+7)Z). Set g = min{v,y, v,(w+t+¢)} and e = min{g, v,(w —
t),vp(w? + ew + n) — v,v,(t* + et + n) — y}. We infer by Proposition 1
that u+ 2 +¢g =1and v+ y + e — 29 = 1. Note that g € {0,1}. If g = 0,
then u +z = v+y = 1, and thus (A = pO; and B = Py)) or (A = Py, and
B =pOy).Nowlet g =1. Thenu =2 =0,v,y > 1,v+y+e=3,and e € {0,1}.
Ife=1,then v =y =1, and thus A = B = Py ,. Now let e = 0. Then (v =1
and y = 2) or (v =2 and y = 1). Without restriction let v = 2 and y = 1. Then
B = P ,, N(A) =p® = p?, and N(A)N(B) = p* = N(pPs,) = N(AB). Since
B is not invertible, it follows by Proposition [3.2]3 that A is invertible.

To prove the converse inclusion note that Py, = pZ + (r + 7)Z for some
(0,1,7) € My,,. By Proposition 1 we have PJ?,p = p*(p*Z + (c + 7)Z with
(a,b,¢) € My p, a =min{l,v,(2r+¢)} and b = 24+e—2a with e = min{a, v, (r*+
er +n) — 1}. By Proposition 3 we have a > 0, and thus a = b = ¢ = 1.
Consequently, Pf = pPy,. Now let A € A(Z;(Oy)) be such that N'(4) = p*. Tt
follows by Proposition [3.2]3 that N'(APy,) = N(A)N(Py,,) = p® and APy, =
pl for some I € Z,,(Oy). We infer that N'(I) = p, and hence I = Py ).

Observe that d(2’,2”) <1 for all 2/, 2" € Z(pPy,,) and (pOy) - Py, and Pf
are distinct factorizations of pPy ,. Therefore, 1 = c(pPt,p) € Ca(Z,(Oy)).

2. Let I,J € A(Z;(0Oy)) be such that N'(I) = p* and N(J) > p?. Without
restriction we can assume that I # pOy. There are some (0,2,r), (0, k,s) € My ),
such that I = p*Z + (r + 7)Z and J = p*Z + (s + 7)Z. Since I and J are
invertible, we have v, (r? + er +n) = 2 and v,(s* + s +n) = k > 2. Therefore,
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vp(r +s4¢e)+vp(r—s) = vp(r +er+n— (s> +es+mn)) = 2, and thus
vp(r+s+¢) =1, by Proposition 2. Therefore, min{2, k,v,(r +s+¢)} =1,
and hence I.J = pL for some L € A(Z;(Oy)) by Proposition 1.

3. We distinguish two cases.

CASE 1: p# 2 or vp(f) > 2o0or d # 1 mod 8. It follows from Theorem [3.6
that there is some I € A(Z;(Oy)) such that N'(I) = p* and I # pO;. We have
IT = (pOy)?, and hence L(IT) = {2}. Since I - I and (pOy) - (pOy) are distinct

factorizations of I1, we have 2 = c(II) € Ca(Z;(Oy)).

CASE 2: p = 2, vp(f) = 1 and d = 1 mod 8. By Proposition [3.3|3 we
can assume without restriction that f = 2. By Theorem there is some
I € A(Z;(Oy)) such that N(I) = 8. There is some (0,3,r) € My such that
I = 8Z+ (r + 7)Z. We have vy(r? — d) = 3, and hence vy(r) = 0. Therefore,
min{3,vy(2r)} = 1, and thus I? = 2.J for some J € A(Z;(0Oy)). Consequently,
L(I?) = {2}. Since I - I and (20y) - J are distinct factorizations of I?, it follows
that 2 = c(I?) € Ca(Z;(0y)). O

Proposition 4.3. Let p be an odd prime divisor of f such that vp(f) > 2.

1. There is a C € A(Z;(Oy)) such that L(C?) = {2,3} whence 1 € A(Z;(Oy))
and 3 € Ca(Z,;(Oy)). Moreover, if (p # 3 or d # 2 mod 3 or v,(f) > 2),
then there are 1,J, L € A(Z;(Oy)) such that I* = p*.J and J* = p*L.

2. If |Pic(Of)| <2 and (p # 3 or d #2 mod 3 or v,(f) > 2), then there is a
nonzero primary a € Of such that 2,3 € L(a) whence 1 € A(Oy).

Proof. 1. By Proposition [3.3/3 there is a monoid isomorphism § : Zy(Of) —

7,0 a )) such that 6(pOys) = pO__; . Therefore, we can assume without
ova(f ova(f
restriction that f is odd.

CLAIM: L(I%) = {2,3} for some I € A(Z;(0y)), 1 € A(Z;(0y)), 3 €
Ca(Z5(0y)) and if v, (p* + f2d) = 4, then I? = p>J and J? = p?L for some
I,J, L € A(Z;(Oy)).

For r € Ny set k = vp(Ng/(r + 7)) and I = p*Z + (r + 7)Z. Let k > 0
and r < p*. Then I € A(Z;(Oy)). Moreover, I? = p*(p°Z + (c 4 7)Z) with
a = min{k,v,(2r +¢)}, b = 2(k — a) and ¢ = rem(r — t%,pb) for each
t € 7Z with t% =1 mod p*~¢. Set J = p’Z + (¢ + 7)Z. Then I? = p*J
and if b > 0, then J € A(Z;(Oy)). In particular, if a = 2 and b > 0, then
I,J € A(Z;(Oy)) and L(I?) = {2,3}, and hence 1 € A(I®) C A(Z;(Oy))
and 3 = c(I?) € Ca(Z;(Oy)). Observe that J? = p” (PP Z + (¢ + 7)Z) with
a/ = min{b,v,(2¢ +¢)}, ¥ = 2(b — a/) and ¢ € Ny such that ¢ < p*. Set
L=p"Z+ (¢ +7)Z. Then J? = p® L and if b’ > 0, then L € A(Z;(Oy)).

CASE 1: d #1 mod 4. Set r = p?. We have N q(r +7) = p* — f2d, k > 4,

k—

a=2,b=2k—-2)>0,r<pk andt= p722+1 satisfies the congruence. There-
k—2 4_ 2 - ok (k—1)

fore, ¢ = rem(p? — WEDPIS -0y ey 2t D

some ¢ € Z. For the rest of this case let v, (p*+ f2d) = 4. It follows that v,(c) = 2,
and hence ¢’ = min{2(k — 2),v,(2¢)} =2 and ¥’ = 4(k — 3) > 0.
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CASE 2: d =1 mod 4. Set r = p22_1. Observe that N g(r +7) = ”4%32‘1,
k>4,a=2b=2k—-2)>0,r < p’ and t = 1 satisfies the congruence.
Consequently, 2¢c + ¢ = 2rem(% — %’p%k—z)) +1 = Z%%
for some ¢ € Z. For the rest of this case let v,(p* + f2d) = 4. We infer that
a’ = min{2(k — 2),v,(2c+¢)} = 2. Moreover, b’ = 4(k — 3) > 0. This proves the
claim.

Note that if ¢ € N with v,(g) = v,(f), then there is a monoid isomorphism
a : I3(0y) — I;(O,4) such that a(pOy) = pO, by Proposition [3.313. By the
claim it remains to show that if (p # 3 or d # 2 mod 3 or v,(f) > 2), then
there is some odd g € N such that v,(g) = v,(f) and v,(p* + ¢*d) = 4.

Let (p# 3 ord #2 mod 3 or v,(f) > 2). Furthermore, let v, (p* + f2d) > 4.
This implies that v,(f) = 2 and p { d. Without restriction we can assume that
v, (p* + (p?)2d) > 4. We have v, (1 +d) > 0, and hence p # 3. Set g = (p — 2)p°.
Then v,(g) = v,(f). Assume that v,(p* + g>d) > 4. Then p® | p* + (p —2)%*p*d —
p*(1 +d), and thus p | (p — 2)2 — 1 = p? — 4p + 3. It follows that p = 3, a
contradiction.

2. Let |Pic(Oy¢)| < 2 and let p # 3 or d # 2 mod 3 or v,(f) > 2. By 1.
there are some I, J, L € A(Z;(Oy)) such that I? = p2J and J? = p?L. We infer
that I? is principal, and hence J and L are principal. Consequently, there are
some u,v € A(Oy) such that J = uOf, L = vO¢ and u? = p?v. Note that u? is
primary. Since p € A(Oy), we have 2,3 € L(u?). Therefore, 1 € A(Oy). O

Proposition 4.4. Let p be a prime divisor of f such that v,(f) > 2. Then
there are I, J € A(Z;(Oy)) such that L(1.J) = {2,4} whence 2 € A(Z;(Oy)) and
4 € Ca(Z;(0y)).

Proof. CASE 1: p # 2 or vp(f) > 2 or d # 1 mod 8. By Theorem there is
some I € A(Z;(Oy)) such that N'(I) = p*. Set J = I. We infer that I.J = (pOy)*,
and hence {2,4} C L(IJ) C {2,3,4}. Assume that 3 € L(I.J). Then there are
some A, B,C € A(Z*(Oy)) such that IJ = ABC and N (A) < N(B) < N(C).
Again by Theorem we have N'(L) € {p*} U {p" | n € Nxy4} for all L €
A(Z;(Oy)). This implies that N'(A) = N (B) = p? and N(C) = p*. It follows
by Lemma 2 that ABC = p?L for some L € A(Z;(Oy)). Consequently,
L = p*>Oy, a contradiction. We infer that L(I.J) = {2,4} whence 2 € A(Z;(Oy))
and 4 € Ca(Z5(Oy)).

CASE 2: p = 2, vp(f) = 2 and d = 1 mod 8. Since 75 (04) = Z5(Oy) by
Proposition [3.3]3, we can assume without restriction that f = 4. We set

18 ifd=1 mod 32
6 ifd=1 mod 16 22 ifd=9 mod 32
= and z= .
2 ifd=9 mod 16 2 ifd=17 mod 32

6 ifd=25 mod 32

In any case, we have vo(Ng/g(w + 7)) = 5 and vo(Ng/g(z + 7)) = 6. Set
I =32Z+ (w+7)Z and J = 64Z + (2 + 7)Z. Then I,J € A(Z5(04)) and
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Propositionl implies that I.J = 2%(2°Z+ (c+7)Z) with a = min{5, 6, vo(w+
2)}, b="5+6—2a and ¢ € Ny such that ¢ < 2°. Observe that vo(w + 2) = 3,
and thus ¢ = 3 and b = 5. Set L = 32Z + (¢ + 7)Z. Then L € A(Z5(04)) and
IJ = (204)3L. We infer that {2,4} C L(IJ) C {2,3,4}, by Proposition 2.
Assume that 3 € L(IJ). Then there are some A, B,C € A(Z;(0,)) such
that IJ = ABC and N(A) < N(B) < N(C). Tt follows by Theorem that
NU) € {4} U{2" | n > 5} for all U € A(Z3(Oy)). Since N(A)N(B)N(C) =
N(I)N(J) = 2048, we infer that N'(A) = N(B) = 4 and N (C) = 128. It follows
by Lemma [£.2]2 that ABC' = 4D for some D € A(Z3(04)). This implies that
D = 2L, a contradiction. Consequently, L(I.J) = {2,4}, and thus 2 € A(Z3(O4))
and 4 = c(1.J) € Ca(Z5(04)). 0

Proposition 4.5. Suppose that one of the following conditions hold:

(a) va(f) > 5 or (va(f) =4 and d# 1 mod 4).
(b) va(f) =3 and d =2 mod 4.
(c) vo(f) =2 andd =1 mod 4.

Then there are I,J € A(Z3(Oy)) with L(IJ) = {2,3} whence 1 € A(Z3(Oy))
and 3 € Ca(Z5(Oy)). If |[Pic(Oy)| < 2, then there is a nonzero primary a € Oy
with 2,3 € L(a) whence 1 € A(Oy).

Proof. CASE 1: va(f) >5or (va(f) =4and d# 1 mod 4). We show that there
are some A, B, I, J, L € A(Z;(Oy)) such that A? = 321, B> = 16J and I.J = 4L.
Set k = vo(Ng/g(16+7)) and A = 2°Z+ (164 7)Z. Then k > 8, A € A(Z3(Oy))
and A% = 32(22%719Z 4 (¢ + 7)Z) with (5,2k — 10,¢) € M2 and va(c) > 3. Set
I =22k=107 4 (¢ 4+ 7)Z. Then I € A(Z5(Oy)). Set B = 64Z + (8 + 7)Z. Then
B € A(T;(0y)) and B2 = 16(16Z + (4 + 7)Z). Set J = 16Z + (4 + 7)Z. Then
B2 =16J, J € A(Z{(O;)) and I.J = AL with L € A(Z;(O})).

CASE 2: vo(f) = 3 and d = 2 mod 4. We show that AB = 2I, AC = 2T,
BC = 8I", B> = 16J, I.J = 4L, I'J = 4L/, I"J = 4L" for some A, B,C, I, T,
I",J,L,L',L" € A(Z3(Oy)). By Proposition 3, we can assume without re-
striction that f = 8. Set A = 4Z + (2 + 7)Z, B = 64Z + (8 + 7)Z and
C =128Z + 7Z. Then A, B,C € A(Z5(0y)), AB = 2(64Z + (40 + 1)Z), AC =
2(1287+ (64+7)Z), B2 = 16(16Z+(12+7)Z) and BC = 8(128Z+ (c+7)Z) with
(3,7,¢) € My and vo(c) = 4. Furthermore, (64Z+(40+47)Z)(16Z+(12+7)Z) =
4(64Z + (56 + 7)Z), (128Z + (64 4+ 7)Z)(16Z + (12 + 7)Z) = 4(128Z + (r + 7)Z)
with (2,7,7) € Myo and (128Z+ (c+71)Z)(16Z+ (124 7)Z) = 4(128Z+ (s+7)Z)
with (2,7,s) € Mya. Set J = 16Z+ (124 7)Z. In particular, if I € {64Z+ (40+
T)Z, 1287 + (64 + 7)Z, 1287 + (¢ + 7)Z}, then I,J € A(Z3(Oy)) and IJ = 4L
for some L € A(Z5(Oy)).

CASE 3: vo(f) =2 and d =1 mod 4. We show that A% = 47 and I? = 4L
for some A,I,L € A(Z3(Oy)). By Proposition 3, we can assume without
restriction that f = 4. First let d = 1 mod 8. If d = 1 mod 16, then set
A=32Z+ (64 7)Z and if d =9 mod 16, then set A = 32Z + (2 + 7)Z. In any
case, we have 4 € A(Z;(Oy)) and A% = 4(64Z + (c + 7)Z) with (2,6,¢) € Ms2
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and va(c) = 1. Set I = 64Z + (¢ + 7)Z. Then I € A(Z;(Oy)), A% = 41 and
I? = 4(256Z + (r + 7)Z) with (2,8,7) € My .

Now let d =5 mod 8. Set A = 16Z + (2 + 7)Z. Then A € A(Z5(Oy)) and
A% = 4(16Z+(c+7)Z) with (2,4,¢) € Mo and vo(c) = 1. Set I = 16Z+(c+7)Z.
Then A? = 41 and I? = 4(16Z + (z + 7)Z) with (2,4,2) € My .

Using the case analysis above we can find I, J, L € A(Z5(Oy)) such that IJ =
4L. In particular, L(IJ) = {2,3}, 1 € A(Z;(Oy)) and 3 = c(IJ) € Ca(Z,(Oy)).
Now let |Pic(Oy)| < 2. Observe that if A, B, C' € A(Z;(O¢)), then A? is principal
and {AB, AC, BC'} contains a principal ideal of O;. In any case we can choose
I,J,L to be principal. There are some w,v,w € A(Oy) such that I = uOy,
J =v0f, L = wOy and uwv = 4w. Note that wv is primary. Since 2 € A(Oy), we
have 2,3 € L(uv), and thus 1 € A(Oy). O

Proposition 4.6. Let p be a prime divisor of f. Then the following statements
are equivalent:

a) I;(Oy) is half-factorial.
b) Z,(Oy) is half-factorial.
) <(Z;(0f)) = 2.
; c(Z,(O0 )) 2.

Proof. (a) = (e) If vj,(f) > 1 or p is not inert, then there is some I € A(Z;(Oy))
such that N(I) > p® by Theorem 4;Set k = vp(N(I)). Then k > 3 and
IT = (pOy)* by Proposition 5. Since I € A(Z;(Oy)), we have 2,k € L(I1).

(e) = (b) Observe that N'(A) € {p,p*} for each A € A(Z,(Oy)), and thus
A(Zp(Oy)) = {Prp} U{A € AZ;(Of)) | N(A) = p?}. Let I € Z,(0y) \ {Of}.
There are some k € No and J € A(Z,(Oy)) such that I = p*J. Let z € Z(I).
Then z = ([, L) - Pf with £,n € Ng and I; € A(Z;(Oy)) for each i € [1,n].
Note that |z| =n + £. It is sufficient to show that n +¢ =k + 1.

CASE 1: [ is invertible. Then J is invertible and ¢ = 0. It follows that
p* = NI, L) = N(I) = N(p*J) = p?**2 by Proposition [3.23, and thus
n+l=n==k+1.

CASE 2: [ is not invertible. Then J = P, and £ > 0. It follows from
Lemma 2 that Pf,, = p*~' Py . Consequently,

p2(n+€)71 _ N(H L-)N(peflpf,p) _ N(I) _ N( IcPf p) p2k+1
i=1
by Proposition [3.23, and hence n + ¢ =k + 1.
(b) = (d) Since Z;;(Oy) is a cancellative divisor-closed submonoid of Z,(Oy)
and not factorial, we infer by Proposition [£.1]4 that

2 < c(Z;(0f)) < c(Zp(0f)) < 2
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(d) = (c) Note that Z5(Oy) is a divisor-closed submonoid of Z,(Oy), and
thus ¢(Z;(Oy)) < c(Z,(Oy)) = 2. Since Z;(Oy) is not factorial, we infer that
c(Z;(0y)) = 2.

(c) = (a) Since Z;(Oy) is cancellative and not factorial, it follows that 2 +
sup A(Z;(Oy)) < c(Z;(Oy)) = 2, and thus sup A(Z;(Oy)) = 0. Consequently,
A(Z;(Of)) = 0, and hence Z(Oy) is half-factorial. O

Lemma 4.7. Let p be a prime divisor of f, |[Pic(Oy)| <2, I,J, L € A(Z;(Oy)).

1. If J is principal and I.J = p*L, then 1 € A(Oy).
2. If I and J are not principal and IJ = pL, then 1 € A(Oy).

Proof. Note that if |[Pic(Oy)| > 1, then it follows from [I6, Corollary 2.11.16]
that there is some invertible prime ideal P of Oy that is not principal. Observe
that p € A(Oy). Also note that if I is not principal, then PI is principal, and
hence P1I is generated by an atom of Oy, since PI has no nontrivial factorizations
in Z* (Of)

1. Let J be principal and I.J = p?L. There is some v € A(Oy) such that
J = UOf.

CASE 1: [ is principal. Then L is principal, and hence there are some u, w €
A(Oy) such that I = uOy, L = wOy and uv = p*w. We infer that 2,3 € L(uv),
and thus 1 € A(Oy).

CASE 2: I is not principal. Then L is not principal and [Pic(Of)| > 1,
and thus there are some u,w € A(Oy) such that PI = uOyf, PL = wO; and
wv = p*w. It follows that 2,3 € L(uv), and thus 1 € A(Oy).

2. Let I and J not be principal and IJ = pL. Then L is principal and
|[Pic(Oy)| > 1, and hence there are some u, v, w,y € A(Oy) such that PI = uOy,
PJ = v0y, P? = w0y, L = yOys and uwv = pwy. Therefore, 2,3 € L(uv), and
hence 1 € A(Oy). O

Proposition 4.8. Let p be a prime divisor of f.

L If vp(f) = 2 or p is not inert, then there are I,J € A(Z;(Oy)) such that
L(1J) ={2,3} whence 1 € A(Z;(Oy)) and 3 € Ca(Z,;(Of)).
2. Suppose that Oy is not half-factorial and that one of the following conditions
holds:
(i) |Pic(Of)| =3 or vp(f) > 2 or p does split.
(ii) p is inert and there is some C € A(Z,;(Oy)) that is not principal.
(iii) p is ramified and there is some principal C € A(Z;(Oy)) such that
N(C) = p?.
(iv) f is a squarefree product of inert primes.

Then 1 € A(Oy).

Proof. We prove 1. and 2. simultaneously. Set G = Pic(Oy). Let B(G) be the
monoid of zero-sum sequences of G. It follows by [16l Theorem 6.7.1.2] that
if |G| > 3, then 1 € A(B(G)). We infer by [16, Proposition 3.4.7 and Theo-
rems 3.4.10.3 and 3.7.1.1] that there exists an atomic monoid B(Oy) such that
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A(B(Oy)) = A(Oy) and B(G) is a divisor-closed submonoid of B(Oy). In par-
ticular, if |G| > 3, then 1 € A(Oy). Thus, for the second assertion we only need
to consider the case |G| < 2. By Propositions and we can restrict to the
following cases.

CASE 1: p = 2 and ((va(f) € {3,4} and d = 1 mod 4) or (va(f) € {2,3}
and d = 3 mod 4)). If (vo(f) =4 and d =1 mod 4) or (vo(f) =3 and d = 3
mod 4), then set I = 16Z + (4 + 7)Z. If va(f) = 3 and d = 1 mod 4, then
set I = 16Z + 7Z. Finally, if vo(f) = 2 and d = 3 mod 4, then there is some
I € A(Z3(Oy)) such that N (I) = 32 by Theorem [3.6] In any case, it follows that
1€ A(T;(0)).

It is a consequence of Proposition [3.2]1 and Theorem [3.6] that there are some
A,J € A(Z;(Oy)) and £ € N such that A> = ¢J with values according to
the following table. Let k € {1,3,5,7} be such that d = & mod 8. Note that
I =27+ (r+7)Zand J = 2°Z + (s + 7)Z with (0,a,7), (0,b,5) € M.

vo(f)| k |N(A)| £ N(J)|va(r)|va(s)
4 1 512 |16]1024| 2 3
4 5 256 [16] 256 | 2 3
3 1 128 | 8| 256 | oo 2
3 5 64 | 8| 64 | o0 2
3 [3or 7| 128 |16| 64 2 | >4
2 [3or7l 32 |8]| 16 2 | >3

Since va(r + s) = 2 in any case, we infer that IJ = 4L for some L €

A(Z5(Oy)). Now let |G| < 2. We have J is principal, and hence 1 € A(Oy) by
Lemma [4.71.

CASE 2: p = 2, vo(f) = 2 and d = 2 mod 4. Set A = 32Z + 7Z and
B = 32Z+ (8 + 7)Z. Then A,B € A(Z5(Oy)) and AB = 8I for some I €
A(Z5(Oy)) with I = 16Z + (r + 7)Z, (0,4,7) € My, and vo(r) = 2. Therefore,
we have Al = 4J and BI = 4L for some J,L € A(Z5(Oy)). Now let |G| < 2.
Since {A, B, I} contains a principal ideal of Oy, we infer by Lemma 1 that
1e A(Of)

CASE 3: p =3, v3(f) =2 and d = 2 mod 3. First let d # 1 mod 4. Set
I=81Z+7Z and J =81Z+ (9+7)Z. Then I, J € A(Z5(Oy)) and IJ = 9L for
some L € A(Z5(Oy)) with L =81Z + (r + 7)Z, (0,4,7) € M3, and vs(r) = 2.
It follows that IL = 9A for some A € A(Z5(Oy)).

Now let d = 1 mod 4. By Proposition [3.3]3 we can assume without re-
striction that f is odd. Set I = 81Z + (4 + 7)Z and J = 81Z + (13 + 7)Z.
Then I,J € A(Z5(Oy)) and IJ = 9L for some L € A(Z5(Oy)). There is some
(0,4,7) € My 3 such that L = 81Z + (r + 7)Z. Since v3(2r + 1) > 2, we have
IL = 9A for some A € A(Z5(Oy)) or JL = 9A for some A € A(Z5(Oy)).

In any case if |G| < 2, then {I,J, L} contains a principal ideal of Oy, and
hence 1 € A(Oy) by Lemma [4.7]1.
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CASE 4: v,,(f) = 1 and p splits. By Theoremthere is some I € A(Z;(Oy))
such that V(1) = p3. There is some (0, 3,7) € My, such that I = p3Z+(r+71)Z.
Observe that v, (2r +¢) = 1. We infer that I? = p.J for some J € A(Z;(Oy))
and IT = p*L with T € A(Z;(Oy)) and L = pOy € A(Z;(Oy)). Now let |G| < 2.
We infer by Lemma [£.7] that 1 € A(Oy).

CASE 5: v,(f) = 1 and p is ramified. By Theorem there is some C €
A(Z}(Oy)) such that N(C) = p*. Note that CC = p*Oy and C € A(Z;(Oy)).
Now let C be principal. It follows by Lemma[4.71 that 1 € A(Oy).

Cases 1-5 show that there are some I,.J, L € A(Z;(Oy)) such that I.J = p*L.
In particular, L(IJ) = {2,3}, 1 € A(Z;(Oy)) and 3 = c(IJ) € Ca(Z,(Oy)). This
proves 1. For the rest of this proof let O be not half-factorial and |G| < 2.

CASE 6: v,(f) = 1, p is inert and there is some C' € A(Z;(Oy)) that is not
principal. We have C? = pL for some L € A(Z;(Oy)), and thus 1 € A(Oy) by
Lemma [L7]2.

CASE 7: f is a squarefree product of inert primes. Then Z;(Oy) is half-
factorial by Proposition If G is trivial, then Oy is half-factorial, a contra-
diction. Note that Oy is seminormal by [10, Corollary 4.5]. It follows from [I8]
Theorem 6.2.2.(a)] that 1 € A(Oy). O

Lemma 4.9. Let p be a prime divisor of f, k € N>o, and N = sup{v,(N(4)) |
A€ A(Z;(Oy))}. If t € N and A € T,(Oy)) is both a product of k atoms and a

EN
product of £ atoms, then £ < 5.

Proof. Let £ € N and suppose that a product of £ atoms can be written as a
product of £ atoms and set P = Py . There are some a,b € Ny, I; € A(Z,(Oy))\
{P} for each [1,b] and J; € A(Z,(Oy)) for each j € [1,k] such that { = a+b
and [[5_, J; = P*[];_, I. Note that p? | N'(I;) for each i € [1,b].

CASE 1: @ = 0. Then b = £. It follows by induction from Proposition [3.2]4
that there are J; € A(Z;(Oy)) for each j € [1,k| such that ./\/'(H?:1 J;) |

N(T521 J)). Set M = lem{N'(J}) | j € [L,k]}. Then p* | T[i_, N(Li) |

¢ k k k o
N L) = N(Hj:1 J;) | N(Hj:1 Ji) = szlN(J]’-) | M*. This implies
that 2¢ < kv, (M) < kN, and thus ¢ < %

CASE 2: a > 0. By Lemma we have P% = p® 1P and thus N (P?) =
p?¢~1, Note that H§:1 J; is not invertible, and hence one member of the product,
say Ji, is not invertible. Observe that v, (N (J1)) < N — 1 by Proposition [3.2}4.
We infer by induction from Proposition 4 that there are J; € A(Z,;(Oy)) for

each j € [2, k] such that N(TT5_, J;) | N(Ji TT5_y J2)- Set M = lem{N'(J}) |

j € [2,k]}. Then p* 1 | N(P) [T, N(L) | N(PUTT_, 1) = N(T5, J) |
N Ty J5) = N(J) TTE_y N(J5) | N(Jy) M1, This implies that 20 — 1 <

vp(N(J1)) + (k — 1)v,(M) < kN — 1, and hence ¢ < EX. O

Lemma 4.10. Let p be a prime divisor of f. For every I € A(Z;(Oy)), we set
vr = vp(N(I)), and let B={va | A € A(Z;(Oy))}.
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L. For all I € A(Z;(Oy)), we have c(I - 1,(pOy)*") < 2 4 sup A(B).
2. Letp=2,d=1 mod 8, and v,(f) > 4. Then c(I - I,(pO¢)'") < 4 for all
I € A(Z;(Oy)).

Proof. 1. It is sufficient to show by induction that for all n € N>o and I €
A(Z;(Oy)) with v; = n, it follows that c(I - I, (pOf)") < 2 + sup A(B). Let
n € Nspand I € A(I;(Of)) be such that v; = n. If n = 2, then c(I-1, (pOy)?) <
d(I -1, (pOy)?) <2 < 2+ sup A(B). Now let n > 2. Note that 2 = v,0, € B,
and hence there is some k € B such that 2 < k < n and BN [k,n] = {k,n}.
Observe that n — k € A(B). Furthermore, there is some J € A(Z;(Oy)) such
that k& = v;. Note that JJ = (pOy)¥, and thus IT = (pOy)"~*JJ. By the
induction hypothesis, we infer that c((pOf)" R I J,(pOs)") < c(J-J, (pOs)k) <
2 4 sup A(B). Slnce d(I-I,(pOg)"*-J-J) <2+ (n—k) <2+supA(B), it
follows that c(I - I, (pOy)" ) < 24 sup A(B).

2. By Proposition ES we can assume without restriction that f = 2v2(f),
We show by induction that for all n € N>o and I € A(Z5(Oy)) with v; = n, we
have c(I - 1,(20;)™) < 4. Let n € N> and I € A(Z;(0Oy)) be such that v; = n.
If n = 2, then c(I - I, (204)?) < d(I - 1,(204)?) < 2 < 2+ sup A(B). Next let
n > 2. Observe that 2 = vy, € B, and hence there is some k € B such that
2 <k <nand BN [k,n] = {k,n}. There is some J € A(Z3(Oy)) such that
k = v;. Note that JJ = (20)*, and hence IT = (20)"~*JJ. By the induction
hypothesis, we have c((207)" % - J - J, (204)") < c(J - J, (204)F) <4

CASE 1: n # 2vao(f) + 1. It follows from Theorem that n — k < 2. Since
d(I-1,(204)" % . J-J) <4, we infer that c(I - T, (20;)") < 4.

CASE 2: n = 2vo(f) + 1. By Theorem we have n —k = 3. Set A =
16Z+ (4+7)Z, B=2"3Z+ (2""° 4+ 7)Z, and C = 2""3Z + (2"~* 4+ 7)Z. Then
A,B,C € A(Z5(Oy)) and ABC = 2" S A(16Z+ (12+7)Z) = (205)"'. Observe
that d(I 1,(204)-A-B-C)<4and d((205)-A-B-C,(204)"F.J-J)) <4
Therefore, c(I - I, (204)") < 4. O

Proposition 4.11. Let p be a prime diwisor of f and set B = {v,(N(A))| A€
A(Z;(Of))}

1. sup A(Z,(Oy)) S up A(B) and c(Z,(Oy)) < 2 + sup A(B).
2. Letp=2,d=1 mod38, and vp(f) > 4. Then sup A(Z2(Oy)) < 2 and
c(Z2(0y)) < 4.

Proof. 1. First we consider the case that v,(f) = 1 and p is inert. It follows from
Theorem [3.6] that sup A(B) = 0. Proposition [{.6|implies that sup A(Z,(Oy)) =
and ¢(Z,(0y)) = 2. Now let v,(f) > 2 or p not inert. Observe that sup A(B) >
1 by Theorem Let I,J € A(Z,(Oy)). There are some n € N and L €
A(Z,(Oy)) such that IJ = p"L.

By Proposition[{.1} it remains to show that c(I-.J, (pOy)"- L) < 2+sup A(B)
and if ¢ € N>3 is such that L(IJ) N [2,4] = {2,¢}, then £ — 2 < sup A(B). Set
N = sup B. Since a product of two atoms of Z,,(Oy) can be written as a product of
n+1 atoms, Lemma[4.9)implies that n+1 < N.If n = 1, then d(I-J, (pOy)-L) <
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2 <2+ sup A(B) and there is no ¢ € N>z with L(IJ) N [2,¢] = {2,¢}. Now let
n > 2 and ¢ € N>3 be such that L(IJ) N [2,4] = {2, ¢}.

CASE 1: n € B. Then AA = (pOy)" for some A € A(Z;(Oy)). Therefore,
c(A-A-L,(pOs)" - L) < c(A- A, (pOy)") < 24 sup A(B) by Lemma 1.
Moreover, d({ - J,A-A- L) <3 <2+ sup A(B), and thus c(I - J, (pOy)" - L) <
2+sup A(B) and £ —2 =1 < sup A(B).

CASE 2: n ¢ B. Note that n > 3. It follows by Theorem [3.6] that v,(f) > 2
and sup A(B) > 2.

CASE 2.1: p # 2 ord # 1 mod 8 or n # 2v,(f). Since n < N, it follows
from Theorem that n—1= N(A) for some A € A(Z;(Oy)), and hence AA =
(pOf)"~t. We infer that c((pOyf) - A-A- L, (pOy)" - L) < c(A- A, (pOy)" 1) <
2 +sup A(B) by Lemmal. Moreover, we have d(I-.J,A-A-(pOy)-L) < 4 <
2+sup A(B), and thus c(I-J, (pOy)"-L) < 2+sup A(B) and £—2 < 2 < sup A(B).

CASE 2.2: p=2,d =1 mod 8 and n = 2v,(f). We infer by Theorem
that sup A(B) = 3. By Theorem there is some A € A(Z5(0Oy)) such that
n—2 = N(A), and thus AA = (20;)" 2. This implies that c((207)? - A- A -
L,(204)" - L) < c(A- A, (204)"72) < 2 + sup A(B) by Lemmal. Observe
that d(I-J, A-A-(204)2-L) < 5 = 2+sup A(B), and hence c(I- J, (20;)"-L) <
2 +sup A(B) and £ — 2 < 3 = sup A(B).

2. By Proposition 3 we can assume without restriction that f = 2v2(f),
Let I,J € A(Z3(Oy)). There are some n € N and L € A(Z3(Oy)) such that
IJ = 2"L. It follows from Lemma that n + 1 < sup B. By Proposition
it is sufficient to show that c(I - J, (20;)" - L) < 4 and if £ € N>3 is such that
L(IJ)N[2,¢] = {2,¢}, then £ — 2 < 2. The assertion is trivially true for n = 1.
Let n > 2 and let £ € N>3 be such that L(IJ) N [2,¢] = {2,¢}.

CASE 1: n € B. There is some A € A(Z;(Oy)) such that AA = (205)". It
follows by Lemma that c(A-A- L, (204)" - L) < c(A- A, (204)") < 4.
Furthermore, d(I-J, A-A-L) < 3, and thus c¢(/-J, (204)"-L) <4 and {—2 < 1.

CASE 2: n ¢ B and n # 2vy(f). It follows by Theorem that there is
some A € A(Z;(Oy)) such that AA = (20;)"~!. We infer by Lemma 2
that c((20y) - A- A+ L,(204)" - L) < c(-A - A, (20;)""1) < 4. Furthermore,
d(I-J,(204)- A-A-L) <4, and thus c¢(I - J,(204)" - L) <4 and £ —2 < 2.

CASE 3: n = 2vy(f). By Theorem there is some D € A(Z5(Oy)) such
that DD = (204)" 2. Set A =16Z+ (4+7)Z, B =2""2Z+ (2"~* + 7)Z and
C =2""27Z+(2"3+7)Z. Then A, B,C € A(Z;(0y)) and ABC = 2""*A(16Z+
(12 4+ 7)Z) = (20;)™. This implies that c((204)?-D-D - L, (204)"- L) < c(D -
D, (205)"2) < 4 by Lemmal[4.10]2. Moreover, d(A-B-C-L, (20f)*>-D-D-L) < 4
andd(/-J,A-B-C-L) < 4. Consequently, c(I-J,(204)"-L) <4 and {—2 < 2.

O

Proposition 4.12. Let vo(f) € {2,3} and d =1 mod 8. Then 3 € A(Z5(0y))
and 5 € Ca(Z3(Oy)).

Proof. We distinguish two cases.
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CASE 1: vo(f) = 2. By Theorem (3.6 there is some I € A(Z5(Oy)) such that
N(I) =32.Set J =1.Then IJ = 320y, and hence {2,5} C L(IJ) C [2,5]. Again
by Theorem [3.6] we have NV (L) € {4} U{2" | n € Nx5} for all L € A(Z;(Oy)).
Note that if A, B,C,D € A(Z3(Oy)), then N(ABCD) € {256} U N>s045. Since
N(IJ) = 1024, we have 4 ¢ L(IJ). Assume that 3 € L(IJ). Then there are
some A, B,C € A(Z;(Oy)) such that IJ = ABC and N (A) < N(B) < N(C).
Therefore, N'(4) = N(B) = 4 and N(C) = 64. We infer by Lemma [4.2]2 that
ABC = 4L for some L € A(Z5(Oy)), and hence L = 80y, a contradiction. We
have L(IJ) = {2,5}, and thus 3 € A(Z5(Oy)) and 5 = c(IJ) € Ca(Z5(Oy)).

CASE 2: vo(f) = 3. By Proposition E?’ we can assume without restriction
that f = 8. By Theorem [3.6] there are some I, J € A(Z3(Oy)) such that N'(I) =
128 and N(J) = 16. We have IT = 1280 and JJ = 160, and hence IT = 8.J.J.
This implies that {2,5} C L(I1). It follows from Theorem [3.6{ that N'(L) €
{4,16} U {2" | n € Nx7} for all L € A(Z5(Oy)).

First assume that 3 € L(IT). Then there exist A, B,C € A(Z;(Oy)) such that
IT = ABC, and N(A) < N(B) < N(C). Therefore, (N'(A),N'(B),N(C)) €
{(4,16,256), (4,4,1024)}. If (M(A), N'(B), N (C)) = (4,16, 256), then it follows
by Lemma [£.2]2 that AB = 2D for some D € A(Z3(Oy)) with N(D) = 16.
We infer that DC = 640y, and hence C' = 4D, a contradiction. Now let
(N(A),N(B),N(C)) = (4,4,1024). Then ABC = 4D for some D € A(Z5(Oy))
by Lemma 2, and thus D = 320y, a contradiction. Consequently, 3 & L(IT).

Next assume that 4 € L(IT). Then there exist A, B,C, D € A(Z;(Oy)) such
that IT = ABCD, and N'(A) < N(B) < N(C) < N(D).

Then (N(A),N(B),N(C),N(D)) € {(4,4,4,256), (4,16, 16, 16)}.

If (N(A),N(B), N(C’),N(D)) (4,4,4,256), then ABCD = 8E for FE €
A(Z3(Oy)) by Lemma [£.2]2, and hence E = 160y, a contradiction. Now let
(N(A),N(B),N(C), N(D)) (4,16,16,16). By Lemmal[4.2]2 there is some E €
A(Z3(Oy)) with N(E) = 16 such that AB = 2E. Therefore, ECD = 640y, and
hence CD = 4E. There are some (0,4,7), (0,4, s) € My 5 such that C = 16Z +
(r+7)Z and D = 16Z+ (s+7)Z. We have v(r? —16d) = vao(s*> — 16d) = 4. Since
d =1 mod 8, this implies that vo(r), va(s) > 3. Therefore, min{4, vo(r+s+e)} €
{3,4}, and hence CD = 8F for some F € A(Z;(Oy)). We infer that E = 2F, a
contradiction. Consequently, 4 ¢ L(IT).

Therefore, 2 and 5 are adjacent lengths of IT, and hence 3 € A(Z;(0Oy)). Note
that c(Z3(Oy)) < 5 by Proposition £.11}1 and Theorem Moreover, since
75 (0Oy) is a cancellative monoid, we have 5 < 2+sup A(L(11)) < c(II) < 5, and
thus 5 = c(I1) € Ca(Z;(Oy)). 0

Lemma 4.13. Let H € {Z(Oy),T*(Oy)}. For every prime divisor p of f, we
set Hy, = T,(Oy) if H =1(Oy) and H, = L;(Oy) if H =1*(Oy).

1. H is half-factorial if and only if H, is half-factorial for every p € P with
plf

2. If H is not half-factorial, then sup A(H) = sup{sup A(H,) | p € P with
plf}

3. ¢(H) =sup{c(Hp) |p P withp| f}.
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Proof. By Equations 2.3 and [2.4] we have

7052 ] Zp0p) and Z(0)= [ Ze(0y).
Pcx(0y) Pex(0y)

Thus the assertions are easy consequences (see [16, Propositions 1.4.5.3 and
1.6.8.1]). O

Proof (Proof of Theorem . 1. This is an immediate consequence of Proposi-
tion [£.6] and Lemma [£.13

2. First, suppose that f is squarefree. By 1., we have f is not a product of inert
primes. It follows from Lemma Proposition [£.11}1 and Theorem that
c(Z*(0)) < <(Z(0)) < 3 and sup A(Z*(0)) < sup A(Z(0)) < 1. By Lemma [4.2]
and Proposition [4.81, it follows that 1 € A(Z*(0)), 1 € Ca(Z(0)) and [2,3] C
Ca(Z*(0)), and thus Ca(Z(0)) = [1,3], Ca(Z*(0)) = [2,3], and A(Z(O)) =
AT*(0)) = {1},

Now we suppose that f is not squarefree and we distinguish two cases.

CASE 1: vo (f) € {2,3} or dx # 1 mod 8. By Lemma[4.13] Proposition
and Theorem [3.6] it follows that ¢(Z*(0)) < ¢(Z(0)) < 4 and sup A(Z*(0)) <

sup A(Z(0)) < 2. We infer by Lemma and Propositions and that
[1,2] C A(Z*(0)),1 € Ca(Z(0)), and [2,4] C Ca(Z*(0O)), and hence Ca(Z(0)) =
[1,4], Ca(Z*(0)) = [2,4], and A(Z(0)) = A(Z*(0)) = [1,2].

CASE 2: v, (f) € {2,3} and dx =1 mod 8. We infer by Lemma[4.13] Propo-
sition[.11]1 and Theorem [3.6]that c(Z*(0)) < ¢(Z(0)) < 5 and sup A(Z*(0)) <
sup A(Z(0)) < 3. Lemm and Propositions and imply that
[1,3] € A(Z*(0)), 1 € Ca(Z(0)) and [2,5] C Ca(Z*(0O)). Consequently,
Ca(Z(0)) =[1,5], Ca(Z*(0)) = [2,5], and A(Z(0)) = A(Z*(0)) =1, 3]. O

Based on the results of this section we derive a result on the set of distances
of orders. Let O be a non-half-factorial order in a number field. Then the set
of distances A(Q) is finite. If O is a principal order, then it is easy to show
that min A(O) = 1 (indeed much stronger results are known, namely that sets
of lengths of almost all elements — in a sense of density — are intervals, see [16,
Theorem 9.4.11]). The same is true if [Pic(O)| > 3 or if O is seminormal ([24]
Theorem 1.1]). However, it was unknown so far whether there exists an order
O with min A(O) > 1. In the next result of this section we characterize all
non-half-factorial orders in quadratic number fields with min A(Q) > 1 which
allows us to give the first explicit examples of orders O with min A(O) > 1.
A characterization of half-factorial orders in quadratic number fields is given in
[16, Theorem 3.7.15].

Let O be an order in a quadratic number field K with conductor f € N>,.
Then the class numbers |Pic(Ok)| and |Pic(O)| are linked by the formula (|25,
Corollary 5.9.8])

Pic0) = PO gt o TT (1 (%)), )

X . x
Ok : 0 )pEP,p\f
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and |Pic(O)| is a multiple of |Pic(Ok)|.

Since the number of imaginary quadratic number fields with class number
at most two is finite (an explicit list of these fields can be found, for example,
in [31]), shows that the number of orders in imaginary quadratic number
fields with |Pic(Q)| = 2 is finite. The complete list of non-maximal orders in
imaginary quadratic number fields with |Pic(O)| = 2 is given in [27, page 16].
We refer to [25] for more information on class groups and class numbers and end
with explicit examples of non-half-factorial orders O satisfying min A(O) > 1.

Theorem 4.14. Let O be a non-half-factorial order in a quadratic number field
K with conductor fOg for some f € N>qo. Then the following statements are
equivalent :

(a) min A(O) > 1.

(b) |Pic(O)| = 2, f is a nonemptly squarefree product of ramified primes times
a (possibly empty) squarefree product of inert primes, and for every prime
divisor p of f and every I € A(Z}(0)), I is principal if and only if N(I) =
P

If these equivalent conditions are satisfied, then K is a real quadratic number
field and min A(O) = 2.

Proof. CLAIM: If |Pic(O)| = 2, p is a ramified prime with v,(f) = 1, and every
I € A(Z;(0)) with N'(I) = p? is not principal, then every L € A(Z;(O)) with
N (L) = p? is principal.

Let |Pic(O)| = 2, let p be a ramified prime with v,(f) = 1, and suppose
that every I € A(Z;(0)) with N'(I) = p? is not principal. By Theorem (3.6
we have {N(J) | J € A(Z;(0))} = {p* p*}. There is some I € A(Z;(O
such that N(I) = p?. If J € A(Z;(0)) with N(J) = p?, then IJ = pQPL for
some L € A(Z:(O)) with N(L) = p* (since there are no atoms with norm
bigger than p?). It follows by Theorem that |[{J € A(Z;(0)) | N(J) =
PH = {L € AT(0)) | N(L) = p*} = p (note that N(pO) = p?). Let
g:{J € A(Z;(0)) IN(J) =p*} = {L € A(Z;(0)) | N(L) = p*} be defined by
g(J) = L where L € A(Z;(0)) is such that N'(L) = p? and I.J = p*L. Then g is
a well-defined bijection. Now let L € A(Z;(0)) with N'(L) = p®. There is some
J € A(Z;(0)) such that N(J) = p* and IJ = p?L. Since [Pic(O)| = 2 and T
and J are not principal, we have IJ is principal, and hence L is principal. This
proves the claim.

(a) = (b) Observe that if p is an inert prime such that v,(f) = 1, then
{N(J) | J € AZ;(0))} = {p®} by Theorem Also note that if p is a
ramified prime such that v,(f) = 1, then {N'(J) [T € A(Z;(0))} = {p*,p*} by
Theorem The assertion now follows by the claim and Proposition [4.8]2.

(b) = (a) Assume to the contrary that min A(Q) = 1. Let H be the monoid of
nonzero principal ideals of O. There is some minimal & € N such that Hle U; =
Hfill U; with U; € A(H) for each i € [1, k] and U} € A(H) for each j € [1,k+1].
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Set Q1 = {P € X(O) | P is principal}, Q2 = {P € X(O) | P is invertible and
not principal}, £ ={p € P | p| f,p is ramified} and K = {{p,q} | p,q € L,p #
q}. For every prime divisor p of f set A, = {V € A(Z;(0)) | N(V) = p?},

=[{i € [LLk] | Ui € Ap}| and ap, = |[{j € [LLk+1] | U} € Ap}|. Forp € L
set D, = {V € A(Z;(0)) | N(V) = p°}, B, = {PV | P € Qy and V € D,},
by = |{i € [LLk] | U € By} and ¥, = |{j € [1,k+1] | U} € B,}|. Set € = {PQ |
PQe Qt,c=[{i e[kl |U €C}landc =|{je[l,k+1]|U;€C} If
z € K is such that z = {p,q} with p,q € £ and p # ¢, thenset £, ={VW |V €
Dy, W €Dy}, e. =[{i € [L,k]|U; € &} and e}, = [{j € [LLk+ 1] | U] € &, }].

Since |Pic(O)| = 2, we have A(H) C (AZ*(O) NH)U{VIW | VIV €
A(Z*(0)),V and W are not principal}. As shown in the proof of the claim, VIW ¢
A(H) for all p € L and V,W € D,. We infer that A(H) = Q1 UU,ep s Ap U
Uper BoUCUU ek €=

Since k is minimal, we have U;, U] ¢ Qy for all i € [1,k] and j € [1,k + 1].
Again since k is minimal and Z;(0O) is half-factorial for all inert prime divisors
p of f by Proposition we have a, = a;, = 0 for all inert prime divisors p of
f. Therefore,

k=Y (ap+by)+c+ > ezandk+1= (a,+b)+c +> e

peL zeK peL zeK
If i € [1,k], then 3} peo, vp(Us) = 41  if U; € U, Bp- This implies that
0 else

> pco, VP(Hf U) = Zf 1 2-peg, vP(Ui) = 3_ e by +2¢. 1t follows by anal-

ogy that D pcgo, VP(HkJrl Uj) = > ,ec by + 2¢. Therefore, > b, + 2c =

> per by +2¢. Letr€£

3 if Uz S BT- U quﬁ\{’l‘} 5{7‘,(]}
If i € [1,K], then v,(N((Ui)p,, NO)) =2 ifU; € A,

0 else
Consequently,
k
veN((J] U ey, NO)) Zvr Ui)p,,NO)) =2a, +3b.+3 > efrg)
i=1 qeL\{r}

By analogy we have V,«(N((Hf;rll U p;,NO)) = 20,430,433 e o (1} €1rgy-
This implies that 2a, +3b,+3 > c 2\ (1} €4rgy = 2024300433 c o\ () €10y
We infer that '

S (@) —ap+ b, —b)+c —ct S —e) =1, Y (6, —b,) = 2(c— )

peL zeK peL

and 2 Z(a; —ap) + 32((); —b,) + 32 Z (efmq} —€efpqr) =0

peL peEL pEL geL\{p}
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Note that 3 > 0cr p(€lpqp — €lpar) = 22 .exc(€l — e2), and hence
> opeclay —ap) =3(c" —c) =33 x(el —e;). Consequently,

1:Z(a;;—ap+b;—bp)+c'—c+2(e’z—ez)

peEL zek
=3(d —¢) —SZ(e'Z —e)+2c—d)+ —c+ Z(e; —e,)
zeK zeK
=2(c —c— Z(e’z —e,)),
zeK

a contradiction.

Now let the equivalent conditions be satisfied. Assume to the contrary that
K is an imaginary quadratic number field. Since O is a non-maximal order with
[Pic(O)| = 2, it follows from [27, page 16] that (f,dx) € {(2,-8),(2,—15)}U
{(37 _4)’ (37 _8)’ (37 _11)7 (4’ _3)7 (4’ _4)7 (4’ _7)7 (5’ _3)7 (5’ _4)7 (7’ _3)}

Since f is squarefree and divisible by a ramified prime, we infer that f = 2
and dx = —8. Therefore, O = Z + 21/—27Z. Set I = 8Z + 21/—27Z. Observe that
I € A(Z3(0)) and N'(I) = 8. Moreover, I = 2,/—20 is principal, a contradiction.
Consequently, K is a real quadratic number field.

It remains to show that min A(Q) = 2. There is some ramified prime p which
divides f and there is some .J € A(Z;(0)) with N'(J) = p®. As shown in the
proof of the claim, J? = p?L for some L € A(Z;(0)). By [16}, Corollary 2.11.16],
there is some invertible prime ideal P of O that is not principal. Observe that
J is not principal. We have PJ, P? and L are principal, and hence there are
some u,v,w € A(O) such that PJ = u0Q, P? = vO, L = w0, and u? = p*vw.
Therefore, {2,4} C L(u?), and since min A(O) > 1, we infer that min A(Q) = 2.

O

Proposition 4.15. Let O be an order in the quadratic number field K with
conductor fOk for some f € N>g such that min A(O) > 1, let g be the product
of all inert prime divisors of [ and let O’ be the order in K with conductor gOf .
Then O is half-factorial and, in particular, g € {1} UPU{2p | p € P\ {2}}.

Proof. Set Q1 = {P € X(O’) | P is principal} and Qs = {P € X(0') | P is
invertible and not principal}. Observe that N'(I) = |0/I| = |0’ /10| = N(10'")
for all I € 7*(O). Note that for all inert prime divisors p of f and all I €
A(Z(0)) and J € A(Z;(0'")), we have N(I) = N(J) = p*. Moreover, for all
ramified prime divisors p of f, we have {N'(I) | I € A(Z;(0))} = {p*,p*}. In
this proof we will use Theorem without further citation.

CLAIM 1: For all prime divisors p of g and all I € A(Z;(0’)), it follows
that I is principal. Let p be a prime divisor of g and let I € A(Z;(O’)). Set
P = Pj, and P’ = P, ,. It follows by Proposition [3.3| that Op = O, and that
6 : I;(0) — Z;(0') defined by §(J) = Jp N O’ for all J € Z5(0) is a monoid
isomorphism. In particular, we have A(Z;(0')) = {Jp N O" | J € A(Z;(0))}.
Therefore, there is some J € A(Z;(0O)) such that Jp N O" = I. Note that
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N() =p? = N(J) = NJO'). Since JO' C JOp, NO"' = JOpNO =1, we
infer that I = JO’. Since J is a principal ideal of O, it follows that I is principal.
This proves Claim 1.

CLAIM 2: If P € Q5, p is a ramified prime divisor of f such that PNZ = pZ
and I € A(Z;(0)) with N'(I) = p*, then P? is principal and 10" = P?. Let P €
Qs, p a ramified prime divisor of f such that PNZ = pZ and I € A(Z;(0)) with
N(I) = p?. Since p is ramified, there is some A € X(Of) such that pOx = A2
Observe that N'(A?) = p?, and thus N'(A) = p. We have ANO’ = P, POk = A
and NV (P) = N(A) = p. Note that since P is invertible, it follows that every
P-primary ideal of O’ is a power of P. Therefore, pO’ = P* for some k € N, and
hence p* = N(P*) = N(pO’) = p?. Consequently, k = 2 and P? is principal.
Clearly, IO’ is a P-primary ideal of O’, and thus IO’ = P™ for some m € N. We
infer that p™ = N (P™) = N(I0") = N(I) = p?, and thus m = 3 and 10’ = P3.
This proves Claim 2.

CLAIM 3: PQ is principal for all P,Q € Qs. Let P,Q € Qs.

CASE 1: PN O and @ N O are invertible. Note that P = (PN O)0’, Q =
(QNO)O" and PN O and @ N O are not principal. Since [Pic(O)| = 2, we have
(PN O)(QNO)is a principal ideal of O, and thus PQ = (PN O)(Q N O)O" is
principal.

CASE 2: (PN O is invertible and @ N O is not invertible) or (P N O is not
invertible and @ N O is invertible). Without restriction let P N O be invertible
and let @ N O be not invertible. Observe that P = (P N O)O’. Moreover, there
is some ramified prime ¢ that divides f such that Q NZ = ¢Z and there is some
J € A(Z;(0)) with N'(J) = ¢*. Observe that PN O and J are not principal.
Since |Pic(O)| = 2, it follows that (PN O)J is a principal ideal of O. Note that
PQ? = (PNO)JO’ by Claim 2, and thus PQ? is principal. Since Q? is principal
by Claim 2, we infer that P(Q is principal.

CASE 3: PN O and @ N O are not invertible. There are ramified primes
p and ¢ that divide f such that PN Z = pZ and Q NZ = qZ. There are
some I € A(Z;(0)) and J € A(Z;(0)) with N(I) = p* and N'(J) = ¢*. Since
|Pic(O)| = 2 and I and J are not principal, we have I.J is a principal ideal of O.
It follows that P3Q3 = IJO' by Claim 2, and hence P3Q? is principal. Since P2
and Q? are principal by Claim 2, we have P(Q is principal. This proves Claim 3.

Finally, we show that O’ is half-factorial. Set C = {PQ | P,Q € Q>} and
let H denote the monoid of nonzero principal ideals of O@'. It is an immediate

consequence of Claim 1 and Claim 3 that A(H) = Q1 UCUU,ep |, AZ; (O)).
Let k,£ € N and I;, I; € A(H) for each i € [1,k] and j € [1,£] be such that

[1;, I; = T1;_, I}. It remains to show that k = £. Set b= |{i € [L, k] | I; € Q1},
Ve €Ot c={ie[LK|LeCH ¢ =|{jeLq|Tec)
and for each prime divisor p of g set a, = [{i € [1,k] | I; € A(Z:(O"))}]
and a, = {j € [1,{] | I} € A(Z;(O")}|. If p is a prime divisor of g, then
Z,(0') is half-factorial by Proposition and hence a, = a;, by Claim 1. We
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k ¢
have b = Zz 1 ZP€Q1 VP( ) ZP€Q1 VP(Hz 1 ) ZP€Q1 VP(HJ 1 Ij/) =
i1 Xpeo, oI =1
Moreover, 2¢ = Y pco, VP(Hk L) = ZPEQ Vp(Hf 1 Ij) = 2¢'. Therefore,
k=btctpepplgp =+ + 3 peppy@p =
The remaining assertion follows from [16], Theorem 3.7.15]. ad

Remark 4.16. Let O be an order in the quadratic number field K with conductor
fOk for some f € N such that [Pic(O)| = 2 and let p be an odd ramified prime
such that v,,(f) = 1 and I € A(Z;(0)) such that N'(I) = p* and I not principal.
Then every J € A(Z;(O)) with N'(J) = p? is not principal.

Proof Set L ={J € A(Z;(0)) | N(J) =p*} and K = {L € A(Z;(0)) | N(L) =

p?}. Tt follows by the claim in the proof of Theorem u that for all J € £ and
L € K, there is a unique A € £ such that AJ = p?L. By Theorem [3.6] - we have
|£| = |K| = p, and hence |{(A,J) € L? | AJ = p?L}| = p for all L € K. Since p
is odd, we infer that for each L € K there is some A € £ such that A? = p?L.
Consequently, every L € K is principal. Now let J € L. There is some B € K
such that IJ = p?B, and thus I.J is principal. Therefore, J is not principal. O

Next we show that the assumption that p is odd in Remark is crucial.

Ezxzample 4.17. Let O = Z + 2/—27Z be the order in the quadratic number field
K = Q(v/—2) with conductor 20k. Let I = 8Z + 2v/—2Z and J = 8Z + (4 +
2y/=2)Z. Then 2 is ramified, |Pic(O)| =2, I,J € A(Z3(0)), N(I) =N (J) = 8,

I is principal and J is not principal.

Proof. Tt is clear that J € A(Z5(0)) and N(J) = 8. By the proof of Theo-
rem it remains to show that J is not principal. Assume that J is prin-
cipal. Then there are some a,b € Z such that J = (8a + 4b + 2/—2b)O, and
hence 8 = N'(J) = |Nk/q(8a + 4b + 2¢/=2b)| = |(8a + 4b)* + 8b?|. Therefore,
2(2a+b)%2+b% = 1. It is clear that [b| < 1. If b = 0, then 8a® = 1, a contradiction.
Therefore, |b] = 1 and 2a + b = 0, a contradiction. O

Lemma 4.18. Let d € Nxy be squarefree, let K = Q(v/d), let O be the order in
K with conductor fOg for some f € N>o, and let p be a ramified prime with

vp(f) =1. If (p =1 mod 4 and (%) = —1) or ((£) = =1 for some prime q
with ¢ =1 mod 4 and q | df), then each I € A(Z;(0)) with N(I) = p® is not
principal.

Proof. Note that if p is odd, then {I € A(Z;(0)) | N(I) = p*} = {p°Z +
(p*k + M)Z | £ € [0,p — 1]}. Moreover, if p = 2 and d is odd, then
{I € AZ;(0) IN(I) = p*} = {8Z + (2k + fVA)Z | k € {1,3}}. Furthermore,

if p=2 and d is even, then {I € A(Z;(0)) | N(I) = p*} = {8Z+ (2k + fVA)Z |
k € {0,2}}.

CASE 1: p = 1 mod 4 and (%) = —1. Let I € A(Z;(0)) be such that
N(I) = p3. Since p is odd, we have I = p3Z + (p?k + E’)2++‘/E)Z for some
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k € [0,p — 1]. Assume that I is principal. Then there are some a,b € Z such
that I = (p3a + p?bk + Ep%r%b)@. We infer that p* = N'(I) = [Nk /o(p®a +
PPk + LT )| — Lpt(2pa + 26k + €b)? — f2b%dic|, and hence L; b4 = 45
mod p for some 3 € {—1,1}. Since p =1 mod 4, we have (_71) =1, and thus

d d 2b2dr /p°
(47) = (#5/2) = (Fgeln) =
CASE 2: There is some prime ¢ such that ¢ =1 mod 4, ¢ | df and (£) = —1.

Let I € A(Z;(0)) be such that N'(I) = p?. First let p be odd. Then I = p*Z +
(P*k+ E”2'~'+\/E)Z for some k € [0, p—1]. Assume that I is principal. Then there
are some a,b € Z such that I = (p3a + p*bk + Ml))@. This implies that
p* = N(I) = |Nicsg(pa+p2bk+ LT )| — Lip(2pa 426k +eb)2 — f2b2d |,
and thus ¢2 = 48p® mod ¢ for some ¢ € Z and B € {—1,1}. Since ¢ = 1
mod 4, we have (=%) = 1, and hence (2)% = (M) = 1. Therefore, (2) =1, a
o q q q q

contradiction.

Now let p = 2. Then I = 8Z + (2k + f/d)Z for some k € [0, 3]. Assume that
I is principal. Then there are some a,b € Z such that I = (8a + 20k + bf\/&)(?.
Consequently, 8 = N(I) = |(8a + 2bk)? — b?f2d|, and thus ¢2 = 83 mod q for
some ¢ € Z and § € {—1,1}. This implies that (%)3 = (%) = 1. Therefore,

2

(7) =1, a contradiction. 0

%) = 1, a contradiction.

Proposition 4.19. Let d € N>y be squarefree, let K = Q(V4d), and let O be the
order in K with conductor fOk such that f is a nonempty squarefree product
of ramified primes times a squarefree product of inert primes and |Pic(O)| =
|Pic(Ok)| = 2. If for every ramified prime divisor p of f, we have (p =1 mod 4
and (d%p) = —1) or ((£) = =1 for some prime q with g =1 mod 4 and q | df),
then min A(O) = 2.

Proof. Tt follows by Lemma [4.18] that for every ramified prime divisor p of f and
every I € A(Z;(O)) with N'(I) = p*, we have I is not principal. It follows by the
claim in the proof of Theorem that I € A(Z;(0)) is principal if and only
if N(I) = p*. Now let p be an inert prime divisor of f and let J € A(Z;(O)).
Since |Pic(O)| = |Pic(Ok)|, it follows that the group epimorphism 6 : Pic(O) —
Pic(Ok) defined by 6([L]) = [LOk] for all L € T*(0O) is a group isomorphism.
Set P = pOg. Then JOg is a P-primary ideal of Ok, and hence JOk is a
principal ideal of Og. Since 6 is an isomorphism, we infer that J is a principal
ideal of O. Now it follows by Theorem that min A(O) = 2. O

Next we provide two counterexamples that show that the additional assump-
tion on the ramified prime divisors of f in Proposition is important.

Ezample 4.20. There is some real quadratic number field K and some order O
in K with conductor pOy for some ramified prime p such that p = 1 mod 4,
[Pic(O)| = |Pic(Ok)| = 2, and min A(O) = 1.

Proof. Let O = Z + 5V/30Z be the order in the real quadratic number field
K = Q(+/30) with conductor 5Qk. Observe that 5 is ramified, 5 = 1 mod 4,
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|Pic(Ok)| = 2 and @ = 11 + 21/30 is a fundamental unit of Ok. Since o ¢ O

and (O : 0*) | 5, we infer that (O : O*) = 5, and hence |Pic(O)| =

[Pic(Ox )| gxgey = 2 Let I = 125Z+5v/30Z. Then I € A(Z3(0)) with N'(I) =
<

125. Since I = (12625 + 2305v/30)O is principal, we infer by Theorem that

min A(O) = 1. O

Ezample 4.21. There is some real quadratic number field K = Q(vd) with
d € N>j squarefree and some order O in K with conductor pOg for some
odd ramified prime p such that (d%) = —1, |Pic(0)| = |Pic(Ok)| = 2, and
min A(O) = 1.

Proof. Let O = Z + 7+/427Z be the order in the real quadratic number field K =
Q(v/42) with conductor 7Ok . Note that 7 is an odd ramified prime, (&7/7) = -1,
[Pic(Ok)| = 2 and o = 13 4+ 2v/42 is a fundamental unit of Ok. We have

a & O and (O : OF) | 7. Therefore, (O : O*) = 7, and thus |Pic(O)| =

IPic(Ox)| (gx gy = 2 Set I = 343Z+TV42Z. Then I € A(Z7(0)), N(I) = 343,
%

and I = (825601 + 1273931/42)O is principal. Consequently, min A(O) = 1 by
Theorem .14 O

Finally, we provide the examples of orders O in quadratic number fields with
min A(O) = 2.

Ezxzample 4.22. Let K be a quadratic number field and O the order in K with
conductor fOk such that (f,dx) € {(2,60),(3,60),(5,60),(6,60),(10,60)}U
{(15,60), (30, 60), (10, 85), (35,40), (195, 65), (30, 365) }.

1. If (f,dk) € {(2,60),(3,60),(5,60)}, then f is a ramified prime.

2. If (f,dk) € {(6,60),(10,60), (15,60)}, then f is the product of two distinct
ramified primes.

3. If (f,dx) = (30,60), then f is the product of three distinct ramified primes.

4. If (f,dk) € {(10,85), (35,40)}, then f is the product of an inert prime and
a ramified prime.

5. If (f,di) = (195,65), then f is the product of an inert prime and two distinct
ramified primes.

6. If (f,dx) = (30,365), then f is the product of two distinct inert primes and
a ramified prime.

7. min A(O) = 2.

Proof. 1t is straightforward to prove the first six assertions. We prove the last
assertion in the case that dx = 60 and f € N> is a divisor of 30. The remaining
cases can be proved in analogy by using Proposition It is clear that 2, 3,
and 5 are ramified primes. Note that |Pic(Ok)| = 2 (e.g., |25, page 22]) and
a = 4+ /15 is a fundamental unit of Of.

We have o? = 31 + 8v/15, a® = 244 + 63/15, and o® = 15124 + 3905+/15.
Moreover, o = 119071 + 30744/15, a!® = 457470751 + 118118440+/15, and
al® = 13837575261124 + 3572846569215v/15. Set k = (O : O*). Then k is
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a divisor of f by . Observe that o € Z + 2V15Z, a & Z + 3V15Z, o &
Z + 5V15Z, o2,a® & 7 + 6V15Z, o2,05 € Z + 10V/15Z, o3, a5 € Z + 15\/15Z,
and af, a9 o' ¢ Z + 30/15Z. This implies that k& = f, and hence |Pic(0Q)| =
LPic(Ok)| = [Pic(Ok)| = 2 by [@1). We have 5 = 1 mod 4 and (22) =
(2) = (%) = —1. We infer by Propositionthat min A(O) = 2. O

5 Unions of sets of lengths

The goal of this section is to show that all unions of sets of lengths of the
monoid of (invertible) ideals in orders of quadratic number fields are intervals
(Theorem [5.2). To gather the background on unions of sets of lengths, let H be
an atomic monoid with H # H* and k € Ny. Then

Uy (H) = U L denotes the union of sets of lengths containing k& and
keLEL(H)

pr(H) = sup Uy (H) is the kth elasticity of H .
Then, for the elasticity p(H) of H, we have ([12, Proposition 2.7]),

p(H) = sup{p(L) | L € £(H)} = tim 2

k—o0 k

Clearly, Uy(H) = {0}, U1 (H) = {1} and Uy, (H) is the set of all £ € Ny with the
following property:

There are atoms u1, ..., Ug, V1,...,vp in H such that uy-...-up =v1-... vy

Let d € Nand M € Ng. A subset L C Z is called an AAP (with difference d and
bound M) if
L=y+ (L'UL*UL") Cy+dZ,

where y € Z, L* is a non-empty arithmetical progression with difference d and
min L* = 0, L' C [-M,—-1], and L” C sup L* + [1, M] (with the convention
that L"” = @ if L* is infinite). We say that H satisfies the Structure Theorem
for Unions if there are d € N and M € Ny such that Uy (H) is an AAP with
difference d and bound M for all sufficiently large k& € N. If A(H) is finite
and the Structure Theorem for Unions holds for some parameter d € N, then
d =min A(H) ([12, Lemma 2.12]).

The Structure Theorem for Unions holds for a wealth of monoids and domains
(see [2IT3U34] for recent contributions and see [I2, Theorem 4.2] for an example
where it does not hold). Since it holds for C-monoids ([I4]), it holds for the
monoid of invertible ideals of orders in number fields. In some special cases
(including Krull monoids having prime divisors in all classes) all unions of sets of
lengths are intervals, in other words the Structure Theorem for Unions holds with
d=1and M =0 ([I5, Theorem 3.1.3], [I8, Theorem 5.8], [33]). In Theorem 5.2
we show that the same is true for the monoids of (invertible) ideals of orders in
quadratic number fields.
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Proposition 5.1. Let p be a prime diwisor of f and let N = sup{v,(N(4)) |
A€ A(Z;(0f))}-

L. If p splits, then Up(Z,(Oy)) = Ue(Z;(Of)) = N>o for all £ € Nx».
2. If p does not split, then Uy(Z,(Of)) N Nx>p = Us(Z;(Oy)) NN>p = [L, LX)
for all £ € N>.

Proof. We prove 1. and 2. simultaneously. By Proposition [3.3]3 we can assume
without restriction that f = p'»(/). First we show that both assertions are true
for £ = 2. Tt follows from Theorem that (2, N] = [2,2v,(f)] U {v,(N(A)) |
A € A(Z;(Oy))}. Tt is obvious that Us(Z;(Oy)) C Ua(Z,(Oy)). It follows from
Lemma [1.9] that 145(Z,,(0;)) C [2, N].

Let k € [2, N]. It remains to show that k € Us(Z;(Of)). If k > 2v,(f),
then there is some I € A(Z;(Oy)) such that N'(I) = p*. It follows by Proposi-
tion @5 that IT = (pOy)*, and hence k € Us(Z;;(Oy)). Now let k < 2v,(f). By
Proposition [4.8]1 we can assume without restriction that v,(f) > 2 and k > 4.

CASE 1: d # 1 mod4 or (d =1 mod4, p=2and k < 2(va(f) — 1)).
We set a = v, (Ng/o(p* 2 + 7)) and b = v,(Nio(p"2(p — 1) + 7)). Observe
that if d # 1 mod 4, then a,b > min{2k — 4,2v,(f)} > k. Moreover, if d =1
mod 4, p =2 and k < 2(va(f)—1), then a,b > min{2k—4, 2(va(f)—1)} > k. Set
I = p*Z+(pF~2+7)Zand J = p*Z+(p"~2(p—1)+7)Z. Then I, J € A(Z;(Oy)),
min{a, b, v,(p" 2 +p*~2(p—1)+¢e)} = k—1, and a+b—2(k —1) > 0. Therefore,
there is some L € A(Z;(Oy)) such that I.J = p*~'L, and hence k € L(I.J) C
Uz(Z;(Oy)).

CASE 2: d =1 mod 4 and p # 2. We set a = Vp(J\/‘K/@(pkj_1 + 7)) and
b= Vp(NK/Q(W+1)_1 + 7)). Note that a,b > min{2k — 4,2v,(f)} > k.

Set I = poZ + (Eo=t 4+ 7)Z and J = p'Z + (X D=1 4 )7 Then

I,J € A(Z:(O;)), mi pP?-1 PP 4p-1)-1 -k _
, »(Of)), min{a,b,v,(F—— + 5 +¢e)} = k-1, and
a+b—2(k—1) > 0. Consequently, there is some L € A(Z,;(Oy)) such that
IJ =pF~1L, and thus k € L(IJ) C Us(Z;(Oy)).

CASE 3:d =1 mod 8, p=2 and k € {2va(f) — 1,2va(f)}. Set h = va(f).
If h = 2, then k = 4, and hence k € U>(Z5(Oy)) by Proposition Now let
h > 3. Note that 2 splits. By Theorem there are some I, J, L € A(Z5(Oy))
such that N(I) = 22041 N/(J) = 227%2 and N(L) = 16. By Proposition 5
we have LL = 160, IT = 2210 = 92»=3L and JJ = 220420, = 92—2[ L.
We infer that k € {2h — 1,2h} C Us(Z5(Oy)).

CASE 4:d=5 mod 8, p=2 and k € {2va(f) — 1,2v2(f)}. Set h = va(f).
If h = 2, then k = 4, and thus k € Us(Z5(Oy)) by Proposition Now let
h > 3. Set A = 2?"7Z + (2""' + 1)Z, B = 2*h7Z + (222 — 2"=1 4 7)Z, and
C = 22h7 + (22h=1 — 2h=1 4 7)Z. Then A, B,C € A(Z;(0y)), AB = 222]
and AC = 221 for some I,J € A(Z;(Oy)). Therefore, k € {2h — 1,2h} C
Uz (Z5(Oy))-

So far we have proved that both assertions are true for £ = 2. If p splits, then
we have N = oo by Theorem and hence Us(Z,(Oy)) = Ua(Z;(Oyf)) = Nxo.
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The first assertion now follows easily by induction on £. Now let p not split. Then
N < o0o. Next we show that 2. is true for £ = 3.

Since [3, N + 1] = {1} + Us(Z;(Oy)) C Us(Z,;(Of)) N N>z C Us(Z,(Oy)) N
N>z C [3,[2¥]] by Lemma [t.9] and N € {2v,(f),2v,(f) + 1}, it remains to
show that N +m € Us(Z,;(Oy)) for all m € [2,v,(f)]. Let m € [2,v,(f)]. It is
sufficient to show that there are some I, J, L € A(Z,;(Oy)) such that I.J = p™L
and N(L) = p", since then IJL = pN*™O; by Proposition 5, and thus
N+m e M3(I;(Of))

CASE 1: p is inert. Observe that N = 2v,(f) by Theorem Let m €
[2,vp(f)]. First let p # 2. If d # 1 mod 4, then set I = p*™Z + (p™ + 7)Z and
J = p?rNZ4(p?r(N="41)Z. 1fd =1 mod 4, then set [ = p2mZ+(me_l+T)Z

p2vp(H—m

and J = p?Vr(NZ + (% + 7)Z. In any case we have I, J € A(Z;(Oy))
and I.J = p™L for some L € A(Z;(Oy)) with N'(L) = p".

Next let p = 2. Since 2 is inert, it follows that d =5 mod 8. If m < va(f)—1,
then set [ = 22MZ+ (2™ +7)Z. If m = vo(f)—1, then set [ = 22mZ+77Z. Finally,
if m = vo(f), thenset I = 22mZ+(2m~14-7)Z. Set J = 222N 74 (2v2(/)~14.7)Z.
Observe that I,J € A(Z;(Oy)) and IJ = 2™L for some L € A(Z;(Oy)) with
N(L) =2V,

CASE 2: p is ramified. It follows that N = 2v,(f) + 1 by Theorem Let
m € [2,vp(f)]. First let p # 2. Since p is ramified, we have p | d. If d # 1 mod 4,
then set I = p*"Z + (p™ + 7)Z and J = p?»(DHZ 4 (prNH L 1)Z. Ifd = 1
mod 4, then set [ = meZ+(”mT_1 +7)Z and J = pQVP(f)HZJr(erT)Z.
We infer that I,J € A(Z;(Oy)) and IJ = p™L for some L € A(Z,;(Oy)) with
N(L) = p" in any case.

Now let p = 2. Since 2 is ramified, we have d Z 1 mod 4. If d is even or
m < vao(f), then set I = 22MZ + (2™ + 1)Z. If d is odd and m = va(f), then
set I = 2°MZ + 77. If d is even, then set J = 222(N+17 4 77 If d is odd, then
set J = 22v2(N+17 4 (2v2(f) 4 7)Z. In any case we have I,J € A(Z;(O;)) and
IJ =2"L for some L € A(Z;(0Oy)) with N (L) = 2V,

Finally, we prove the second assertion by induction on ¢. Let £ € N>9 and let
H € {Z,(0y),Z;(Oy)}. Without restriction we can assume that £ > 4. We infer
by the induction hypothesis that (Uy—2(H)NN>¢_o)+Us(H) = [(—2, L(K_E)NJ]—l—
[2,N] = [¢,| %Y ]]. Observe that (Uy—2(H) N N>g_2) +Us(H) C Uy(H) N N>y It
follows by Lemma that Uy(H) N N>, C [¢,[4Y]], and thus Uy(H) N N>y =
e, 151 O

Theorem 5.2. Let O be an order in a quadratic number field K with conductor
fOk for some f € N>o.

1. If f is divisible by a split prime, then U(Z(O)) = U, (Z*(O)) = N>y for all
ke N22.

2. Suppose that f is not divisible by a split prime and set M = max{v,(f) | p €
P}. Then Uk (Z(0)) = U (Z*(0O)) is a finite interval for all k € N>o, and for
their maxima we have:
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(a) If vo(f) = M for a ramified prime q, then pi(Z(O)) =
kM + | %] for all k € N and p(Z(0)) = p(Z*(0)) = M +

(b) If vq(f) < M for all ramified primes q, then pp(Z(0)) =
kM for all k € N>o and p(Z(0)) = p(Z*(0)) = M.

pr(17(0)) =
pi(T*(0)) =

W‘ [\J\»—AW‘

Proof. 1. Let f be divisible by a split prime p and let & € N>o. Since Z;(O) is
a divisor-closed submonoid of Z*(O) and Z,(0O) is a divisor-closed submonoid of
Z(0), it follows from Proposition [5.1}1 that Uy, (Z(0)) = Up(Z*(0)) = N>a.

2. Let k € N>g and £ € Uy (Z(0O)). There are I; € A(Z(0O)) for each i € [1, k]
and J; € A(Z(0)) for each j € [1,4] such that Hle I = H§:1 J;. Note that
VT;,\/J; € X(0) for all i € [1,k] and j € [1,/]. For P € X(O) set kp = |{i €
[1,k] | VI; = P} and (p = |{j € [1,4] | \/J; = P}|. If p is a prime divisor
of f, then set k, = kp, , and ¢, = {p, . Observe that k = ZPex(O) kp and
=3 pex(o) {p- Recall that the P-primary components of Hle I; are uniquely
determined, and thus ¢p € Uy, (Zp(O)) for all P € X(O). If P € X(O) does not
contain the conductor, then Zp(O) is factorial, and hence ¢p = kp. Also note
that if P € X(O) and kp < 1, then £p = kp. If p is an inert prime that divides
f. then it follows from Proposition [5.1]2 and Theorem [3.6] that p.(Z,(0)) =
pr(Z;(0)) = rvp(f) for all r € N>o. We infer again by Proposition [5 2 and
Theoremthat pr(Zp(0)) = pr(Z;(0)) = rvp(f) + [ 5] for all rarmﬁed primes
p that divide f and all » € N>.

CASE 1: v4(f) = M for some ramified prime ¢. If P € X¥(0O), then {p <
kpM + %],

Consequently, £ =3~ px (o) {p < (Zpex(o) kp)M+3 pex (o) |E2 | < kM +
|4]. In particular, px(Z(0)) < kM + |%] = max{px(Z;(0)) | p € P,p |
1< ou(T'(0)) < pu(Z(0)). This mphes that p(Z(D)) = pu(Z*(0)) =

max{p(Z;(0)) |p € P,p | [} = kM + | §].

CASE 2: v4(f) < M for all ramified primes g. Note that ¢, < kpv,(f) +
L%PJ < k,M for all ramified primes p that divide f. Therefore, £{p < kpM for
all P € X(O). This implies that £ = 3 pcy(0)lp < (XL pex(o) kp)M = kM.
We infer that pi(Z(0)) < kM = max{px(Z,;(O)) | p € P,p | f} < pp(Z*(0)) <
Zk(f(('))% and thus p(Z(0)) = pr(Z7(0)) = max{px(Z;(0)) [p € P.p | f} =

M.

By Proposition [5.1]2, we obtain that U (Z(O)) N N> = Uk(Z*(0)) N N3y, is
a finite interval. Since the last assertion holds for every k € N>o, we infer that
UL(Z(0)) = Uy, (T*(0)) is a finite interval for all k € Nso. If v, (f) = M for some
ramified prime g, then

oy — jin PEEZO)) Lk _ 1
EHO)) = (T (O) = Jim PS5 = Jim Mot 5] =M+ 5
Finally, let v4(f) < M for all ramified primes g. Then

PZ(0)) = p(T*(0)) = lim PEEOD _ 5 KM

k—o0 k k—o0 ]f =M H
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In a final remark we gather what is known on further arithmetical invariants
of monoids of ideals of orders in quadratic number fields.

Remark 5.3. Let O be an order in a quadratic number field K with conductor
fOk for some f € N>s.

1. The monotone catenary degree of Z*(0O) is finite by [20, Corollary 5.14].
Precise values for the monotone catenary degree are available so far only in the
seminormal case ([I8, Theorem 5.8]).

2. The tame degree of Z*(0O) is finite if and only if the elasticity is finite if
and only if f is not divisible by a split prime. This follows from Equations
and Theorem and from [16, Theorem 3.1.5]. Precise values for the tame
degree are not known so far.

3. For an atomic monoid H, the set {p(L) | L € L(H)} C Q>1 of all elas-
ticities was first studied by Chapman et al. and then it found further atten-
tion by several authors (e.g., [A7], [22, Theorem 5.5], [23I35]). We say that H
is fully elastic if for every rational number ¢ with 1 < ¢ < p(H) there is an
L € L(H) with p(L) = q. Since Z*(0O) is cancellative and has a prime element,
it is fully elastic by [3, Lemma 2.1]. Since Z*(O) C Z(0O) is divisor-closed and
p(Z(0)) = p(Z*(0)) by Theorem it follows that Z(O) is fully elastic.

4. For an atomic monoid H, let

T*(H) = {min(L\ {2}) | 2 € L € L(H) with || > 1} C Nx3.

By definition, we have T*(H) C 2+ A(H) and in [I1I23] the invariant 1*(H) was
used as a tool to study A(H). Proposition {4.1{4 shows that, both for H = Z(O)
and for H = Z*(0O), we have max 1*(H) = 2 + max A(H).
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