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1 Introduction

Factorization theory for Mori domains and their semigroups of ideals splits into
two cases. The first and best understood case is that of Krull domains (i.e., of
completely integrally closed Mori domains). The arithmetic of a Krull domain
depends only on the class group and on the distribution of prime divisors in
the classes, and it can be studied – at least to a large extent – with methods
from additive combinatorics. The link to additive combinatorics is most powerful
when the Krull domain has a finite class group and when each class contains at
least one prime divisor (this holds true, among others, for rings of integers in
number fields). Then sets of lengths, sets of distances and of catenary degrees of
the domain can be studied in terms of zero-sum problems over the class group.
Moreover, we obtain a variety of explicit results for arithmetical invariants in
terms of classical combinatorial invariants (such as the Davenport constant of
the class group) or even in terms of the group invariants of the class group. We
refer to [15] for a description of the link to additive combinatorics and to the
recent survey [32] discussing explicit results for arithmetical invariants.
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Let us consider Mori domains that are not completely integrally closed but
have a nonzero conductor towards their complete integral closure. The best in-
vestigated classes of such domains are weakly Krull Mori domains with finite
v-class group and C-domains. For them there is a variety of abstract arithmeti-
cal finiteness results but in general there are no precise results. For example, it is
well-known that sets of distances and of catenary degrees are finite but there are
no reasonable bounds for their size. The simplest not completely integrally closed
Mori domains are orders in number fields. They are one-dimensional noetherian
with nonzero conductor, finite Picard group, and all factor rings modulo nonzero
ideals are finite. Thus they are weakly Krull domains and C-domains. Although
there is recent progress for seminormal orders, for general orders in number fields
there is no characterization of half-factoriality (for progress in the local case see
[26]) and there is no information on the structure of their sets of distances or
catenary degrees (neither for orders nor for their monoids of ideals).

In the present paper we focus on monoids of ideals of orders in quadratic num-
ber fields and establish precise results for their set of distances ∆(·) and their set
of catenary degrees Ca(·). Orders in quadratic number fields are intimately re-
lated with quadratic irrationals, continued fractions, and binary quadratic forms
and all these areas provide a wealth of number theoretic tools for the investiga-
tion of orders. We refer to [25] for a modern presentation of these connections
and to [9,29] for recent progress on the arithmetic and ideal theoretic structure
of quadratic orders.

Let O be an order in a quadratic number field, I∗(O) be the monoid of
invertible ideals, and I(O) be the monoid of nonzero ideals (note that I(O) is not
cancellative if O is not maximal). Since I∗(O) is a divisor-closed submonoid of
I(O), the set of catenary degrees and the set of distances of I∗(O) are contained
in the respective sets of I(O). We formulate a main result of this paper and then
we compare it with related results in the literature.

Theorem 1.1. Let O be an order in a quadratic number field K with discrimi-
nant dK and conductor f = fOK for some f ∈ N≥2.

1. The following statements are equivalent :
(a) I(O) is half-factorial.
(b) c

(
I(O)

)
= 2.

(c) c
(
I∗(O)

)
= 2.

(d) I∗(O) is half-factorial.
(e) f is squarefree and all prime divisors of f are inert.

2. Suppose that I∗(O) is not half-factorial.
(a) If f is squarefree, then Ca

(
I(O)

)
= [1, 3], Ca

(
I∗(O)

)
= [2, 3],

∆
(
I(O)

)
= ∆

(
I∗(O)

)
= {1}.

(b) Suppose that f is not squarefree.
(i) If v2 (f) 6∈ {2, 3} or dK 6≡ 1 mod 8, then Ca

(
I(O)

)
= [1, 4],

Ca
(
I∗(O)

)
= [2, 4], and ∆

(
I(O)

)
= ∆

(
I∗(O)

)
= [1, 2].

(ii) If v2 (f) ∈ {2, 3} and dK ≡ 1 mod 8, then Ca
(
I(O)

)
= [1, 5],

Ca
(
I∗(O)

)
= [2, 5], and ∆

(
I(O)

)
= ∆

(
I∗(O)

)
= [1, 3].
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We say that a cancellative monoid H is weakly Krull if
⋂
P∈X(H)HP = H and

{P ∈ X(H) | a ∈ P} is finite for each a ∈ H (where X(H) denotes the set
of height-one prime ideals of H). Moreover, a cancellative monoid H is called
weakly factorial if every nonunit of H is a finite product of primary elements
of H. Let all notation be as in Theorem 1.1, and recall that I∗(O) is a weakly
factorial C-monoid, and that for every atomic monoid H with ∆(H) 6= ∅ we
have min∆(H) = gcd∆(H).

There is a characterization (due to Halter-Koch) when the order O is half-
factorial ([16, Theorem 3.7.15]). This characterization and Theorem 1.1 or [30,
Corollary 4.6] show that the half-factoriality of O implies the half-factoriality
of I∗(O). Consider the case of seminormal orders whence suppose that O is
seminormal. Then f is squarefree (this follows from an explicit characterization of
seminormal orders given by Dobbs and Fontana in [10, Corollary 4.5]). Moreover,
I∗(O) is seminormal and if I∗(O) is not half-factorial, then its catenary degree
equals three by [18, Theorems 5.5 and 5.8]. Clearly, this coincides with 2.(a) of
the above theorem. Among others, Theorem 1.1 shows that the sets of distances
and of catenary degrees are intervals and that the minimum of the set of distances
equals 1. We discuss some analogous results and some results which are in sharp
contrast to this. If H is a Krull monoid with finite class group, then H is a
weakly Krull C-monoid and if there are prime divisors in all classes, then the
sets Ca(H) and ∆(H) are intervals ([23, Theorem 4.1]). On the other hand, for
every finite set S ⊂ N with minS = gcdS (resp. every finite set S ⊂ N≥2) there
is a finitely generated Krull monoid H such that ∆(H) = S (resp. Ca(H) = S)
([21] resp. [11, Proposition 3.2]). Just as the monoids of ideals under discussion,
every numerical monoid is a weakly factorial C-monoid. However, in contrast
to them, the set of distances need not be an interval ([8]), its minimum need
not be 1 ([5, Proposition 2.9]), and a recent result of O’Neill and Pelayo ([28])
shows that for every finite set S ⊂ N≥2 there is a numerical monoid H such that
Ca(H) = S.

We proceed as follows. In Section 2 we summarize the required background
on the arithmetic of monoids. In Section 3 we do the same for orders in quadratic
number fields and we provide an explicit description of (invertible) irreducible
ideals in orders of quadratic number fields (Theorem 3.6). In Section 4 we give
the proof of Theorem 1.1. Based on this result we establish a characterization of
those orders O with min∆(O) > 1 (Theorem 4.14) which allows us to give the
first explicit examples of orders O with min∆(O) > 1. Our third main result
(given in Theorem 5.2) states that unions of sets of lengths of I(O) and of I∗(O)
are intervals.

2 Preliminaries on the arithmetic of monoids

Let N be the set of positive integers, P ⊂ N the set of prime numbers, and for
every m ∈ N, we denote by

ϕ(m) =
∣∣(Z/mZ)×

∣∣ Euler’s ϕ-function .
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For a, b ∈ Q∪{−∞,∞}, [a, b] = {x ∈ Z | a ≤ x ≤ b} denotes the discrete interval
between a and b. Let L,L′ ⊂ Z. We denote by L+ L′ = {a+ b | a ∈ L, b ∈ L′}
their sumset. A positive integer d ∈ N is called a distance of L if there exists a
k ∈ L such that L ∩ [k, k + d] = {k, k + d}, and we denote by ∆(L) the set of
distances of L. If ∅ 6= L ⊂ N, we denote by ρ(L) = supL/minL ∈ Q≥1 ∪ {∞}
the elasticity of L. We set ρ({0}) = 1 and max ∅ = min ∅ = sup ∅ = 0. All rings
and semigroups are commutative and have an identity element.

2.1 Monoids.

Let H be a multiplicatively written commutative semigroup. We denote by H×

the group of invertible elements of H. We say that H is reduced if H× = {1}
and we denote by Hred = {aH× | a ∈ H} the associated reduced semigroup of
H. An element u ∈ H is said to be cancellative if au = bu implies that a = b for
all a, b ∈ H. The semigroup H is said to be

– cancellative if every element of H is cancellative.
– unit-cancellative if a, u ∈ H and a = au implies that u ∈ H×.

By definition, every cancellative semigroup is unit-cancellative. All semigroups
of ideals, that are studied in this paper, are unit-cancellative but not necessarily
cancellative.

Throughout this paper, a monoid means a
commutative unit-cancellative semigroup with identity element.

Let H be a monoid. A submonoid S ⊂ H is said to be divisor-closed if a ∈ S
and b ∈ H with b | a implies that b ∈ S. An element u ∈ H is said to be

– prime if u /∈ H× and, for all a, b ∈ H, u | ab and u - a implies u | b.
– primary if u /∈ H× and, for all a, b ∈ H, u | ab and u - a implies u | bn for

some n ∈ N.
– irreducible (or an atom) if u /∈ H× and, for all a, b ∈ H, u = ab implies that
a ∈ H× or b ∈ H×.

The monoid H is said to be atomic if every a ∈ H \H× is a product of finitely
many atoms. If H satisfies the ACC (ascending chain condition) on principal
ideals, then H is atomic ([12, Lemma 3.1]).

2.2 Sets of lengths.

For a set P , we denote by F(P ) the free abelian monoid with basis P . Every
a ∈ F(P ) is written in the form

a =
∏
p∈P

pvp(a) with vp(a) ∈ N0 and vp(a) = 0 for almost all p ∈ P .
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We call |a| =
∑
p∈P vp(a) the length of a and supp(a) = {p ∈ P | vp(a) > 0} ⊂ P

the support of a. Let H be an atomic monoid. The free abelian monoid Z(H) =
F(A(Hred)) denotes the factorization monoid of H and

π : Z(H)→ Hred satisfying π(u) = u for all u ∈ A(Hred)

denotes the factorization homomorphism of H. For every a ∈ H,

ZH(a) = Z(a) = π−1(aH×) is the set of factorizations of a and

LH(a) = L(a) = {|z| | z ∈ Z(a)} is the set of lengths of a .

For a divisor-closed submonoid S ⊂ H and an element a ∈ S, we have Z(S) ⊂
Z(H) whence ZS(a) = ZH(a), and LS(a) = LH(a). We denote by

– L(H) = {L(a) | a ∈ H} the system of sets of lengths of H and by
– ∆(H) =

⋃
L∈L(H)∆(L) ⊂ N the set of distances of H.

The monoid H is said to be half-factorial if ∆(H) = ∅ and if H is not half-
factorial, then min∆(H) = gcd∆(H).

2.3 Distances and chains of factorizations.

Let two factorizations z, z′ ∈ Z(H) be given, say

z = u1 · . . . · u`v1 · . . . · vm and z′ = u1 · . . . · u`w1 · . . . · wn ,

where `,m, n ∈ N0 and all ui, vj , wk ∈ A(Hred) such that vj 6= wk for all
j ∈ [1,m] and all k ∈ [1, n]. Then d(z, z′) = max{m,n} is the distance between
z and z′. If π(z) = π(z′) and z 6= z′, then

1 +
∣∣|z| − |z′|∣∣ ≤ d(z, z′) resp. 2 +

∣∣|z| − |z′|∣∣ ≤ d(z, z′) if H is cancellative (2.1)

(see [12, Proposition 3.2] and [16, Lemma 1.6.2]). Let a ∈ H and N ∈ N0. A finite
sequence z0, . . . , zk ∈ Z(a) is called an N -chain of factorizations (concatenating
z0 and zk) if d(zi−1, zi) ≤ N for all i ∈ [1, k]. For z, z′ ∈ Z(H) with π(z) = π(z′),
we set c(z, z′) = min{N ∈ N0 | z and z′ can be concatenated by an N -chain of
factorizations from Z

(
π(z)

)
}. Then, for every a ∈ H,

c(a) = sup{c(z, z′) | z, z′ ∈ Z(a)} ∈ N0 ∪ {∞} is the catenary degree of a.

Clearly, a has unique factorization (i.e., |Z(a)| = 1) if and only if c(a) = 0. We
denote by

Ca(H) = {c(a) | a ∈ H, c(a) > 0} ⊂ N the set of catenary degrees of H,

and then

c(H) = sup Ca(H) ∈ N0 ∪ {∞} is the catenary degree of H.
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We use the convention that sup ∅ = 0 whence H is factorial if and only if
c(H) = 0. Note that c(a) = 0 for all atoms a ∈ H. The restriction to positive
catenary degrees in the definition of Ca(H) simplifies the statement of some
results whence it is usual to restrict to elements with positive catenary degrees.
If H is cancellative, then Equation (2.1) implies that min Ca(H) ≥ 2 and

2 + sup∆(H) ≤ c(H) if H is not factorial .

If H =
∐
i∈I Hi, then a straightforward argument shows that

Ca(H) =
⋃
i∈I

Ca(Hi) whence c(H) = sup{c(Hi) | i ∈ I} . (2.2)

2.4 Semigroups of ideals.

Let R be a domain. We denote by q(R) its quotient field, by X(R) the set of
minimal nonzero prime ideals of R, and by R its integral closure. Then R \ {0}
is a cancellative monoid,

– I(R) is the semigroup of nonzero ideals ofR (with usual ideal multiplication),
– I∗(R) is the subsemigroup of invertible ideals of R, and
– Pic(R) is the Picard group of R.

For every I ∈ I(R), we denote by
√
I its radical and by N (I) = (R :I) = |R/I| ∈

N ∪ {∞} its norm.
Let S be a Dedekind domain and R ⊂ S a subring. Then R is called an order

in S if one of the following two equivalent conditions hold:

– q(R) = q(S) and S is a finitely generated R-module.
– R is one-dimensional noetherian and R = S is a finitely generated R-module.

Let R be an order in a Dedekind domain S = R. We analyze the structure of
I∗(R) and of I(R).

Since R is noetherian, Krull’s Intersection Theorem holds for R whence I(R)
is unit-cancellative ([20, Lemma 4.1]). Thus I(R) is a reduced atomic monoid
with identity R and I∗(R) is a reduced cancellative atomic divisor-closed sub-
monoid. For the sake of clarity, we will say that an ideal of R is an ideal atom
if it is an atom of the monoid I(R). If I, J ∈ I∗(R), then I | J if and only if
J ⊂ I. The prime elements of I∗(R) are precisely the invertible prime ideals of
R. Every ideal is a product of primary ideals belonging to distinct prime ideals
(in particular, I∗(R) is a weakly factorial monoid). Thus every ideal atom (i.e.,
every I ∈ A(I(R)) is primary, and if

√
I = p ∈ X(R), then I is p-primary. Since

R is a finitely generated R-module, the conductor f = (R :R) is nonzero, and we
set

P = {p ∈ X(R) | p 6⊃ f} and P∗ = X(R) \ P .
Let p ∈ X(R). We denote by

I∗p(R) = {I ∈ I∗(R) |
√
I ⊃ p} and Ip(R) = {I ∈ I(R) |

√
I ⊃ p}
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the set of invertible p-primary ideals of R and the set of p-primary ideals of R.
Clearly, these are monoids and, moreover,

Ip(R) ⊂ I(R), I∗p(R) ⊂ Ip(R), and I∗p(R) ⊂ I∗(R)

are divisor-closed submonoids. Thus I∗p(R) is a reduced cancellative atomic
monoid, Ip(R) is a reduced atomic monoid, and if p ∈ P, then I∗p(R) = Ip(R)
is free abelian. Since R is noetherian and one-dimensional,

α : I(R)→
∐

p∈X(R)

Ip(R), defined by α(I) = (Ip ∩R)p∈X(R) (2.3)

is a monoid isomorphism which induces a monoid isomorphism

α|I∗(R) : I∗(R)→
∐

p∈X(R)

I∗p(R) . (2.4)

3 Orders in quadratic number fields

The goal of this section is to prove Theorem 3.6 which provides an explicit
description of (invertible) ideal atoms of an order in a quadratic number field.
These results are essentially due to Butts and Pall (see [6] where they are given in
a different style), and they were summarized without proof by Geroldinger and
Lettl in [19]. Unfortunately, that presentation is misleading in one case (namely,
in case p = 2 and dK ≡ 5 mod 8). Thus we restate the results and provide a
full proof.

First we put together some facts on orders in quadratic number fields and
fix our notation which remains valid throughout the rest of this paper. For
proofs, details, and any undefined notions we refer to [25]. Let d ∈ Z \ {0, 1} be
squarefree, K = Q(

√
d) be a quadratic number field,

ω =

{√
d, if d ≡ 2, 3 mod 4;

1+
√
d

2 , if d ≡ 1 mod 4.
and dK =

{
4d, if d ≡ 2, 3 mod 4;

d, if d ≡ 1 mod 4.

Then OK = Z[ω] is the ring of integers and dK is the discriminant of K. For
every f ∈ N, we define

ε ∈ {0, 1} with ε ≡ fdK mod 2 , η =
ε− f2dK

4
, and τ =

ε+ f
√
dK

2
.

Then
Of = Z⊕ fωZ = Z⊕ τZ

is an order in OK with conductor f = fOK , and every order in OK has this
form. With the notation of Subsection 2.4 we have

P∗ = {p ∈ X(Of ) | p ⊃ f} = {pZ + fωZ | p ∈ P, p | f} .
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If α = a+b
√
d ∈ K, then α = a−b

√
d is its conjugate, NK/Q(α) = αα = a2−b2d

is its norm, and tr(α) = α+α = 2a is its trace. For an I ∈ I(Of ), I = {α | α ∈ I}
denotes the conjugate ideal. A simple calculation shows that

NK/Q(r + τ) = r2 + εr + η for each r ∈ Z .

If O is an order and I ∈ I∗(O), then (OK : IOK) = (O : I) and if a ∈ O \ {0},
then

(O :aO) = (OK :aOK) = |NK/Q(a)|

(see [17, Pages 99 and 100] and note that the factor rings OK/IOK and O/I
need not be isomorphic). For p ∈ P and for a ∈ Z we denote by

(
a
p

)
∈ {−1, 0, 1}

the Kronecker symbol of a modulo p. A prime number p ∈ Z is called

– inert if pOK ∈ spec(OK).
– split if pOK is a product of two distinct prime ideals of OK .
– ramified if pOK is the square of a prime ideal of OK .

An odd prime

p is


inert if

(
dK
p

)
= −1;

split if
(
dK
p

)
= 1;

ramified if
(
dK
p

)
= 0 .

and 2 is


inert if dK ≡ 5 mod 8;

split if dK ≡ 1 mod 8;

ramified if dK ≡ 0 mod 2 .

Proposition 3.1. Let p be a prime divisor of f , O = Of , and p = pZ + fωZ.

1. The primary ideals with radical p are exactly the ideals of the form

q = p`(pmZ + (r + τ)Z)

with `,m ∈ N0, ` + m ≥ 1, 0 ≤ r < pm and NK/Q(r + τ) ≡ 0 mod pm.

Moreover, N (q) = p2`+m.
2. A primary ideal q = p`(pmZ + (r + τ)Z) is invertible if and only if

NK/Q(r + τ) 6≡ 0 mod pm+1.

Proof. 1. Let q be a p-primary ideal in O. By [25, Theorem 5.4.2] there exist
nonnegative integers `,m, r such that q = `(mZ+(r+τ)Z), r < m and NK/Q(r+
τ) ≡ 0 mod m. Since q is nonzero and proper, we have `m > 1. We prove, that
`m is a power of p. First observe that q ⊂ √q = p implies that p | `m. Assume
to the contrary that there exists another rational prime p′ 6= p dividing `m,
say `m = p′s. But then p′s ∈ q, s 6∈ q and p′ 6∈ p =

√
q. A contradiction to

q being primary. Conversely, assume that q = p`(pmZ + (r + τ)Z) for integers
`,m ∈ N0, ` + m ≥ 1, 0 ≤ r < pm and NK/Q(r + τ) ≡ 0 mod pm. By [25,
Theorem 5.4.2], q is an ideal of O. Since p ∈ √q and p is the only prime ideal in
O containing p we obtain that

√
q =

⋂
a∈spec(O),a⊃q a = p. The nonzero prime
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ideal p is maximal, since O is one-dimensional. Therefore, q is p-primary. It
follows from [25, Theorem 5.4.2] that N (q) = p2`+m.

2. By [25, Theorem 5.4.2], q = p`(pmZ + (r+ τ)Z) is invertible if and only if

gcd(pm, 2r+ε,
NK/Q(r+τ)

pm ) = 1. Since p | f andNK/Q(r+τ) = 1
4 ((2r+ε)2−f2dK),

this is the case if and only if p - NK/Q(r+τ)

pm , that is NK/Q(r+ τ) 6≡ 0 mod pm+1.
ut

If x ∈ Z and y ∈ N, then let rem(x, y) be the unique z ∈ [0, y − 1] such that
y | x−z. Let p be a prime divisor of f . Note that vp(0) =∞, and if ∅ 6= A ⊆ N0,
then min(A ∪ {∞}) = minA. We set

Pf,p = pZ + fωZ, I∗p (Of ) = I∗Pf,p
(Of ), Ip(Of ) = IPf,p

(Of ), and

Mf,p = {(x, y, z) ∈ N3
0 | z < py, vp(z

2 + εz + η) ≥ y}

Let ∗ :Mf,p ×Mf,p →Mf,p be defined by (u, v, w) ∗ (x, y, z) = (a, b, c), where

a = u+ x+ g, b = v + y + e− 2g,

c = rem

(
h− th

2 + εh+ η

pg
, pb
)
, g = min{v, y, vp(w + z + ε)},

e = min{g, vp(w − z), vp(w2 + εw + η)− v, vp(z2 + εz + η)− y},

t ∈ Z is such that t
w + z + ε

pg
≡ 1 mod pmin{v,y}−g, and h =

{
z if y ≥ v
w if v > y

.

Let ξf,p :Mf,p → Ip(Of ) be defined by ξf,p(x, y, z) = px(pyZ + (z + τ)Z).

Proposition 3.2. Let p be a prime divisor of f and I, J ∈ Ip(Of ).

1. (Mf,p, ∗) is a reduced monoid and ξf,p is a monoid isomorphism.
2. If w, z ∈ Z are such that vp(w

2 + εw+ η) > 0 and vp(z
2 + εz + η) > 0, then

vp(w + z + ε) > 0 and vp(w − z) > 0.
3. N (I)N (J) | N (IJ) and N (IJ) = N (I)N (J) if and only if I is invertible or
J is invertible. If I and J are proper, then IJ ⊂ pOf .

4. If I ∈ A(Ip(Of )), then there is some I ′ ∈ A(I∗p (Of )) such that N (IJ) |
N (I ′J). If I ∈ A(Ip(Of )) is not invertible, then N (I) | N (I ′) and N (I) <
N (I ′) for some I ′ ∈ A(I∗p (Of )).

5. If I ∈ A(I∗p (Of )), then I ∈ A(I∗p (Of )) and II = N (I)Of .

Proof. 1. Let (u, v, w), (x, y, z) ∈ Mf,p. Set g = min{v, y, vp(w + z + ε)} and
e = min{g, vp(w − z), vp(w

2 + εw + η) − v, vp(z
2 + εz + η) − y}. Note that

gcd(pmin{v,y}, w + z + ε) = pg, and hence there are some s, t ∈ Z such that
spmin{v,y} + t(w+ z + ε) = pg. This implies that tw+z+ε

pg ≡ 1 mod pmin{v,y}−g.
Set a = u+ x+ g, b = v + y + e− 2g and let h = z if y ≥ v and h = w if v > y.

Finally, set c = rem(h− th
2+εh+η
pg , pb). First we show that c does not depend on

the choice of t. Let t′ ∈ Z be such that t′w+z+ε
pg ≡ 1 mod pmin{v,y}−g. Then
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pmin{v,y}−g | t− t′. Note that min{v, y}+ vp(h
2 + εh+ η) ≥ v+ y+ e, and hence

pb | (t− t′)h
2+εh+η
pg . Consequently, c = rem(h− t′ h

2+εh+η
pg , pb).

Next we show that (a, b, c) ∈ Mf,p. It is clear that (a, b, c) ∈ N3
0 and c < pb.

It remains to show that vp(c
2 + εc+ η) ≥ b. Without restriction we can assume

that v ≤ y. Then h = z. Set k = z − t z
2+εz+η
pg . There is some r ∈ Z such that

c = k+ rpb. Since c2 + εc+ η = k2 + εk+ η+mpb for some m ∈ Z, it is sufficient
to show that vp(k

2 + εk + η) ≥ b.
Observe that k2 + εk + η = z2+εz+η

p2g (p2g − tpg(2z + ε) + t2(z2 + εz + η)) =
z2+εz+η
p2g (spv+g + tpg(w − z) + t2(z2 + εz + η)). Note that g + vp(w − z) =

min{v+vp(w−z), vp(w+z+ε)+vp(w−z)} = min{v+vp(w−z), vp(w2 +εw+
η− (z2 + εz + η))} ≥ min{v + vp(w− z), vp(z2 + εz + η), vp(w

2 + εw+ η)} ≥ v.
Moreover, we have vp(z

2 + εz+ η) ≥ y+ e. Therefore, vp(k
2 + εk+ η) ≥ vp(z

2 +
εz + η)− 2g + min{v + g, g + vp(w − z), vp(z2 + εz + η)} ≥ y + e− 2g + v = b.

Now we prove that pu(pvZ+(w+τ)Z)px(pyZ+(z+τ)Z) = pa(pbZ+(c+τ)Z).
(Note that this can be shown by using [25, Theorem 5.4.6].) Set I = pu(pvZ+(w+
τ)Z)px(pyZ+(z+τ)Z). Without restriction let v ≤ y. Note that (w+τ)(z+τ) =
wz − η + (w + z + ε)τ . Set α = pv(z + τ) and β = wz − η + (w + z + ε)τ . We
infer that I = pu+x(pv+yZ + py(w + τ)Z + αZ + βZ).

Moreover, py(w + τ)Z + αZ = py(w − z)Z + αZ. Observe that sα + tβ =

pgz−t(z2+εz+η)+pgτ . Set k = z−t z
2+εz+η
pg . Then sα+tβ = pg(k+τ). We have

α−pv(k+τ) = tpv−g(z2+εz+η) and (w+z+ε)(k+τ)−β = spv−g(z2+εz+η).
Set r = pv−g(z2 + εz + η). Consequently, αZ + βZ = srZ + trZ + pg(k + τ)Z =
rZ + pg(k + τ)Z, since gcd(s, t) = 1. Putting these facts together gives us I =
pu+x(pv+yZ + py(w − z)Z + rZ + pg(k + τ)Z).

We have gcd(pv+y, py(w − z), r) = p` with ` = min{v + y, y + vp(w − z), v −
g+vp(z

2+εz+η)} and pv+yZ+py(w−z)Z+rZ = p`Z. Note that ` = v+y−g+
min{g, vp(w−z)−v+g, vp(z

2 +εz+η)−y} and vp(w−z)−v+g = min{vp(w−
z), vp(w−z)+vp(w+z+ε)−v} = min{vp(w−z), vp(w2+εw+η−(z2+εz+η))−v},
and hence ` = v + y − g + min{g, vp(w − z), vp(w2 + εw + η − (z2 + εz + η))−
v, vp(z

2 + εz + η)− y}.
CASE 1: vp(w

2 + εw + η) ≥ vp(z
2 + εz + η). Then vp(w

2 + εw + η) − v ≥
vp(z

2 + εz+ η)− y and vp(w
2 + εw+ η− (z2 + εz+ η))− v ≥ vp(z

2 + εz+ η)− y.

CASE 2: vp(z
2 + εz + η) > vp(w

2 + εw + η). Then vp(w
2 + εw + η − (z2 +

εz + η))− v = vp(w
2 + εw + η)− v.

In any case we have min{vp(w2+εw+η−(z2+εz+η))−v, vp(z2+εz+η)−y} =
min{vp(w2+εw+η)−v, vp(z2+εz+η)−y}. Obviously, ` = v+y+e−g and I =

pu+x+g(pv+y+e−2gZ+(z−t z
2+εz+η
pg +τ)Z). Consequently, I = pa(pbZ+(c+τ)Z).

So far we know that ∗ is an inner binary operation on Mf,p. It follows from
Proposition 3.1.1 that ξf,p is surjective. It follows from [25, Theorem 5.4.2] that
ξf,p is injective. It is clear that (Ip(Of ), ·) is a reduced monoid. We have shown
that ξf,p maps products of elements ofMf,p to products of elements of Ip(Of ).
It is clear that (0, 0, 0) is an identity element of Mf,p and ξf,p(0, 0, 0) = Of .
Therefore, (Mf,p, ∗) is a reduced monoid and ξf,p is a monoid isomorphism.
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2. Let w, z ∈ Z be such that vp(w
2 + εw + η) > 0 and vp(z

2 + εz + η) > 0.
Then p | z2 + εz + η = 1

4 ((2z + ε)2 − f2dK), and hence p | 2z + ε. Moreover
p | w2 + εw + η − (z2 + εz + η) = (w + z + ε)(w − z), and thus p | w + z + ε or
p | w − z. Since p | 2z + ε, we infer that p | w + z + ε if and only if p | w − z.
Consequently, min{vp(w + z + ε), vp(w − z)} > 0.

3. By 1., there are (u, v, w), (x, y, z), (a, b, c) ∈Mf,p such that I = pu(pvZ +
(w+τ)Z), J = px(pyZ+(z+τ)Z) and IJ = pa(pbZ+(c+τ)Z) with a = u+x+g,
b = v+y+e−2g, g = min{v, y, vp(w+z+ε)} and e = min{g, vp(w−z), vp(w2+
εw + η) − v, vp(z2 + εz + η) − y}. It follows by Proposition 3.1.1 that N (I) =
p2u+v, N (J) = p2x+y and N (IJ) = p2a+b = p2(u+x)+v+y+e. It is obvious that
N (I)N (J) | N (IJ). Moreover, N (IJ) = N (I)N (J) if and only if e = 0. We
infer by 2. that e = 0 if and only if v = 0 or y = 0 or vp(w

2 + εw + η) = v or
vp(z

2+εz+η) = y, which is the case if and only if I is invertible or J is invertible
by Proposition 3.1.2. If I and J are proper, then u+ v > 0 and x+ y > 0, and
hence a > 0 by 2. This implies that IJ ⊂ p(pbZ + (c+ τ)Z) ⊂ pOf .

4. Let I ∈ A(Ip(Of )). Without restriction let I be not invertible. We have
I = pbZ + (r + τ)Z for some (0, b, r) ∈ Mf,p and b < vp(r

2 + εr + η). Set
c = vp(r

2 +εr+η) and I ′ = pcZ+(r+τ)Z. Then I ′ ∈ A(I∗p (Of )), N (I) | N (I ′),
and N (I) < N (I ′) by Proposition 3.1. There is some (x, y, z) ∈Mf,p such that
J = px(pyZ + (z + τ)Z). Then N (I ′J) = pc+2x+y and N (IJ) = pb+2x+y+e with
e = min{b, y, vp(r+z+ε), vp(r−z), c−b, vp(z2 +εz+η)−y} ≤ c−b. Therefore,
N (IJ) | N (I ′J).

5. Let I ∈ A(I∗p (Of )). If I = pOf , then I = pOf and N (I) = p2 by

Proposition 3.1.1. Therefore, II = N (I)Of . Now let I 6= pOf . There is some
(0,m, r) ∈ Mf,p such that I = pmZ + (r + τ)Z. Set s = pm − r − ε. It follows
that I = pmZ+ (r+ τ)Z = pmZ+ (r+ ε− τ)Z = pmZ+ (s+ τ)Z. Observe that
s2 +εs+η = r2 +εr+η+pm(pm− (2r+ε)). Since p | r2 +εr+η = 1

4 ((2r+ε)2−
f2dK), we have vp(2r + ε) > 0, and hence vp(p

m(pm − (2r + ε))) > m. Since
vp(r

2+εr+η) = m, we infer that vp(s
2+εs+η) = m, and thus (0,m, s) ∈Mf,p.

Therefore, I ∈ A(I∗p (Of )). Note that min{m, vp(r + s + ε)} = m, and thus

II = pmOf = N (I)Of by 1. and Proposition 3.1.1. ut

Proposition 3.3. Let p be a prime divisor of f and f ′ = pvp(f). Set O = Of ,
O′ = Of ′ , P = Pf,p and P ′ = Pf ′,p. For g ∈ N let ϕg,p : Ip(Og) → I((Og)Pg,p)
be defined by ϕg,p(I) = IPg,p

and ζg,p : I((Og)Pg,p
) → Ip(Og) be defined by

ζg,p(J) = J ∩ Og.

1. OP = O′P ′ .
2. ϕf,p and ζf,p are mutually inverse monoid isomorphisms.
3. There is a monoid isomorphism δ : Ip(O)→ Ip(O′) such that δ(pO) = pO′

and δ|I∗p(O) : I∗p (O)→ I∗p (O′) is a monoid isomorphism.

Proof. 1. It is clear that O ⊂ O′ and P ′∩O = P . Therefore, OP ⊂ O′P ′ . Observe
that O \P = (Z \ pZ) + fωZ and O′ \P ′ = (Z \ pZ) + f ′ωZ. It remains to show
that {f ′ω} ∪ {x−1 | x ∈ (Z \ pZ) + f ′ωZ} ⊂ OP . Since f

f ′ f
′ω = fω ∈ O and
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f
f ′ ∈ Z\pZ ⊂ O\P , we have f ′ω ∈ OP . Therefore, O′ ⊂ OP . Now let a ∈ Z\pZ
and b ∈ Z. Observe that a + bf ′ω ∈ O′ ⊂ OP . Since ω + ω, ωω ∈ Z, we have
(a+bf ′ω)(a+bf ′ω) = a2 +abf ′(ω+ω)+b2(f ′)2ωω ∈ Z\pZ ⊂ O\P . Therefore,

1
a+bf ′ω = a+bf ′ω

(a+bf ′ω)(a+bf ′ω) ∈ OP .

2. It is clear that ϕf,p is a well-defined monoid homomorphism. Note that ζf,p
is a well-defined map (since every nonzero proper ideal J of OP is PP -primary,
and hence J∩O is P -primary). Moreover, ζf,p(OP ) = O. Now let J1, J2 ∈ I(OP ).
Observe that J1J2 ∩ O and (J1 ∩ O)(J2 ∩ O) coincide locally (note that both
are either P -primary or not proper). Therefore, J1J2 ∩ O = (J1 ∩ O)(J2 ∩ O),
and hence ζf,p is a monoid homomorphism. If J ∈ I(OP ), then (J ∩ O)P = J .
Therefore, ϕf,p ◦ ζf,p = idI(OP ). If I is a P -primary ideal of O, then IP ∩O = I.
This implies that ζf,p ◦ ϕf,p = idIp(O).

3. Set δ = ζf ′,p◦ϕf,p. Then δ : Ip(O)→ Ip(O′) is a monoid isomorphism by 1.
and 2. Furthermore, we have by 1. that δ(pO) = ζf ′,p(ϕf,p(pO)) = ζf ′,p(pOP ) =
ζf ′,p(pO′P ′) = pO′P ′ ∩ O′ = pO′.

Since O is noetherian, we have I∗p (O) is the set of cancellative elements of
Ip(O). It follows by analogy that I∗p (O′) is the set of cancellative elements of
Ip(O′). Therefore, δ(I∗p (O)) = I∗p (O′), and hence δ|I∗p(O) is a monoid isomor-
phism. ut

Lemma 3.4. Let p be a prime number, let k ∈ N0, let c, n ∈ N be such that
gcd(c, p) = 1 and for each ` ∈ N let g` = |{y ∈ [0, p` − 1] | y2 ≡ c mod p`}|.

1. If p 6= 2, then pkc is a square modulo pn if and only if k ≥ n or (k < n, k is
even and ( cp ) = 1).

2. 2kc is a square modulo 2n if and only if one of the following conditions holds.
(a) k ≥ n.
(b) k is even and n = k + 1.
(c) k is even, n = k + 2 and c ≡ 1 mod 4.
(d) k is even, n ≥ k + 3 and c ≡ 1 mod 8.

3. If ` ∈ N, then g` =


4 if p = 2, ` ≥ 3, c ≡ 1 mod 8

2 if (p 6= 2, ( cp ) = 1) or (p = 2, ` = 2, c ≡ 1 mod 4)

1 if p = 2, ` = 1

0 else

.

Proof. Note that pkc is a square modulo pn iff k ≥ n or (k < n, k is even and c
is a square modulo pn−k).

1. Let p 6= 2. It remains to show that if ` ∈ N, then c is a square modulo p`

if and only if ( cp ) = 1. If ` ∈ N and c is a square modulo p`, then c is a square

modulo p, and hence ( cp ) = 1. Now let ( cp ) = 1. It suffices to show by induction

that c is a square modulo p` for all ` ∈ N. The statement is clearly true for ` = 1.
Now let ` ∈ N and let x ∈ Z be such that x2 ≡ c mod p`. Without restriction
let vp(x

2 − c) = `. Note that p - x, and hence 2bx ≡ −1 mod p for some b ∈ Z.
Set y = x+ b(x2 − c). Then y2 ≡ c mod p`+1.
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2. It remains to show that if ` ∈ N, then c is a square modulo 2` if and only
if ` = 1 or (` = 2 and c ≡ 1 mod 4) or (` ≥ 3 and c ≡ 1 mod 8). Let ` ∈ N
and let c be a square modulo 2`. If ` = 2, then c is a square modulo 4 and c ≡ 1
mod 4. Moreover, if ` ≥ 3, then c is a square modulo 8 and c ≡ 1 mod 8.

Clearly, if ` = 1 or (` = 2 and c ≡ 1 mod 4), then c is a square modulo 2`.
Now let c ≡ 1 mod 8. It is sufficient to show by induction that c is a square
modulo 2` for each ` ∈ N≥3. The statement is obviously true for ` = 3. Now
let ` ∈ N≥3 and let x ∈ Z be such that x2 ≡ c mod 2`. Without restriction let
v2(x2 − c) = `. Set y = x+ 2`−1. Then y2 ≡ c mod 2`+1.

3. Let ` ∈ N. By 1. and 2., it is sufficient to consider the case g` > 0. Let
g` > 0. Observe that g` = |{y ∈ [0, p`− 1] | y2 ≡ 1 mod p`}| = |{y ∈ (Z/p`Z)× |
ord(y) ≤ 2}|. If p = 2 and ` = 1, then (Z/p`Z)× is trivial, and hence g` = 1. If
(p = 2, ` = 2 and c ≡ 1 mod 4) or (p 6= 2 and ( cp ) = 1), then (Z/p`Z)× is a
cyclic group of even order, and thus g` = 2. Finally, if p = 2, ` ≥ 3 and c ≡ 1
mod 8, then (Z/2`Z)× ∼= Z/2Z × C2`−2 is the product of two cyclic groups of
even order. Consequently, g` = 4. ut

Lemma 3.5. Let p be a prime number, a,m ∈ N, c = a
pvp(a) , M = {x ∈ [0, pm−

1] | vp(x2−a) = m}, N = |M | and for each ` ∈ N let g` = |{y ∈ [0, p`−1] | y2 ≡ c
mod p`}|.

1. If m < vp(a), then N =

{
ϕ(pm/2) if m is even

0 if m is odd
.

2. Let m = vp(a).

(a) If a is a square modulo pm+1, then N =

{
pm/2−1(p− 2) if p 6= 2

2m/2−1 if p = 2
.

(b) If a is not a square modulo pm+1, then N = pbm/2c.

3. If m > vp(a) and a is not a square modulo pm, then N = 0.

4. If k ∈ N is such that m = k + vp(a) and a is a square modulo pm, then
N = pvp(a)/2−1(pgk − gk+1).

Proof. 1. Let m < vp(a). Observe that M = {x ∈ [0, pm − 1] | 2vp(x) = m}.
Clearly, if m is odd, then N = 0. Now let m be even. We have M = {pm/2y |
y ∈ [0, pm/2 − 1], gcd(y, p) = 1}, and thus N = |{y ∈ [0, pm/2 − 1] | gcd(y, p) =
1}| = ϕ(pm/2).

2. Note that M = {x ∈ [0, pm − 1] | 2vp(x) ≥ m,x2 6≡ a mod pm+1} and
|{x ∈ [0, pm − 1] | 2vp(x) ≥ m}| = pbm/2c. Set M ′ = {x ∈ [0, pm − 1] | x2 ≡ a
mod pm+1}. Then M ′ = {x ∈ [0, pm − 1] | 2vp(x) ≥ m,x2 ≡ a mod pm+1}
and N = pbm/2c − |M ′|. If a is not a square modulo pm+1, then M ′ = ∅, and
hence N = pbm/2c. Now let a be a square modulo pm+1. Then M ′ 6= ∅, and
thus m is even. Observe that M ′ = {x ∈ [0, pm − 1] | 2vp(x) = m,x2 ≡ a
mod pm+1} = {pm/2y | y ∈ [0, pm/2 − 1], y2 ≡ c mod p}. Therefore, |M ′| =
|{y ∈ [0, pm/2 − 1] | y2 ≡ c mod p}| = pm/2−1|{y ∈ [0, p− 1] | y2 ≡ c mod p}|.
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If p 6= 2, then N = pbm/2c − |M ′| = pm/2 − 2pm/2−1 = pm/2−1(p − 2) by
Lemma 3.4.3. Moreover, if p = 2, then N = 2bm/2c − |M ′| = 2m/2 − 2m/2−1 =
2m/2−1 by Lemma 3.4.3.

3. This is obvious.
4. Let k ∈ N be such that m = k+ vp(a) and let a be a square modulo pm. It

follows by Lemma 3.4 that vp(a) is even. Set r = vp(a)/2 and for θ ∈ {0, 1} set
Mθ = {x ∈ [0, pm − 1] | 2vp(x) = vp(a), x2 ≡ a mod pm+θ}. Then M = {x ∈
[0, pm − 1] | vp(x) = r, vp(x

2 − a) = m} = M0 \M1. Since {x ∈ [0, pm − 1] |
vp(x) = r} = {pry | y ∈ [0, pk+r − 1], gcd(y, p) = 1}, we infer that Mθ = {pry |
y ∈ [0, pk+r−1], y2 ≡ c mod pk+θ}. Therefore, |Mθ| = |{y ∈ [0, pk+r−1] | y2 ≡ c
mod pk+θ}| = pr−θ|{y ∈ [0, pk+θ − 1] | y2 ≡ c mod pk+θ}| = pr−θgk+θ. This
implies that N = |M0| − |M1| = prgk − pr−1gk+1 = pr−1(pgk − gk+1). ut

Theorem 3.6. Let O be an order in a quadratic number field K with conductor
f = fOK for some f ∈ N≥2, p be a prime divisor of f , and p = Pf,p.

1. The primary ideals with radical p are exactly the ideals of the form

q = p`(pmZ + (r + τ)Z)

with `,m ∈ N0, ` + m ≥ 1, 0 ≤ r < pm, and NK/Q(r + τ) ≡ 0 mod pm.

Moreover, N (q) = p2`+m.
2. A primary ideal q = p`(pmZ + (r + τ)Z) is invertible if and only if

NK/Q(r + τ) 6≡ 0 mod pm+1.

3. A primary ideal q with radical p is an ideal atom if and only if q = pO or
q = pmZ + (r + τ)Z with m ∈ N and pm | NK/Q(r + τ).

4. Table 1 gives the number of invertible ideal atoms of the form pmZ+(r+τ)Z
with norm pm; this number is 0 if m is not listed in the table.

m 2h 2vp (f) 2vp (f) + 1 > 2vp (f) + 1
1 ≤ h < vp (f)

p is inert
ϕ
(
pm/2

) pvp(f) 0

p is ramified pvp(f)

p splits pvp(f)−1 (p− 2) 2ϕ
(
pvp(f)

)
Table 1. Number of nontrivial invertible p-primary ideal atoms

5. The number of ideal atoms with radical p is finite if and only if the number
of invertible ideal atoms with radical p is finite if and only if p does not split.

Proof. 1. and 2. are an immediate consequence of Proposition 3.1.

3. In 1. we have seen, that all p-primary ideals of O are of the form q =
p`(pmZ + (r + τ)Z). If both ` and m are greater than 0, then q is not an ideal
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atom. Indeed, q = (pO)`(pmZ+(r+τ)Z) is a nontrivial factorization. It remains
to be proven, that pO and pmZ + (r + τ)Z are ideal atoms.

Assume that there exist proper ideals a1, a2 of O such that pO = a1a2. Since
pO is p-primary, we have a1 and a2 are p-primary. Using this information, we
deduce, that pO ⊂ p2, implying

p ∈ pO ⊂ p2 = (p2, pfω, f2ω2) = p(p, fω,
f

p
ωfω) = p(p, fω) = pp.

Therefore, 1 ∈ p, a contradiction.
Assume that there exist proper ideals a1, a2 of O such that pmZ+(r+τ)Z =

a1a2. Note that a1 and a2 are p-primary. By Proposition 3.2.3, it follows that
pmZ + (r + τ)Z ⊂ pO, a contradiction to r + τ 6∈ pO.

4. By 1. and 3., the nontrivial p-primary ideal atoms of norm pm are all
q = pmZ+ (r+ τ)Z with m ∈ N, 0 ≤ r < pm and NK/Q(r+ τ) ≡ 0 mod pm. By
2., an ideal of this form is invertible if and only if NK/Q(r + τ) 6≡ 0 mod pm+1.

Thus if we want to count the number of invertible p-primary ideal atoms
of the form q = pmZ + (r + τ)Z we have to count the number of solutions
r ∈ [0, pm − 1] of the equation

vp(NK/Q(r + τ)) = m. (3.1)

Set N = |{r ∈ [0, pm − 1] | vp(NK/Q(r+ τ)) = m}| and a =

{
( f2 )2dK if p = 2

f2dK if p 6= 2
.

Next we show that N = |{r ∈ [0, pm−1] | vp(r2−a) = m}|. Note that NK/Q(r+

τ) = (2r+ε)2−f2dK
4 for each r ∈ [0, pm − 1]. If p = 2, then ε = 0, and hence

NK/Q(r+τ) = r2−a. Now let p 6= 2. Then vp(NK/Q(r+τ)) = vp((2r+ε)2−a) for
each r ∈ [0, pm−1]. Let f : {r ∈ [0, pm−1] | vp(r2−a) = m} → {r ∈ [0, pm−1] |
vp((2r + ε)2 − a) = m} and g : {r ∈ [0, pm − 1] | vp((2r + ε)2 − a) = m} → {r ∈

[0, pm − 1] | vp(r
2 − a) = m} be defined by f(r) =

{
r−ε
2 if r − ε is even
r+pm−ε

2 if r − ε is odd

and g(r) = rem(2r+ε, pm) for each r ∈ [0, pm−1]. Observe that f and g are well-
defined injective maps. Therefore, N = |{r ∈ [0, pm−1] | vp(r2−a) = m}| in any
case. Set c = a

pvp(a) and for ` ∈ N set g` = |{y ∈ [0, p` − 1] | y2 ≡ c mod p`}|. If

m < vp(a), then the statement follows immediately by Lemma 3.5.1. Therefore,
let m ≥ vp(a). In what follows we use Lemmas 3.4 and 3.5 without further
citation.

CASE 1: p = 2 and 2 is inert. We have v2(a) = 2v2(f) − 2, c ≡ dK ≡ 5
mod 8, g1 = 1, g2 = 2 and g3 = 0. If m = v2(a), then a is a square modulo
2m+1, and hence N = 2m/2−1 = ϕ(2m/2). If m = v2(a) + 1, then a is a square
modulo 2m, and thus N = 2v2(a)/2−1(2g1 − g2) = 0. If m = v2(a) + 2, then a
is a square modulo 2m, whence N = 2v2(a)/2−1(2g2 − g3) = 2v2(a)/2+1 = 2v2(f).
Finally, let m ≥ v2(a) + 3. Then a is not a square modulo 2m, and hence N = 0.

CASE 2: p = 2 and 2 is ramified. Note that v2(a) ∈ {2v2(f), 2v2(f) + 1}.
First let v2(a) = 2v2(f). Then a = f2d with c ≡ d ≡ 3 mod 4, g1 = 1 and
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g` = 0 for each ` ∈ N≥2. If m = v2(a), then a is a square modulo 2m+1, and thus
N = 2m/2−1 = 2v2(f)−1 = ϕ(2v2(f)). If m = v2(a) + 1, then a is a square modulo
2m, and hence N = 2v2(a)/2−1(2g1 − g2) = 2v2(f). Finally, let m ≥ v2(a) + 2.
Then a is not a square modulo 2m, and thus N = 0.

Now let v2(a) = 2v2(f) + 1. If m = v2(a), then a is not a square modulo
2m+1, and hence N = 2bm/2c = 2v2(f). If m > v2(a), then a is not a square
modulo 2m, and thus N = 0.

CASE 3: p = 2 and 2 splits. Observe that v2(a) = 2v2(f) − 2, c ≡ dK ≡ 1
mod 8, g1 = 1, g2 = 2 and g` = 4 for each ` ∈ N≥3. If m = v2(a), then a is
a square modulo 2m+1, and hence N = 2m/2−1 = ϕ(2m/2). Now let m > v2(a)
and set k = m − v2(a). Note that a is a square modulo 2m, and hence N =
2v2(a)/2−1(2gk− gk+1). If m < v2(a) + 3, then N = 0. Finally, let m ≥ v2(a) + 3.
Then N = 2v2(a)/2+1 = 2v2(f) = 2ϕ(2v2(f)).

CASE 4: p 6= 2 and p is inert. We have vp(a) = 2vp(f), ( cp ) = (dKp ) = −1

and g` = 0 for each ` ∈ N. If m = vp(a), then a is not a square modulo pm+1,
and hence N = pbm/2c = pvp(f). If m > vp(a), then a is not a square modulo
pm, and thus N = 0.

CASE 5: p 6= 2 and p is ramified. It follows that vp(a) = 2vp(f) + 1. If
m = vp(a), then a is not a square modulo pm+1, and thus N = pbm/2c = pvp(f).
If m > vp(a), then a is not a square modulo pm, and thus N = 0.

CASE 6: p 6= 2 and p splits. Note that vp(a) = 2vp(f), ( cp ) = (dKp ) = 1 and

g` = 2 for each ` ∈ N. If m = vp(a), then a is a square modulo pm+1, and hence
N = pm/2−1(p − 2) = pvp(f)−1(p − 2). If m > vp(a), then a is a square modulo
pm, and thus N = pvp(a)/2−1(pgk − gk+1) = 2pvp(f)−1(p− 1) = 2ϕ(pvp(f)).

5. It is an immediate consequence of 4. that the number of invertible ideal
atoms with radical p is finite if and only if p does not split. It remains to show that
A(Ip(O)) is finite if and only if A(I∗p (O)) is finite. It follows from [1, Theorem
4.3] that I(Op) is a finitely generated monoid if and only if I∗(Op) is a finitely
generated monoid. Therefore, Proposition 3.3.2 implies that Ip(O) is a finitely
generated monoid if and only if I∗p (O) is a finitely generated monoid. Observe
that Ip(O) and I∗p (O) are atomic monoids. Therefore, A(Ip(O)) is finite if and
only if Ip(O) is a finitely generated monoid if and only if I∗p (O) is a finitely
generated monoid if and only if A(I∗p (O)) is finite. ut

4 Sets of distances and sets of catenary degrees

The goal in this section is to prove Theorem 1.1. The proof is based on the
precise description of ideals given in Theorem 3.6. We proceed in a series of
lemmas and propositions and use all notation on orders as introduced at the
beginning of Section 3. In particular, O = Of is an order in a quadratic number
with conductor fOK for some f ∈ N≥2.
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Proposition 4.1. Let H be a reduced atomic monoid and suppose there is a
cancellative atom u ∈ A(H) such that for each a ∈ H \ H× there are n ∈ N0

and v ∈ A(H) such that a = unv.

1. For all n,m ∈ N0 and v, w ∈ A(H) such that unv = umw, it follows that
n = m and v = w.

2. For all n ∈ N0 and v ∈ A(H), it follows that max L(unv) = n+ 1.
3. c(H) = sup{c(w · y, un · v) | n ∈ N and v, w, y ∈ A(H) such that wy = unv}.
4. If H is half-factorial, then c(H) ≤ 2.
5. sup∆(H) = sup{` − 2 | ` ∈ N≥3 such that L(vw) ∩ [2, `] = {2, `} for some
v, w ∈ A(H)}.

Proof. 1. Let n,m ∈ N0 and v, w ∈ A(H) be such that unv = umw. Without
restriction let n ≤ m. Since u is cancellative, we infer that v = um−nw. Since
v ∈ A(H), we have n = m, and thus v = w.

2. It is clear that n+1 ∈ L(unv) for all n ∈ N0 and v ∈ A(H). Therefore, it is
sufficient to show by induction that for all n ∈ N0 and v ∈ A(H), max L(unv) ≤
n+ 1. Let n ∈ N0 and v ∈ A(H). If n = 0, then the assertion is obviously true.
Now let n > 0 and z ∈ Z(unv). Then there are some z′, z′′ ∈ Z(H) \ {1} such
that z = z′ · z′′. There are some m′,m′′ ∈ N0 and w′, w′′ ∈ A(H) such that
π(z′) = um

′
w′ and π(z′′) = um

′′
w′′. There are some ` ∈ N and y ∈ A(H) such

that w′w′′ = u`y. We infer that unv = um
′+m′′+`y, and thus n = m′ + m′′ + `

by 1. Since m′,m′′ < n, it follows by the induction hypothesis that |z′| ≤ m′+ 1
and |z′′| ≤ m′′ + 1. Consequently, |z| ≤ m′ +m′′ + 2 ≤ m′ +m′′ + `+ 1 = n+ 1.

3. Set k = sup{c(w · y, un · v) | n ∈ N0 and v, w, y ∈ A(H) such that
wy = unv}. Since c(H) = sup{c(z, z′) | a ∈ H, z, z′ ∈ Z(a)}, it is obvious that
k ≤ c(H). It remains to show by induction that for all n ∈ N0 and v ∈ A(H),
it follows that c(unv) ≤ k. Let n ∈ N0 and v ∈ A(H). Since c(v) = 0, we
can assume without restriction that n > 0. Since c(unv) = sup{c(z, un · v) |
z ∈ Z(unv)}, it remains to show that c(z, un · v) ≤ k for all z ∈ Z(unv). Let
z ∈ Z(unv).

CASE 1: For all w, y ∈ A(H) \ {u}, we have w · y - z. There are some m ∈ N
and w ∈ A(H) such that z = um · w. We infer by 1. that z = un · v, and thus
c(z, un · v) = 0 ≤ k.

CASE 2: There are some w, y ∈ A(H) \ {u} such that w · y | z. Set z′ = z
w·y .

There exist m ∈ N and a ∈ A(H) such that wy = uma. We infer that m ≤ n
and unv = π(z) = π(w · y)π(z′) = umaπ(z′), and thus aπ(z′) = un−mv. Observe
that c(z, um · a · z′) ≤ c(w · y, um · a) ≤ k. Since n −m < n, it follows by the
induction hypothesis that c(um · a · z′, un · v) ≤ c(a · z′, un−m · v) ≤ k, and hence
c(z, un · v) ≤ k.

4. Let H be half-factorial, n ∈ N and v, w, y ∈ A(H) be such that wy = unv.
We infer that n = 1, and thus c(w · y, un · v) ≤ d(w · y, u · v) ≤ 2. Therefore,
c(H) ≤ 2 by 3.

5. Set N = sup{` − 2 | ` ∈ N≥3 such that L(vw) ∩ [2, `] = {2, `} for some
v, w ∈ A(H)}. It is obvious that N ≤ sup∆(H). It remains to show that k ≤ N
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for each k ∈ ∆(H). Let k ∈ ∆(H). Then there are some a ∈ H and r, s ∈ L(a)
such that r < s, L(a) ∩ [r, s] = {r, s}, and k = s − r. Let z ∈ Z(a) with |z| = r
be such that vu(z) = max{vu(z′) | z′ ∈ Z(a) with |z′| = r}. Since r < max L(a),
it follows by 2., that there are some v, w ∈ A(H) \ {u} such that v ·w | z. There
are some n ∈ N and y ∈ A(H) such that vw = uny. Since vu(z) is maximal
amongst all factorizations of a of length r, we have n ≥ 2. Consequently, there
is some ` ∈ L(vw) such that 2 < ` ≤ n+ 1 and L(vw) ∩ [2, `] = {2, `}. Note that
r + `− 2 ∈ L(a), and thus s ≤ r + `− 2. This implies that k ≤ `− 2 ≤ N . ut

Theorem 3.6 implies that, for all prime divisors p of f , I∗p (Of ) and Ip(Of )
are reduced atomic monoids satisfying the assumption in Proposition 4.1.

Lemma 4.2. Let p be a prime divisor of f .

1. Z(pPf,p) = {A · Pf,p | A = Pf,p or A ∈ A(I∗p (Of )) such that N (A) = p2}
and 1 ∈ Ca(Ip(Of )).

2. If I, J ∈ A(I∗p (Of )) are such that N (I) = p2 and N (J) > p2, then IJ = pL
for some L ∈ A(I∗p (Of )).

3. 2 ∈ Ca(I∗p (Of )).

Proof. 1. Note that {I ∈ Ip(Of ) | N (I) = p} = {Pf,p}. First we show that
Z(pPf,p) = {A · Pf,p | A = Pf,p or A ∈ A(I∗p (Of )) such that N (A) = p2}.

Let z ∈ Z(pPf,p). It follows from Proposition 4.1.2 that |z| ≤ 2, and hence
|z| = 2. Consequently, z = A·B for some A,B ∈ A(Ip(Of )). By Proposition 3.2.1
there are some (u, v, w), (x, y, t) ∈Mf,p such that A = pu(pvZ + (w + τ)Z) and
B = px(pyZ+ (t+ τ)Z). Set g = min{v, y, vp(w+ t+ ε)} and e = min{g, vp(w−
t), vp(w

2 + εw + η) − v, vp(t
2 + εt + η) − y}. We infer by Proposition 3.2.1

that u + x + g = 1 and v + y + e − 2g = 1. Note that g ∈ {0, 1}. If g = 0,
then u + x = v + y = 1, and thus (A = pOf and B = Pf,p) or (A = Pf,p and
B = pOf ). Now let g = 1. Then u = x = 0, v, y ≥ 1, v+y+e = 3, and e ∈ {0, 1}.
If e = 1, then v = y = 1, and thus A = B = Pf,p. Now let e = 0. Then (v = 1
and y = 2) or (v = 2 and y = 1). Without restriction let v = 2 and y = 1. Then
B = Pf,p, N (A) = pv = p2, and N (A)N (B) = p3 = N (pPf,p) = N (AB). Since
B is not invertible, it follows by Proposition 3.2.3 that A is invertible.

To prove the converse inclusion note that Pf,p = pZ + (r + τ)Z for some
(0, 1, r) ∈ Mf,p. By Proposition 3.2.1 we have P 2

f,p = pa(pbZ + (c + τ)Z with

(a, b, c) ∈Mf,p, a = min{1, vp(2r+ε)} and b = 2+e−2a with e = min{a, vp(r2+
εr + η) − 1}. By Proposition 3.2.3 we have a > 0, and thus a = b = e = 1.
Consequently, P 2

f,p = pPf,p. Now let A ∈ A(I∗p (Of )) be such that N (A) = p2. It

follows by Proposition 3.2.3 that N (APf,p) = N (A)N (Pf,p) = p3 and APf,p =
pI for some I ∈ Ip(Of ). We infer that N (I) = p, and hence I = Pf,p.

Observe that d(z′, z′′) ≤ 1 for all z′, z′′ ∈ Z(pPf,p) and (pOf ) · Pf,p and P 2
f,p

are distinct factorizations of pPf,p. Therefore, 1 = c(pPf,p) ∈ Ca(Ip(Of )).

2. Let I, J ∈ A(I∗p (Of )) be such that N (I) = p2 and N (J) > p2. Without
restriction we can assume that I 6= pOf . There are some (0, 2, r), (0, k, s) ∈Mf,p

such that I = p2Z + (r + τ)Z and J = pkZ + (s + τ)Z. Since I and J are
invertible, we have vp(r

2 + εr + η) = 2 and vp(s
2 + εs+ η) = k > 2. Therefore,
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vp(r + s + ε) + vp(r − s) = vp(r
2 + εr + η − (s2 + εs + η)) = 2, and thus

vp(r + s+ ε) = 1, by Proposition 3.2.2. Therefore, min{2, k, vp(r + s+ ε)} = 1,
and hence IJ = pL for some L ∈ A(I∗p (Of )) by Proposition 3.2.1.

3. We distinguish two cases.
CASE 1: p 6= 2 or vp(f) ≥ 2 or d 6≡ 1 mod 8. It follows from Theorem 3.6

that there is some I ∈ A(I∗p (Of )) such that N (I) = p2 and I 6= pOf . We have

II = (pOf )2, and hence L(II) = {2}. Since I · I and (pOf ) · (pOf ) are distinct
factorizations of II, we have 2 = c(II) ∈ Ca(I∗p (Of )).

CASE 2: p = 2, vp(f) = 1 and d ≡ 1 mod 8. By Proposition 3.3.3 we
can assume without restriction that f = 2. By Theorem 3.6 there is some
I ∈ A(I∗2 (Of )) such that N (I) = 8. There is some (0, 3, r) ∈ Mf,2 such that
I = 8Z + (r + τ)Z. We have v2(r2 − d) = 3, and hence v2(r) = 0. Therefore,
min{3, v2(2r)} = 1, and thus I2 = 2J for some J ∈ A(I∗2 (Of )). Consequently,
L(I2) = {2}. Since I · I and (2Of ) · J are distinct factorizations of I2, it follows
that 2 = c(I2) ∈ Ca(I∗p (Of )). ut

Proposition 4.3. Let p be an odd prime divisor of f such that vp(f) ≥ 2.

1. There is a C ∈ A(I∗p (Of )) such that L(C2) = {2, 3} whence 1 ∈ ∆(I∗p (Of ))
and 3 ∈ Ca(I∗p (Of )). Moreover, if (p 6= 3 or d 6≡ 2 mod 3 or vp(f) > 2),
then there are I, J, L ∈ A(I∗p (Of )) such that I2 = p2J and J2 = p2L.

2. If |Pic(Of )| ≤ 2 and (p 6= 3 or d 6≡ 2 mod 3 or vp(f) > 2), then there is a
nonzero primary a ∈ Of such that 2, 3 ∈ L(a) whence 1 ∈ ∆(Of ).

Proof. 1. By Proposition 3.3.3 there is a monoid isomorphism δ : I∗p (Of ) →
I∗p (O f

2v2(f)
) such that δ(pOf ) = pO f

2v2(f)
. Therefore, we can assume without

restriction that f is odd.

CLAIM: L(I2) = {2, 3} for some I ∈ A(I∗p (Of )), 1 ∈ ∆(I∗p (Of )), 3 ∈
Ca(I∗p (Of )) and if vp(p

4 + f2d) = 4, then I2 = p2J and J2 = p2L for some
I, J, L ∈ A(I∗p (Of )).

For r ∈ N0 set k = vp(NK/Q(r + τ)) and I = pkZ + (r + τ)Z. Let k > 0

and r < pk. Then I ∈ A(I∗p (Of )). Moreover, I2 = pa(pbZ + (c + τ)Z) with

a = min{k, vp(2r + ε)}, b = 2(k − a) and c = rem(r − tNK/Q(r+τ)

pa , pb) for each

t ∈ Z with t 2r+εpa ≡ 1 mod pk−a. Set J = pbZ + (c + τ)Z. Then I2 = paJ

and if b > 0, then J ∈ A(I∗p (Of )). In particular, if a = 2 and b > 0, then
I, J ∈ A(I∗p (Of )) and L(I2) = {2, 3}, and hence 1 ∈ ∆(I2) ⊆ ∆(I∗p (Of ))

and 3 = c(I2) ∈ Ca(I∗p (Of )). Observe that J2 = pa
′
(pb
′Z + (c′ + τ)Z) with

a′ = min{b, vp(2c + ε)}, b′ = 2(b − a′) and c′ ∈ N0 such that c′ < pb
′
. Set

L = pb
′Z + (c′ + τ)Z. Then J2 = pa

′
L and if b′ > 0, then L ∈ A(I∗p (Of )).

CASE 1: d 6≡ 1 mod 4. Set r = p2. We have NK/Q(r+ τ) = p4− f2d, k ≥ 4,

a = 2, b = 2(k− 2) > 0, r < pk, and t = pk−2+1
2 satisfies the congruence. There-

fore, c = rem(p2 − (pk−2+1)(p4−f2d)
2p2 , p2(k−2)) = p4+f2d+pk−2f2d−pk+2+2`p2(k−1)

2p2 for

some ` ∈ Z. For the rest of this case let vp(p
4+f2d) = 4. It follows that vp(c) = 2,

and hence a′ = min{2(k − 2), vp(2c)} = 2 and b′ = 4(k − 3) > 0.
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CASE 2: d ≡ 1 mod 4. Set r = p2−1
2 . Observe that NK/Q(r + τ) = p4−f2d

4 ,

k ≥ 4, a = 2, b = 2(k − 2) > 0, r < pk, and t = 1 satisfies the congruence.

Consequently, 2c + ε = 2rem(p
2−1
2 − p4−f2d

4p2 , p2(k−2)) + 1 = p4+f2d+4`p2(k−1)

2p2

for some ` ∈ Z. For the rest of this case let vp(p
4 + f2d) = 4. We infer that

a′ = min{2(k− 2), vp(2c+ ε)} = 2. Moreover, b′ = 4(k− 3) > 0. This proves the
claim.

Note that if g ∈ N with vp(g) = vp(f), then there is a monoid isomorphism
α : I∗p (Of ) → I∗p (Og) such that α(pOf ) = pOg by Proposition 3.3.3. By the
claim it remains to show that if (p 6= 3 or d 6≡ 2 mod 3 or vp(f) > 2), then
there is some odd g ∈ N such that vp(g) = vp(f) and vp(p

4 + g2d) = 4.
Let (p 6= 3 or d 6≡ 2 mod 3 or vp(f) > 2). Furthermore, let vp(p

4 +f2d) > 4.
This implies that vp(f) = 2 and p - d. Without restriction we can assume that
vp(p

4 + (p2)2d) > 4. We have vp(1 + d) > 0, and hence p 6= 3. Set g = (p− 2)p2.
Then vp(g) = vp(f). Assume that vp(p

4 + g2d) > 4. Then p5 | p4 + (p−2)2p4d−
p4(1 + d), and thus p | (p − 2)2 − 1 = p2 − 4p + 3. It follows that p = 3, a
contradiction.

2. Let |Pic(Of )| ≤ 2 and let p 6= 3 or d 6≡ 2 mod 3 or vp(f) > 2. By 1.
there are some I, J, L ∈ A(I∗p (Of )) such that I2 = p2J and J2 = p2L. We infer
that I2 is principal, and hence J and L are principal. Consequently, there are
some u, v ∈ A(Of ) such that J = uOf , L = vOf and u2 = p2v. Note that u2 is
primary. Since p ∈ A(Of ), we have 2, 3 ∈ L(u2). Therefore, 1 ∈ ∆(Of ). ut

Proposition 4.4. Let p be a prime divisor of f such that vp(f) ≥ 2. Then
there are I, J ∈ A(I∗p (Of )) such that L(IJ) = {2, 4} whence 2 ∈ ∆(I∗p (Of )) and
4 ∈ Ca(I∗p (Of )).

Proof. CASE 1: p 6= 2 or vp(f) > 2 or d 6≡ 1 mod 8. By Theorem 3.6 there is
some I ∈ A(I∗p (Of )) such thatN (I) = p4. Set J = I. We infer that IJ = (pOf )4,
and hence {2, 4} ⊂ L(IJ) ⊂ {2, 3, 4}. Assume that 3 ∈ L(IJ). Then there are
some A,B,C ∈ A(I∗p (Of )) such that IJ = ABC and N (A) ≤ N (B) ≤ N (C).
Again by Theorem 3.6 we have N (L) ∈ {p2} ∪ {pn | n ∈ N≥4} for all L ∈
A(I∗p (Of )). This implies that N (A) = N (B) = p2 and N (C) = p4. It follows
by Lemma 4.2.2 that ABC = p2L for some L ∈ A(I∗p (Of )). Consequently,
L = p2Of , a contradiction. We infer that L(IJ) = {2, 4} whence 2 ∈ ∆(I∗2 (Of ))
and 4 ∈ Ca(I∗2 (Of )).

CASE 2: p = 2, vp(f) = 2 and d ≡ 1 mod 8. Since I∗2 (O4) ∼= I∗2 (Of ) by
Proposition 3.3.3, we can assume without restriction that f = 4. We set

w =

{
6 if d ≡ 1 mod 16

2 if d ≡ 9 mod 16
and z =


18 if d ≡ 1 mod 32

22 if d ≡ 9 mod 32

2 if d ≡ 17 mod 32

6 if d ≡ 25 mod 32

.

In any case, we have v2(NK/Q(w + τ)) = 5 and v2(NK/Q(z + τ)) = 6. Set
I = 32Z + (w + τ)Z and J = 64Z + (z + τ)Z. Then I, J ∈ A(I∗2 (O4)) and
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Proposition 3.2.1 implies that IJ = 2a(2bZ+(c+τ)Z) with a = min{5, 6, v2(w+
z)}, b = 5 + 6 − 2a and c ∈ N0 such that c < 2b. Observe that v2(w + z) = 3,
and thus a = 3 and b = 5. Set L = 32Z + (c + τ)Z. Then L ∈ A(I∗2 (O4)) and
IJ = (2O4)3L. We infer that {2, 4} ⊂ L(IJ) ⊂ {2, 3, 4}, by Proposition 4.1.2.

Assume that 3 ∈ L(IJ). Then there are some A,B,C ∈ A(I∗2 (O4)) such
that IJ = ABC and N (A) ≤ N (B) ≤ N (C). It follows by Theorem 3.6 that
N (U) ∈ {4} ∪ {2n | n ≥ 5} for all U ∈ A(I∗2 (O4)). Since N (A)N (B)N (C) =
N (I)N (J) = 2048, we infer that N (A) = N (B) = 4 and N (C) = 128. It follows
by Lemma 4.2.2 that ABC = 4D for some D ∈ A(I∗2 (O4)). This implies that
D = 2L, a contradiction. Consequently, L(IJ) = {2, 4}, and thus 2 ∈ ∆(I∗2 (O4))
and 4 = c(IJ) ∈ Ca(I∗2 (O4)). ut

Proposition 4.5. Suppose that one of the following conditions hold :

(a) v2(f) ≥ 5 or (v2(f) = 4 and d 6≡ 1 mod 4).
(b) v2(f) = 3 and d ≡ 2 mod 4.
(c) v2(f) = 2 and d ≡ 1 mod 4.

Then there are I, J ∈ A(I∗2 (Of )) with L(IJ) = {2, 3} whence 1 ∈ ∆(I∗2 (Of ))
and 3 ∈ Ca(I∗2 (Of )). If |Pic(Of )| ≤ 2, then there is a nonzero primary a ∈ Of
with 2, 3 ∈ L(a) whence 1 ∈ ∆(Of ).

Proof. CASE 1: v2(f) ≥ 5 or (v2(f) = 4 and d 6≡ 1 mod 4). We show that there
are some A,B, I, J, L ∈ A(I∗2 (Of )) such that A2 = 32I, B2 = 16J and IJ = 4L.
Set k = v2(NK/Q(16+τ)) and A = 2kZ+(16+τ)Z. Then k ≥ 8, A ∈ A(I∗2 (Of ))

and A2 = 32(22k−10Z + (c+ τ)Z) with (5, 2k− 10, c) ∈Mf,2 and v2(c) ≥ 3. Set
I = 22k−10Z + (c + τ)Z. Then I ∈ A(I∗2 (Of )). Set B = 64Z + (8 + τ)Z. Then
B ∈ A(I∗2 (Of )) and B2 = 16(16Z + (4 + τ)Z). Set J = 16Z + (4 + τ)Z. Then
B2 = 16J , J ∈ A(I∗2 (Of )) and IJ = 4L with L ∈ A(I∗2 (Of )).

CASE 2: v2(f) = 3 and d ≡ 2 mod 4. We show that AB = 2I, AC = 2I ′,
BC = 8I ′′, B2 = 16J , IJ = 4L, I ′J = 4L′, I ′′J = 4L′′ for some A,B,C, I, I ′,
I ′′, J, L, L′, L′′ ∈ A(I∗2 (Of )). By Proposition 3.3.3, we can assume without re-
striction that f = 8. Set A = 4Z + (2 + τ)Z, B = 64Z + (8 + τ)Z and
C = 128Z + τZ. Then A,B,C ∈ A(I∗2 (Of )), AB = 2(64Z + (40 + τ)Z), AC =
2(128Z+(64+τ)Z), B2 = 16(16Z+(12+τ)Z) and BC = 8(128Z+(c+τ)Z) with
(3, 7, c) ∈Mf,2 and v2(c) = 4. Furthermore, (64Z+(40+τ)Z)(16Z+(12+τ)Z) =
4(64Z + (56 + τ)Z), (128Z + (64 + τ)Z)(16Z + (12 + τ)Z) = 4(128Z + (r + τ)Z)
with (2, 7, r) ∈Mf,2 and (128Z+(c+τ)Z)(16Z+(12+τ)Z) = 4(128Z+(s+τ)Z)
with (2, 7, s) ∈Mf,2. Set J = 16Z+ (12 + τ)Z. In particular, if I ∈ {64Z+ (40 +
τ)Z, 128Z + (64 + τ)Z, 128Z + (c + τ)Z}, then I, J ∈ A(I∗2 (Of )) and IJ = 4L
for some L ∈ A(I∗2 (Of )).

CASE 3: v2(f) = 2 and d ≡ 1 mod 4. We show that A2 = 4I and I2 = 4L
for some A, I, L ∈ A(I∗2 (Of )). By Proposition 3.3.3, we can assume without
restriction that f = 4. First let d ≡ 1 mod 8. If d ≡ 1 mod 16, then set
A = 32Z + (6 + τ)Z and if d ≡ 9 mod 16, then set A = 32Z + (2 + τ)Z. In any
case, we have A ∈ A(I∗2 (Of )) and A2 = 4(64Z + (c+ τ)Z) with (2, 6, c) ∈Mf,2
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and v2(c) = 1. Set I = 64Z + (c + τ)Z. Then I ∈ A(I∗2 (Of )), A2 = 4I and
I2 = 4(256Z + (r + τ)Z) with (2, 8, r) ∈Mf,2.

Now let d ≡ 5 mod 8. Set A = 16Z + (2 + τ)Z. Then A ∈ A(I∗2 (Of )) and
A2 = 4(16Z+(c+τ)Z) with (2, 4, c) ∈Mf,2 and v2(c) = 1. Set I = 16Z+(c+τ)Z.
Then A2 = 4I and I2 = 4(16Z + (z + τ)Z) with (2, 4, z) ∈Mf,2.

Using the case analysis above we can find I, J, L ∈ A(I∗2 (Of )) such that IJ =
4L. In particular, L(IJ) = {2, 3}, 1 ∈ ∆(I∗p (Of )) and 3 = c(IJ) ∈ Ca(I∗p (Of )).
Now let |Pic(Of )| ≤ 2. Observe that if A,B,C ∈ A(I∗2 (Of )), then A2 is principal
and {AB,AC,BC} contains a principal ideal of Of . In any case we can choose
I, J, L to be principal. There are some u, v, w ∈ A(Of ) such that I = uOf ,
J = vOf , L = wOf and uv = 4w. Note that uv is primary. Since 2 ∈ A(Of ), we
have 2, 3 ∈ L(uv), and thus 1 ∈ ∆(Of ). ut

Proposition 4.6. Let p be a prime divisor of f . Then the following statements
are equivalent :

(a) I∗p (Of ) is half-factorial.
(b) Ip(Of ) is half-factorial.
(c) c(I∗p (Of )) = 2.
(d) c(Ip(Of )) = 2.
(e) vp(f) = 1 and p is inert.

Proof. (a)⇒ (e) If vp(f) > 1 or p is not inert, then there is some I ∈ A(I∗p (Of ))
such that N (I) > p2 by Theorem 3.6.4. Set k = vp(N (I)). Then k ≥ 3 and
II = (pOf )k by Proposition 3.2.5. Since I ∈ A(I∗p (Of )), we have 2, k ∈ L(II).

(e) ⇒ (b) Observe that N (A) ∈ {p, p2} for each A ∈ A(Ip(Of )), and thus
A(Ip(Of )) = {Pf,p} ∪ {A ∈ A(I∗p (Of )) | N (A) = p2}. Let I ∈ Ip(Of ) \ {Of}.
There are some k ∈ N0 and J ∈ A(Ip(Of )) such that I = pkJ . Let z ∈ Z(I).
Then z = (

∏n
i=1 Ii) · P `f,p with `, n ∈ N0 and Ii ∈ A(I∗p (Of )) for each i ∈ [1, n].

Note that |z| = n+ `. It is sufficient to show that n+ ` = k + 1.

CASE 1: I is invertible. Then J is invertible and ` = 0. It follows that
p2n = N (

∏n
i=1 Ii) = N (I) = N (pkJ) = p2k+2 by Proposition 3.2.3, and thus

n+ ` = n = k + 1.

CASE 2: I is not invertible. Then J = Pf,p and ` > 0. It follows from
Lemma 4.2 that P `f,p = p`−1Pf,p. Consequently,

p2(n+`)−1 = N (

n∏
i=1

Ii)N (p`−1Pf,p) = N (I) = N (pkPf,p) = p2k+1

by Proposition 3.2.3, and hence n+ ` = k + 1.

(b) ⇒ (d) Since I∗p (Of ) is a cancellative divisor-closed submonoid of Ip(Of )
and not factorial, we infer by Proposition 4.1.4 that

2 ≤ c(I∗p (Of )) ≤ c(Ip(Of )) ≤ 2.
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(d) ⇒ (c) Note that I∗p (Of ) is a divisor-closed submonoid of Ip(Of ), and
thus c(I∗p (Of )) ≤ c(Ip(Of )) = 2. Since I∗p (Of ) is not factorial, we infer that
c(I∗p (Of )) = 2.

(c) ⇒ (a) Since I∗p (Of ) is cancellative and not factorial, it follows that 2 +
sup∆(I∗p (Of )) ≤ c(I∗p (Of )) = 2, and thus sup∆(I∗p (Of )) = 0. Consequently,
∆(I∗p (Of )) = ∅, and hence I∗p (Of ) is half-factorial. ut

Lemma 4.7. Let p be a prime divisor of f , |Pic(Of )| ≤ 2, I, J, L ∈ A(I∗p (Of )).

1. If J is principal and IJ = p2L, then 1 ∈ ∆(Of ).
2. If I and J are not principal and IJ = pL, then 1 ∈ ∆(Of ).

Proof. Note that if |Pic(Of )| > 1, then it follows from [16, Corollary 2.11.16]
that there is some invertible prime ideal P of Of that is not principal. Observe
that p ∈ A(Of ). Also note that if I is not principal, then PI is principal, and
hence PI is generated by an atom ofOf , since PI has no nontrivial factorizations
in I∗(Of ).

1. Let J be principal and IJ = p2L. There is some v ∈ A(Of ) such that
J = vOf .

CASE 1: I is principal. Then L is principal, and hence there are some u,w ∈
A(Of ) such that I = uOf , L = wOf and uv = p2w. We infer that 2, 3 ∈ L(uv),
and thus 1 ∈ ∆(Of ).

CASE 2: I is not principal. Then L is not principal and |Pic(Of )| > 1,
and thus there are some u,w ∈ A(Of ) such that PI = uOf , PL = wOf and
uv = p2w. It follows that 2, 3 ∈ L(uv), and thus 1 ∈ ∆(Of ).

2. Let I and J not be principal and IJ = pL. Then L is principal and
|Pic(Of )| > 1, and hence there are some u, v, w, y ∈ A(Of ) such that PI = uOf ,
PJ = vOf , P 2 = wOf , L = yOf and uv = pwy. Therefore, 2, 3 ∈ L(uv), and
hence 1 ∈ ∆(Of ). ut

Proposition 4.8. Let p be a prime divisor of f .

1. If vp(f) ≥ 2 or p is not inert, then there are I, J ∈ A(I∗p (Of )) such that
L(IJ) = {2, 3} whence 1 ∈ ∆(I∗p (Of )) and 3 ∈ Ca(I∗p (Of )).

2. Suppose that Of is not half-factorial and that one of the following conditions
holds :
(i) |Pic(Of )| ≥ 3 or vp(f) ≥ 2 or p does split.
(ii) p is inert and there is some C ∈ A(I∗p (Of )) that is not principal.
(iii) p is ramified and there is some principal C ∈ A(I∗p (Of )) such that

N (C) = p3.
(iv) f is a squarefree product of inert primes.
Then 1 ∈ ∆(Of ).

Proof. We prove 1. and 2. simultaneously. Set G = Pic(Of ). Let B(G) be the
monoid of zero-sum sequences of G. It follows by [16, Theorem 6.7.1.2] that
if |G| ≥ 3, then 1 ∈ ∆(B(G)). We infer by [16, Proposition 3.4.7 and Theo-
rems 3.4.10.3 and 3.7.1.1] that there exists an atomic monoid B(Of ) such that
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∆(B(Of )) = ∆(Of ) and B(G) is a divisor-closed submonoid of B(Of ). In par-
ticular, if |G| ≥ 3, then 1 ∈ ∆(Of ). Thus, for the second assertion we only need
to consider the case |G| ≤ 2. By Propositions 4.3 and 4.5 we can restrict to the
following cases.

CASE 1: p = 2 and ((v2(f) ∈ {3, 4} and d ≡ 1 mod 4) or (v2(f) ∈ {2, 3}
and d ≡ 3 mod 4)). If (v2(f) = 4 and d ≡ 1 mod 4) or (v2(f) = 3 and d ≡ 3
mod 4), then set I = 16Z + (4 + τ)Z. If v2(f) = 3 and d ≡ 1 mod 4, then
set I = 16Z + τZ. Finally, if v2(f) = 2 and d ≡ 3 mod 4, then there is some
I ∈ A(I∗2 (Of )) such that N (I) = 32 by Theorem 3.6. In any case, it follows that
I ∈ A(I∗2 (Of )).

It is a consequence of Proposition 3.2.1 and Theorem 3.6 that there are some
A, J ∈ A(I∗2 (Of )) and ` ∈ N such that A2 = `J with values according to
the following table. Let k ∈ {1, 3, 5, 7} be such that d ≡ k mod 8. Note that
I = 2aZ + (r + τ)Z and J = 2bZ + (s+ τ)Z with (0, a, r), (0, b, s) ∈Mf,2.

v2(f) k N (A) ` N (J) v2(r) v2(s)

4 1 512 16 1024 2 3

4 5 256 16 256 2 3

3 1 128 8 256 ∞ 2

3 5 64 8 64 ∞ 2

3 3 or 7 128 16 64 2 ≥ 4

2 3 or 7 32 8 16 2 ≥ 3

Since v2(r + s) = 2 in any case, we infer that IJ = 4L for some L ∈
A(I∗2 (Of )). Now let |G| ≤ 2. We have J is principal, and hence 1 ∈ ∆(Of ) by
Lemma 4.7.1.

CASE 2: p = 2, v2(f) = 2 and d ≡ 2 mod 4. Set A = 32Z + τZ and
B = 32Z + (8 + τ)Z. Then A,B ∈ A(I∗2 (Of )) and AB = 8I for some I ∈
A(I∗2 (Of )) with I = 16Z + (r + τ)Z, (0, 4, r) ∈Mf,2, and v2(r) = 2. Therefore,
we have AI = 4J and BI = 4L for some J, L ∈ A(I∗2 (Of )). Now let |G| ≤ 2.
Since {A,B, I} contains a principal ideal of Of , we infer by Lemma 4.7.1 that
1 ∈ ∆(Of ).

CASE 3: p = 3, v3(f) = 2 and d ≡ 2 mod 3. First let d 6≡ 1 mod 4. Set
I = 81Z+ τZ and J = 81Z+ (9 + τ)Z. Then I, J ∈ A(I∗3 (Of )) and IJ = 9L for
some L ∈ A(I∗3 (Of )) with L = 81Z + (r + τ)Z, (0, 4, r) ∈ Mf,3, and v3(r) = 2.
It follows that IL = 9A for some A ∈ A(I∗3 (Of )).

Now let d ≡ 1 mod 4. By Proposition 3.3.3 we can assume without re-
striction that f is odd. Set I = 81Z + (4 + τ)Z and J = 81Z + (13 + τ)Z.
Then I, J ∈ A(I∗3 (Of )) and IJ = 9L for some L ∈ A(I∗3 (Of )). There is some
(0, 4, r) ∈ Mf,3 such that L = 81Z + (r + τ)Z. Since v3(2r + 1) ≥ 2, we have
IL = 9A for some A ∈ A(I∗3 (Of )) or JL = 9A for some A ∈ A(I∗3 (Of )).

In any case if |G| ≤ 2, then {I, J, L} contains a principal ideal of Of , and
hence 1 ∈ ∆(Of ) by Lemma 4.7.1.
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CASE 4: vp(f) = 1 and p splits. By Theorem 3.6 there is some I ∈ A(I∗p (Of ))
such that N (I) = p3. There is some (0, 3, r) ∈Mf,p such that I = p3Z+(r+τ)Z.
Observe that vp(2r + ε) = 1. We infer that I2 = pJ for some J ∈ A(I∗p (Of ))

and II = p2L with I ∈ A(I∗p (Of )) and L = pOf ∈ A(I∗p (Of )). Now let |G| ≤ 2.
We infer by Lemma 4.7 that 1 ∈ ∆(Of ).

CASE 5: vp(f) = 1 and p is ramified. By Theorem 3.6 there is some C ∈
A(I∗p (Of )) such that N (C) = p3. Note that CC = p3Of and C ∈ A(I∗p (Of )).
Now let C be principal. It follows by Lemma 4.7.1 that 1 ∈ ∆(Of ).

Cases 1-5 show that there are some I, J, L ∈ A(I∗p (Of )) such that IJ = p2L.
In particular, L(IJ) = {2, 3}, 1 ∈ ∆(I∗p (Of )) and 3 = c(IJ) ∈ Ca(I∗p (Of )). This
proves 1. For the rest of this proof let Of be not half-factorial and |G| ≤ 2.

CASE 6: vp(f) = 1, p is inert and there is some C ∈ A(I∗p (Of )) that is not
principal. We have C2 = pL for some L ∈ A(I∗p (Of )), and thus 1 ∈ ∆(Of ) by
Lemma 4.7.2.

CASE 7: f is a squarefree product of inert primes. Then I∗p (Of ) is half-
factorial by Proposition 4.6. If G is trivial, then Of is half-factorial, a contra-
diction. Note that Of is seminormal by [10, Corollary 4.5]. It follows from [18,
Theorem 6.2.2.(a)] that 1 ∈ ∆(Of ). ut

Lemma 4.9. Let p be a prime divisor of f , k ∈ N≥2, and N = sup{vp(N (A)) |
A ∈ A(I∗p (Of ))}. If ` ∈ N and A ∈ Ip(Of )) is both a product of k atoms and a

product of ` atoms, then ` ≤ kN
2 .

Proof. Let ` ∈ N and suppose that a product of k atoms can be written as a
product of ` atoms and set P = Pf,p. There are some a, b ∈ N0, Ii ∈ A(Ip(Of ))\
{P} for each [1, b] and Jj ∈ A(Ip(Of )) for each j ∈ [1, k] such that ` = a + b

and
∏k
j=1 Jj = P a

∏b
i=1 Ii. Note that p2 | N (Ii) for each i ∈ [1, b].

CASE 1: a = 0. Then b = `. It follows by induction from Proposition 3.2.4
that there are J ′j ∈ A(I∗p (Of )) for each j ∈ [1, k] such that N (

∏k
j=1 Jj) |

N (
∏k
j=1 J

′
j). Set M = lcm{N (J ′j) | j ∈ [1, k]}. Then p2` |

∏`
i=1N (Ii) |

N (
∏`
i=1 Ii) = N (

∏k
j=1 Jj) | N (

∏k
j=1 J

′
j) =

∏k
j=1N (J ′j) | Mk. This implies

that 2` ≤ kvp(M) ≤ kN , and thus ` ≤ kN
2 .

CASE 2: a > 0. By Lemma 4.2 we have P a = pa−1P , and thus N (P a) =

p2a−1. Note that
∏k
j=1 Jj is not invertible, and hence one member of the product,

say J1, is not invertible. Observe that vp(N (J1)) ≤ N − 1 by Proposition 3.2.4.
We infer by induction from Proposition 3.2.4 that there are J ′j ∈ A(I∗p (Of )) for

each j ∈ [2, k] such that N (
∏k
j=1 Jj) | N (J1

∏k
j=2 J

′
j). Set M = lcm{N (J ′j) |

j ∈ [2, k]}. Then p2`−1 | N (P a)
∏b
i=1N (Ii) | N (P a

∏b
i=1 Ii) = N (

∏k
j=1 Jj) |

N (J1
∏k
j=2 J

′
j) = N (J1)

∏k
j=2N (J ′j) | N (J1)Mk−1. This implies that 2` − 1 ≤

vp(N (J1)) + (k − 1)vp(M) ≤ kN − 1, and hence ` ≤ kN
2 . ut

Lemma 4.10. Let p be a prime divisor of f . For every I ∈ A(I∗p (Of )), we set
vI = vp(N (I)), and let B = {vA | A ∈ A(I∗p (Of ))}.
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1. For all I ∈ A(I∗p (Of )), we have c(I · I, (pOf )vI ) ≤ 2 + sup∆(B).

2. Let p = 2, d ≡ 1 mod 8, and vp(f) ≥ 4. Then c(I · I, (pOf )vI ) ≤ 4 for all
I ∈ A(I∗p (Of )).

Proof. 1. It is sufficient to show by induction that for all n ∈ N≥2 and I ∈
A(I∗p (Of )) with vI = n, it follows that c(I · I, (pOf )n) ≤ 2 + sup∆(B). Let

n ∈ N≥2 and I ∈ A(I∗p (Of )) be such that vI = n. If n = 2, then c(I ·I, (pOf )2) ≤
d(I · I, (pOf )2) ≤ 2 ≤ 2 + sup∆(B). Now let n > 2. Note that 2 = vpOf

∈ B,
and hence there is some k ∈ B such that 2 ≤ k < n and B ∩ [k, n] = {k, n}.
Observe that n − k ∈ ∆(B). Furthermore, there is some J ∈ A(I∗p (Of )) such

that k = vJ . Note that JJ = (pOf )k, and thus II = (pOf )n−kJJ . By the
induction hypothesis, we infer that c((pOf )n−k·J ·J, (pOf )n) ≤ c(J ·J, (pOf )k) ≤
2 + sup∆(B). Since d(I · I, (pOf )n−k · J · J) ≤ 2 + (n − k) ≤ 2 + sup∆(B), it
follows that c(I · I, (pOf )n) ≤ 2 + sup∆(B).

2. By Proposition 3.3.3 we can assume without restriction that f = 2v2(f).
We show by induction that for all n ∈ N≥2 and I ∈ A(I∗2 (Of )) with vI = n, we
have c(I · I, (2Of )n) ≤ 4. Let n ∈ N≥2 and I ∈ A(I∗2 (Of )) be such that vI = n.
If n = 2, then c(I · I, (2Of )2) ≤ d(I · I, (2Of )2) ≤ 2 ≤ 2 + sup∆(B). Next let
n > 2. Observe that 2 = v2Of

∈ B, and hence there is some k ∈ B such that
2 ≤ k < n and B ∩ [k, n] = {k, n}. There is some J ∈ A(I∗2 (Of )) such that
k = vJ . Note that JJ = (2Of )k, and hence II = (2Of )n−kJJ . By the induction
hypothesis, we have c((2Of )n−k · J · J, (2Of )n) ≤ c(J · J, (2Of )k) ≤ 4.

CASE 1: n 6= 2v2(f) + 1. It follows from Theorem 3.6 that n− k ≤ 2. Since
d(I · I, (2Of )n−k · J · J) ≤ 4, we infer that c(I · I, (2Of )n) ≤ 4.

CASE 2: n = 2v2(f) + 1. By Theorem 3.6 we have n − k = 3. Set A =
16Z+ (4 + τ)Z, B = 2n−3Z+ (2n−5 + τ)Z, and C = 2n−3Z+ (2n−4 + τ)Z. Then
A,B,C ∈ A(I∗2 (Of )) and ABC = 2n−5A(16Z+(12+τ)Z) = (2Of )n−1. Observe
that d(I · I, (2Of ) ·A ·B ·C) ≤ 4 and d((2Of ) ·A ·B ·C, (2Of )n−k · J · J)) ≤ 4.
Therefore, c(I · I, (2Of )n) ≤ 4. ut

Proposition 4.11. Let p be a prime divisor of f and set B = {vp(N (A)) | A ∈
A(I∗p (Of ))}.

1. sup∆(Ip(Of )) ≤ sup∆(B) and c(Ip(Of )) ≤ 2 + sup∆(B).
2. Let p = 2, d ≡ 1 mod 8, and vp(f) ≥ 4. Then sup∆(I2(Of )) ≤ 2 and

c(I2(Of )) ≤ 4.

Proof. 1. First we consider the case that vp(f) = 1 and p is inert. It follows from
Theorem 3.6 that sup∆(B) = 0. Proposition 4.6 implies that sup∆(Ip(Of )) = 0
and c(Ip(Of )) = 2. Now let vp(f) ≥ 2 or p not inert. Observe that sup∆(B) ≥
1 by Theorem 3.6. Let I, J ∈ A(Ip(Of )). There are some n ∈ N and L ∈
A(Ip(Of )) such that IJ = pnL.

By Proposition 4.1, it remains to show that c(I ·J, (pOf )n ·L) ≤ 2+sup∆(B)
and if ` ∈ N≥3 is such that L(IJ) ∩ [2, `] = {2, `}, then ` − 2 ≤ sup∆(B). Set
N = supB. Since a product of two atoms of Ip(Of ) can be written as a product of
n+1 atoms, Lemma 4.9 implies that n+1 ≤ N . If n = 1, then d(I ·J, (pOf )·L) ≤
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2 ≤ 2 + sup∆(B) and there is no ` ∈ N≥3 with L(IJ) ∩ [2, `] = {2, `}. Now let
n ≥ 2 and ` ∈ N≥3 be such that L(IJ) ∩ [2, `] = {2, `}.

CASE 1: n ∈ B. Then AA = (pOf )n for some A ∈ A(I∗p (Of )). Therefore,

c(A · A · L, (pOf )n · L) ≤ c(A · A, (pOf )n) ≤ 2 + sup∆(B) by Lemma 4.10.1.
Moreover, d(I · J,A · A · L) ≤ 3 ≤ 2 + sup∆(B), and thus c(I · J, (pOf )n · L) ≤
2 + sup∆(B) and `− 2 = 1 ≤ sup∆(B).

CASE 2: n 6∈ B. Note that n ≥ 3. It follows by Theorem 3.6 that vp(f) ≥ 2
and sup∆(B) ≥ 2.

CASE 2.1: p 6= 2 or d 6≡ 1 mod 8 or n 6= 2vp(f). Since n ≤ N , it follows
from Theorem 3.6 that n−1 = N (A) for some A ∈ A(I∗p (Of )), and hence AA =

(pOf )n−1. We infer that c((pOf ) · A · A · L, (pOf )n · L) ≤ c(A · A, (pOf )n−1) ≤
2+sup∆(B) by Lemma 4.10.1. Moreover, we have d(I ·J,A ·A · (pOf ) ·L) ≤ 4 ≤
2+sup∆(B), and thus c(I ·J, (pOf )n·L) ≤ 2+sup∆(B) and `−2 ≤ 2 ≤ sup∆(B).

CASE 2.2: p = 2, d ≡ 1 mod 8 and n = 2vp(f). We infer by Theorem 3.6
that sup∆(B) = 3. By Theorem 3.6 there is some A ∈ A(I∗2 (Of )) such that
n − 2 = N (A), and thus AA = (2Of )n−2. This implies that c((2Of )2 · A · A ·
L, (2Of )n · L) ≤ c(A · A, (2Of )n−2) ≤ 2 + sup∆(B) by Lemma 4.10.1. Observe
that d(I ·J,A ·A · (2Of )2 ·L) ≤ 5 = 2+sup∆(B), and hence c(I ·J, (2Of )n ·L) ≤
2 + sup∆(B) and `− 2 ≤ 3 = sup∆(B).

2. By Proposition 3.3.3 we can assume without restriction that f = 2v2(f).
Let I, J ∈ A(I2(Of )). There are some n ∈ N and L ∈ A(I2(Of )) such that
IJ = 2nL. It follows from Lemma 4.9 that n + 1 ≤ supB. By Proposition 4.1,
it is sufficient to show that c(I · J, (2Of )n · L) ≤ 4 and if ` ∈ N≥3 is such that
L(IJ) ∩ [2, `] = {2, `}, then ` − 2 ≤ 2. The assertion is trivially true for n = 1.
Let n ≥ 2 and let ` ∈ N≥3 be such that L(IJ) ∩ [2, `] = {2, `}.

CASE 1: n ∈ B. There is some A ∈ A(I∗2 (Of )) such that AA = (2Of )n. It
follows by Lemma 4.10.2 that c(A · A · L, (2Of )n · L) ≤ c(A · A, (2Of )n) ≤ 4.
Furthermore, d(I ·J,A ·A ·L) ≤ 3, and thus c(I ·J, (2Of )n ·L) ≤ 4 and `−2 ≤ 1.

CASE 2: n 6∈ B and n 6= 2v2(f). It follows by Theorem 3.6 that there is
some A ∈ A(I∗2 (Of )) such that AA = (2Of )n−1. We infer by Lemma 4.10.2
that c((2Of ) · A · A · L, (2Of )n · L) ≤ c(·A · A, (2Of )n−1) ≤ 4. Furthermore,
d(I · J, (2Of ) ·A ·A · L) ≤ 4, and thus c(I · J, (2Of )n · L) ≤ 4 and `− 2 ≤ 2.

CASE 3: n = 2v2(f). By Theorem 3.6 there is some D ∈ A(I∗2 (Of )) such
that DD = (2Of )n−2. Set A = 16Z + (4 + τ)Z, B = 2n−2Z + (2n−4 + τ)Z and
C = 2n−2Z+(2n−3+τ)Z. Then A,B,C ∈ A(I∗2 (Of )) and ABC = 2n−4A(16Z+
(12 + τ)Z) = (2Of )n. This implies that c((2Of )2 ·D ·D · L, (2Of )n · L) ≤ c(D ·
D, (2Of )n−2) ≤ 4 by Lemma 4.10.2. Moreover, d(A·B ·C ·L, (2Of)2 ·D·D·L) ≤ 4
and d(I ·J,A ·B ·C ·L) ≤ 4. Consequently, c(I ·J, (2Of )n ·L) ≤ 4 and `− 2 ≤ 2.

ut

Proposition 4.12. Let v2(f) ∈ {2, 3} and d ≡ 1 mod 8. Then 3 ∈ ∆(I∗2 (Of ))
and 5 ∈ Ca(I∗2 (Of )).

Proof. We distinguish two cases.
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CASE 1: v2(f) = 2. By Theorem 3.6 there is some I ∈ A(I∗2 (Of )) such that
N (I) = 32. Set J = I. Then IJ = 32Of , and hence {2, 5} ⊂ L(IJ) ⊂ [2, 5]. Again
by Theorem 3.6 we have N (L) ∈ {4} ∪ {2n | n ∈ N≥5} for all L ∈ A(I∗2 (Of )).
Note that if A,B,C,D ∈ A(I∗2 (Of )), then N (ABCD) ∈ {256} ∪ N≥2048. Since
N (IJ) = 1024, we have 4 6∈ L(IJ). Assume that 3 ∈ L(IJ). Then there are
some A,B,C ∈ A(I∗2 (Of )) such that IJ = ABC and N (A) ≤ N (B) ≤ N (C).
Therefore, N (A) = N (B) = 4 and N (C) = 64. We infer by Lemma 4.2.2 that
ABC = 4L for some L ∈ A(I∗2 (Of )), and hence L = 8Of , a contradiction. We
have L(IJ) = {2, 5}, and thus 3 ∈ ∆(I∗2 (Of )) and 5 = c(IJ) ∈ Ca(I∗2 (Of )).

CASE 2: v2(f) = 3. By Proposition 3.3.3 we can assume without restriction
that f = 8. By Theorem 3.6 there are some I, J ∈ A(I∗2 (Of )) such that N (I) =
128 and N (J) = 16. We have II = 128Of and JJ = 16Of , and hence II = 8JJ .
This implies that {2, 5} ⊂ L(II). It follows from Theorem 3.6 that N (L) ∈
{4, 16} ∪ {2n | n ∈ N≥7} for all L ∈ A(I∗2 (Of )).

First assume that 3 ∈ L(II). Then there exist A,B,C ∈ A(I∗2 (Of )) such that
II = ABC, and N (A) ≤ N (B) ≤ N (C). Therefore, (N (A),N (B),N (C)) ∈
{(4, 16, 256), (4, 4, 1024)}. If (N (A),N (B),N (C)) = (4, 16, 256), then it follows
by Lemma 4.2.2 that AB = 2D for some D ∈ A(I∗2 (Of )) with N (D) = 16.
We infer that DC = 64Of , and hence C = 4D, a contradiction. Now let
(N (A),N (B),N (C)) = (4, 4, 1024). Then ABC = 4D for some D ∈ A(I∗2 (Of ))
by Lemma 4.2.2, and thus D = 32Of , a contradiction. Consequently, 3 6∈ L(II).

Next assume that 4 ∈ L(II). Then there exist A,B,C,D ∈ A(I∗2 (Of )) such
that II = ABCD, and N (A) ≤ N (B) ≤ N (C) ≤ N (D).

Then (N (A),N (B),N (C),N (D)) ∈ {(4, 4, 4, 256), (4, 16, 16, 16)}.
If (N (A),N (B),N (C),N (D)) = (4, 4, 4, 256), then ABCD = 8E for E ∈

A(I∗2 (Of )) by Lemma 4.2.2, and hence E = 16Of , a contradiction. Now let
(N (A),N (B),N (C),N (D)) = (4, 16, 16, 16). By Lemma 4.2.2 there is some E ∈
A(I∗2 (Of )) with N (E) = 16 such that AB = 2E. Therefore, ECD = 64Of , and
hence CD = 4E. There are some (0, 4, r), (0, 4, s) ∈ Mf,2 such that C = 16Z +
(r+τ)Z and D = 16Z+(s+τ)Z. We have v2(r2−16d) = v2(s2−16d) = 4. Since
d ≡ 1 mod 8, this implies that v2(r), v2(s) ≥ 3. Therefore, min{4, v2(r+s+ε)} ∈
{3, 4}, and hence CD = 8F for some F ∈ A(I∗2 (Of )). We infer that E = 2F , a
contradiction. Consequently, 4 6∈ L(II).

Therefore, 2 and 5 are adjacent lengths of II, and hence 3 ∈ ∆(I∗2 (Of )). Note
that c(I∗2 (Of )) ≤ 5 by Proposition 4.11.1 and Theorem 3.6. Moreover, since
I∗2 (Of ) is a cancellative monoid, we have 5 ≤ 2 + sup∆(L(II)) ≤ c(II) ≤ 5, and
thus 5 = c(II) ∈ Ca(I∗2 (Of )). ut

Lemma 4.13. Let H ∈ {I(Of ), I∗(Of )}. For every prime divisor p of f , we
set Hp = Ip(Of ) if H = I(Of ) and Hp = I∗p (Of ) if H = I∗(Of ).

1. H is half-factorial if and only if Hp is half-factorial for every p ∈ P with
p | f .

2. If H is not half-factorial, then sup∆(H) = sup{sup∆(Hp) | p ∈ P with
p | f}.

3. c(H) = sup{c(Hp) | p ∈ P with p | f}.



On monoids of ideals 29

Proof. By Equations 2.3 and 2.4, we have

I∗(Of ) ∼=
∐

P∈X(Of )

I∗P (Of ) and I(Of ) ∼=
∐

P∈X(Of )

IP (Of ) .

Thus the assertions are easy consequences (see [16, Propositions 1.4.5.3 and
1.6.8.1]). ut

Proof (Proof of Theorem 1.1). 1. This is an immediate consequence of Proposi-
tion 4.6 and Lemma 4.13.

2. First, suppose that f is squarefree. By 1., we have f is not a product of inert
primes. It follows from Lemma 4.13, Proposition 4.11.1 and Theorem 3.6 that
c(I∗(O)) ≤ c(I(O)) ≤ 3 and sup∆(I∗(O)) ≤ sup∆(I(O)) ≤ 1. By Lemma 4.2
and Proposition 4.8.1, it follows that 1 ∈ ∆(I∗(O)), 1 ∈ Ca(I(O)) and [2, 3] ⊂
Ca(I∗(O)), and thus Ca(I(O)) = [1, 3], Ca(I∗(O)) = [2, 3], and ∆(I(O)) =
∆(I∗(O)) = {1}.

Now we suppose that f is not squarefree and we distinguish two cases.

CASE 1: v2 (f) 6∈ {2, 3} or dK 6≡ 1 mod 8. By Lemma 4.13, Proposition 4.11
and Theorem 3.6 it follows that c(I∗(O)) ≤ c(I(O)) ≤ 4 and sup∆(I∗(O)) ≤
sup∆(I(O)) ≤ 2. We infer by Lemma 4.2 and Propositions 4.4 and 4.8 that
[1, 2] ⊂ ∆(I∗(O)), 1 ∈ Ca(I(O)), and [2, 4] ⊂ Ca(I∗(O)), and hence Ca(I(O)) =
[1, 4], Ca(I∗(O)) = [2, 4], and ∆(I(O)) = ∆(I∗(O)) = [1, 2].

CASE 2: v2 (f) ∈ {2, 3} and dK ≡ 1 mod 8. We infer by Lemma 4.13, Propo-
sition 4.11.1 and Theorem 3.6 that c(I∗(O)) ≤ c(I(O)) ≤ 5 and sup∆(I∗(O)) ≤
sup∆(I(O)) ≤ 3. Lemma 4.2 and Propositions 4.4, 4.8 and 4.12 imply that
[1, 3] ⊂ ∆(I∗(O)), 1 ∈ Ca(I(O)) and [2, 5] ⊂ Ca(I∗(O)). Consequently,
Ca(I(O)) = [1, 5], Ca(I∗(O)) = [2, 5], and ∆(I(O)) = ∆(I∗(O)) = [1, 3]. ut

Based on the results of this section we derive a result on the set of distances
of orders. Let O be a non-half-factorial order in a number field. Then the set
of distances ∆(O) is finite. If O is a principal order, then it is easy to show
that min∆(O) = 1 (indeed much stronger results are known, namely that sets
of lengths of almost all elements – in a sense of density – are intervals, see [16,
Theorem 9.4.11]). The same is true if |Pic(O)| ≥ 3 or if O is seminormal ([24,
Theorem 1.1]). However, it was unknown so far whether there exists an order
O with min∆(O) > 1. In the next result of this section we characterize all
non-half-factorial orders in quadratic number fields with min∆(O) > 1 which
allows us to give the first explicit examples of orders O with min∆(O) > 1.
A characterization of half-factorial orders in quadratic number fields is given in
[16, Theorem 3.7.15].

Let O be an order in a quadratic number field K with conductor f ∈ N≥2.
Then the class numbers |Pic(OK)| and |Pic(O)| are linked by the formula ([25,
Corollary 5.9.8])

|Pic(O)| = |Pic(OK)| f

(O×K : O×)

∏
p∈P,p|f

(
1−

(dK
p

)
p−1
)
, (4.1)
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and |Pic(O)| is a multiple of |Pic(OK)|.
Since the number of imaginary quadratic number fields with class number

at most two is finite (an explicit list of these fields can be found, for example,
in [31]), (4.1) shows that the number of orders in imaginary quadratic number
fields with |Pic(O)| = 2 is finite. The complete list of non-maximal orders in
imaginary quadratic number fields with |Pic(O)| = 2 is given in [27, page 16].
We refer to [25] for more information on class groups and class numbers and end
with explicit examples of non-half-factorial orders O satisfying min∆(O) > 1.

Theorem 4.14. Let O be a non-half-factorial order in a quadratic number field
K with conductor fOK for some f ∈ N≥2. Then the following statements are
equivalent :

(a) min∆(O) > 1.
(b) |Pic(O)| = 2, f is a nonempty squarefree product of ramified primes times

a (possibly empty) squarefree product of inert primes, and for every prime
divisor p of f and every I ∈ A(I∗p (O)), I is principal if and only if N (I) =
p2.

If these equivalent conditions are satisfied, then K is a real quadratic number
field and min∆(O) = 2.

Proof. CLAIM: If |Pic(O)| = 2, p is a ramified prime with vp(f) = 1, and every
I ∈ A(I∗p (O)) with N (I) = p3 is not principal, then every L ∈ A(I∗p (O)) with
N (L) = p2 is principal.

Let |Pic(O)| = 2, let p be a ramified prime with vp(f) = 1, and suppose
that every I ∈ A(I∗p (O)) with N (I) = p3 is not principal. By Theorem 3.6
we have {N (J) | J ∈ A(I∗p (O))} = {p2, p3}. There is some I ∈ A(I∗p (O))
such that N (I) = p3. If J ∈ A(I∗p (O)) with N (J) = p3, then IJ = p2L for
some L ∈ A(I∗p (O)) with N (L) = p2 (since there are no atoms with norm
bigger than p3). It follows by Theorem 3.6 that |{J ∈ A(I∗p (O)) | N (J) =
p3}| = |{L ∈ A(I∗p (O)) | N (L) = p2}| = p (note that N (pO) = p2). Let
g : {J ∈ A(I∗p (O)) | N (J) = p3} → {L ∈ A(I∗p (O)) | N (L) = p2} be defined by
g(J) = L where L ∈ A(I∗p (O)) is such that N (L) = p2 and IJ = p2L. Then g is
a well-defined bijection. Now let L ∈ A(I∗p (O)) with N (L) = p2. There is some
J ∈ A(I∗p (O)) such that N (J) = p3 and IJ = p2L. Since |Pic(O)| = 2 and I
and J are not principal, we have IJ is principal, and hence L is principal. This
proves the claim.

(a) ⇒ (b) Observe that if p is an inert prime such that vp(f) = 1, then
{N (J) | J ∈ A(I∗p (O))} = {p2} by Theorem 3.6. Also note that if p is a
ramified prime such that vp(f) = 1, then {N (J) | J ∈ A(I∗p (O))} = {p2, p3} by
Theorem 3.6. The assertion now follows by the claim and Proposition 4.8.2.

(b)⇒ (a) Assume to the contrary that min∆(O) = 1. LetH be the monoid of

nonzero principal ideals of O. There is some minimal k ∈ N such that
∏k
i=1 Ui =∏k+1

j=1 U
′
j with Ui ∈ A(H) for each i ∈ [1, k] and U ′j ∈ A(H) for each j ∈ [1, k+1].
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Set Q1 = {P ∈ X(O) | P is principal}, Q2 = {P ∈ X(O) | P is invertible and
not principal}, L = {p ∈ P | p | f, p is ramified} and K = {{p, q} | p, q ∈ L, p 6=
q}. For every prime divisor p of f set Ap = {V ∈ A(I∗p (O)) | N (V ) = p2},
ap = |{i ∈ [1, k] | Ui ∈ Ap}| and a′p = |{j ∈ [1, k + 1] | U ′j ∈ Ap}|. For p ∈ L
set Dp = {V ∈ A(I∗p (O)) | N (V ) = p3}, Bp = {PV | P ∈ Q2 and V ∈ Dp},
bp = |{i ∈ [1, k] | Ui ∈ Bp}| and b′p = |{j ∈ [1, k + 1] | U ′j ∈ Bp}|. Set C = {PQ |
P,Q ∈ Q2}, c = |{i ∈ [1, k] | Ui ∈ C}| and c′ = |{j ∈ [1, k + 1] | U ′j ∈ C}|. If
z ∈ K is such that z = {p, q} with p, q ∈ L and p 6= q, then set Ez = {VW | V ∈
Dp,W ∈ Dq}, ez = |{i ∈ [1, k] | Ui ∈ Ez}| and e′z = |{j ∈ [1, k + 1] | U ′j ∈ Ez}|.

Since |Pic(O)| = 2, we have A(H) ⊂ (A(I∗(O)) ∩ H) ∪ {VW | V,W ∈
A(I∗(O)), V andW are not principal}. As shown in the proof of the claim, VW 6∈
A(H) for all p ∈ L and V,W ∈ Dp. We infer that A(H) = Q1 ∪

⋃
p∈P,p|f Ap ∪⋃

p∈L Bp ∪ C ∪
⋃
z∈K Ez.

Since k is minimal, we have Ui, U
′
j 6∈ Q1 for all i ∈ [1, k] and j ∈ [1, k + 1].

Again since k is minimal and I∗p (O) is half-factorial for all inert prime divisors
p of f by Proposition 4.6, we have ap = a′p = 0 for all inert prime divisors p of
f . Therefore,

k =
∑
p∈L

(ap + bp) + c+
∑
z∈K

ez and k + 1 =
∑
p∈L

(a′p + b′p) + c′ +
∑
z∈K

e′z.

If i ∈ [1, k], then
∑
P∈Q2

vP (Ui) =


2 if Ui ∈ C
1 if Ui ∈

⋃
p∈L Bp

0 else

. This implies that

∑
P∈Q2

vP (
∏k
i=1 Ui) =

∑k
i=1

∑
P∈Q2

vP (Ui) =
∑
p∈L bp + 2c. It follows by anal-

ogy that
∑
P∈Q2

vP (
∏k+1
j=1 U

′
j) =

∑
p∈L b

′
p + 2c′. Therefore,

∑
p∈L bp + 2c =∑

p∈L b
′
p + 2c′. Let r ∈ L.

If i ∈ [1, k], then vr(N ((Ui)Pf,r
∩ O)) =


3 if Ui ∈ Br ∪

⋃
q∈L\{r} E{r,q}

2 if Ui ∈ Ar
0 else

.

Consequently,

vr(N ((

k∏
i=1

Ui)Pf,r
∩O)) =

k∑
i=1

vr(N ((Ui)Pf,r
∩O)) = 2ar + 3br + 3

∑
q∈L\{r}

e{r,q}.

By analogy we have vr(N ((
∏k+1
j=1 U

′
j)Pf,r

∩O)) = 2a′r+3b′r+3
∑
q∈L\{r} e

′
{r,q}.

This implies that 2ar+3br+3
∑
q∈L\{r} e{r,q} = 2a′r+3b′r+3

∑
q∈L\{r} e

′
{r,q}.

We infer that∑
p∈L

(a′p − ap + b′p − bp) + c′ − c+
∑
z∈K

(e′z − ez) = 1,
∑
p∈L

(b′p − bp) = 2(c− c′)

and 2
∑
p∈L

(a′p − ap) + 3
∑
p∈L

(b′p − bp) + 3
∑
p∈L

∑
q∈L\{p}

(e′{p,q} − e{p,q}) = 0.
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Note that
∑
p∈L

∑
q∈L\{p}(e

′
{p,q} − e{p,q}) = 2

∑
z∈K(e′z − ez), and hence∑

p∈L(a′p − ap) = 3(c′ − c)− 3
∑
z∈K(e′z − ez). Consequently,

1 =
∑
p∈L

(a′p − ap + b′p − bp) + c′ − c+
∑
z∈K

(e′z − ez)

= 3(c′ − c)− 3
∑
z∈K

(e′z − ez) + 2(c− c′) + c′ − c+
∑
z∈K

(e′z − ez)

= 2(c′ − c−
∑
z∈K

(e′z − ez)),

a contradiction.

Now let the equivalent conditions be satisfied. Assume to the contrary that
K is an imaginary quadratic number field. Since O is a non-maximal order with
|Pic(O)| = 2, it follows from [27, page 16] that (f, dK) ∈ {(2,−8), (2,−15)}∪
{(3,−4), (3,−8), (3,−11), (4,−3), (4,−4), (4,−7), (5,−3), (5,−4), (7,−3)}.

Since f is squarefree and divisible by a ramified prime, we infer that f = 2
and dK = −8. Therefore, O = Z + 2

√
−2Z. Set I = 8Z + 2

√
−2Z. Observe that

I ∈ A(I∗2 (O)) andN (I) = 8. Moreover, I = 2
√
−2O is principal, a contradiction.

Consequently, K is a real quadratic number field.

It remains to show that min∆(O) = 2. There is some ramified prime p which
divides f and there is some J ∈ A(I∗p (O)) with N (J) = p3. As shown in the
proof of the claim, J2 = p2L for some L ∈ A(I∗p (O)). By [16, Corollary 2.11.16],
there is some invertible prime ideal P of O that is not principal. Observe that
J is not principal. We have PJ , P 2 and L are principal, and hence there are
some u, v, w ∈ A(O) such that PJ = uO, P 2 = vO, L = wO, and u2 = p2vw.
Therefore, {2, 4} ⊆ L(u2), and since min∆(O) > 1, we infer that min∆(O) = 2.

ut

Proposition 4.15. Let O be an order in the quadratic number field K with
conductor fOK for some f ∈ N≥2 such that min∆(O) > 1, let g be the product
of all inert prime divisors of f and let O′ be the order in K with conductor gOK .
Then O′ is half-factorial and, in particular, g ∈ {1} ∪ P ∪ {2p | p ∈ P \ {2}}.

Proof. Set Q1 = {P ∈ X(O′) | P is principal} and Q2 = {P ∈ X(O′) | P is
invertible and not principal}. Observe that N (I) = |O/I| = |O′/IO′| = N (IO′)
for all I ∈ I∗(O). Note that for all inert prime divisors p of f and all I ∈
A(I∗p (O)) and J ∈ A(I∗p (O′)), we have N (I) = N (J) = p2. Moreover, for all
ramified prime divisors p of f , we have {N (I) | I ∈ A(I∗p (O))} = {p2, p3}. In
this proof we will use Theorem 4.14 without further citation.

CLAIM 1: For all prime divisors p of g and all I ∈ A(I∗p (O′)), it follows
that I is principal. Let p be a prime divisor of g and let I ∈ A(I∗p (O′)). Set
P = Pf,p and P ′ = Pg,p. It follows by Proposition 3.3 that OP = O′P ′ and that
δ : I∗p (O) → I∗p (O′) defined by δ(J) = JP ∩ O′ for all J ∈ I∗p (O) is a monoid
isomorphism. In particular, we have A(I∗p (O′)) = {JP ∩ O′ | J ∈ A(I∗p (O))}.
Therefore, there is some J ∈ A(I∗p (O)) such that JP ∩ O′ = I. Note that
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N (I) = p2 = N (J) = N (JO′). Since JO′ ⊆ JO′P ′ ∩ O′ = JOP ∩ O′ = I, we
infer that I = JO′. Since J is a principal ideal of O, it follows that I is principal.
This proves Claim 1.

CLAIM 2: If P ∈ Q2, p is a ramified prime divisor of f such that P ∩Z = pZ
and I ∈ A(I∗p (O)) with N (I) = p3, then P 2 is principal and IO′ = P 3. Let P ∈
Q2, p a ramified prime divisor of f such that P ∩Z = pZ and I ∈ A(I∗p (O)) with
N (I) = p3. Since p is ramified, there is some A ∈ X(OK) such that pOK = A2.
Observe that N (A2) = p2, and thus N (A) = p. We have A∩O′ = P , POK = A
and N (P ) = N (A) = p. Note that since P is invertible, it follows that every
P -primary ideal of O′ is a power of P . Therefore, pO′ = P k for some k ∈ N, and
hence pk = N (P k) = N (pO′) = p2. Consequently, k = 2 and P 2 is principal.
Clearly, IO′ is a P -primary ideal of O′, and thus IO′ = Pm for some m ∈ N. We
infer that pm = N (Pm) = N (IO′) = N (I) = p3, and thus m = 3 and IO′ = P 3.
This proves Claim 2.

CLAIM 3: PQ is principal for all P,Q ∈ Q2. Let P,Q ∈ Q2.

CASE 1: P ∩ O and Q ∩ O are invertible. Note that P = (P ∩ O)O′, Q =
(Q ∩O)O′ and P ∩O and Q ∩O are not principal. Since |Pic(O)| = 2, we have
(P ∩ O)(Q ∩ O) is a principal ideal of O, and thus PQ = (P ∩ O)(Q ∩ O)O′ is
principal.

CASE 2: (P ∩ O is invertible and Q ∩ O is not invertible) or (P ∩ O is not
invertible and Q ∩ O is invertible). Without restriction let P ∩ O be invertible
and let Q ∩ O be not invertible. Observe that P = (P ∩ O)O′. Moreover, there
is some ramified prime q that divides f such that Q∩Z = qZ and there is some
J ∈ A(I∗q (O)) with N (J) = q3. Observe that P ∩ O and J are not principal.
Since |Pic(O)| = 2, it follows that (P ∩O)J is a principal ideal of O. Note that
PQ3 = (P ∩O)JO′ by Claim 2, and thus PQ3 is principal. Since Q2 is principal
by Claim 2, we infer that PQ is principal.

CASE 3: P ∩ O and Q ∩ O are not invertible. There are ramified primes
p and q that divide f such that P ∩ Z = pZ and Q ∩ Z = qZ. There are
some I ∈ A(I∗p (O)) and J ∈ A(I∗q (O)) with N (I) = p3 and N (J) = q3. Since
|Pic(O)| = 2 and I and J are not principal, we have IJ is a principal ideal of O.
It follows that P 3Q3 = IJO′ by Claim 2, and hence P 3Q3 is principal. Since P 2

and Q2 are principal by Claim 2, we have PQ is principal. This proves Claim 3.

Finally, we show that O′ is half-factorial. Set C = {PQ | P,Q ∈ Q2} and
let H denote the monoid of nonzero principal ideals of O′. It is an immediate
consequence of Claim 1 and Claim 3 that A(H) = Q1 ∪ C ∪

⋃
p∈P,p|g A(I∗p (O′)).

Let k, ` ∈ N and Ii, I
′
j ∈ A(H) for each i ∈ [1, k] and j ∈ [1, `] be such that∏k

i=1 Ii =
∏`
j=1 I

′
j . It remains to show that k = `. Set b = |{i ∈ [1, k] | Ii ∈ Q1}|,

b′ = |{j ∈ [1, `] | I ′j ∈ Q1}|, c = |{i ∈ [1, k] | Ii ∈ C}|, c′ = |{j ∈ [1, `] | I ′j ∈ C}|
and for each prime divisor p of g set ap = |{i ∈ [1, k] | Ii ∈ A(I∗p (O′))}|
and a′p = |{j ∈ [1, `] | I ′j ∈ A(I∗p (O′))}|. If p is a prime divisor of g, then
I∗p (O′) is half-factorial by Proposition 4.6, and hence ap = a′p by Claim 1. We
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have b =
∑k
i=1

∑
P∈Q1

vP (Ii) =
∑
P∈Q1

vP (
∏k
i=1 Ii) =

∑
P∈Q1

vP (
∏`
j=1 I

′
j) =∑`

j=1

∑
P∈Q1

vP (I ′j) = b′.

Moreover, 2c =
∑
P∈Q2

vP (
∏k
i=1 Ii) =

∑
P∈Q2

vP (
∏`
j=1 I

′
j) = 2c′. Therefore,

k = b+ c+
∑
p∈P,p|g ap = b′ + c′ +

∑
p∈P,p|g a

′
p = `.

The remaining assertion follows from [16, Theorem 3.7.15]. ut

Remark 4.16. Let O be an order in the quadratic number field K with conductor
fOK for some f ∈ N such that |Pic(O)| = 2 and let p be an odd ramified prime
such that vp(f) = 1 and I ∈ A(I∗p (O)) such that N (I) = p3 and I not principal.
Then every J ∈ A(I∗p (O)) with N (J) = p3 is not principal.

Proof. Set L = {J ∈ A(I∗p (O)) | N (J) = p3} and K = {L ∈ A(I∗p (O)) | N (L) =
p2}. It follows by the claim in the proof of Theorem 4.14 that for all J ∈ L and
L ∈ K, there is a unique A ∈ L such that AJ = p2L. By Theorem 3.6 we have
|L| = |K| = p, and hence |{(A, J) ∈ L2 | AJ = p2L}| = p for all L ∈ K. Since p
is odd, we infer that for each L ∈ K there is some A ∈ L such that A2 = p2L.
Consequently, every L ∈ K is principal. Now let J ∈ L. There is some B ∈ K
such that IJ = p2B, and thus IJ is principal. Therefore, J is not principal. ut

Next we show that the assumption that p is odd in Remark 4.16 is crucial.

Example 4.17. Let O = Z + 2
√
−2Z be the order in the quadratic number field

K = Q(
√
−2) with conductor 2OK . Let I = 8Z + 2

√
−2Z and J = 8Z + (4 +

2
√
−2)Z. Then 2 is ramified, |Pic(O)| = 2, I, J ∈ A(I∗2 (O)), N (I) = N (J) = 8,

I is principal and J is not principal.

Proof. It is clear that J ∈ A(I∗2 (O)) and N (J) = 8. By the proof of Theo-
rem 4.14, it remains to show that J is not principal. Assume that J is prin-
cipal. Then there are some a, b ∈ Z such that J = (8a + 4b + 2

√
−2b)O, and

hence 8 = N (J) = |NK/Q(8a + 4b + 2
√
−2b)| = |(8a + 4b)2 + 8b2|. Therefore,

2(2a+b)2+b2 = 1. It is clear that |b| ≤ 1. If b = 0, then 8a2 = 1, a contradiction.
Therefore, |b| = 1 and 2a+ b = 0, a contradiction. ut

Lemma 4.18. Let d ∈ N≥2 be squarefree, let K = Q(
√
d), let O be the order in

K with conductor fOK for some f ∈ N≥2, and let p be a ramified prime with

vp(f) = 1. If (p ≡ 1 mod 4 and (d/pp ) = −1) or ((pq ) = −1 for some prime q

with q ≡ 1 mod 4 and q | df), then each I ∈ A(I∗p (O)) with N (I) = p3 is not
principal.

Proof. Note that if p is odd, then {I ∈ A(I∗p (O)) | N (I) = p3} = {p3Z +

(p2k + εp2+f
√
dK

2 )Z | k ∈ [0, p − 1]}. Moreover, if p = 2 and d is odd, then

{I ∈ A(I∗p (O)) | N (I) = p3} = {8Z + (2k + f
√
d)Z | k ∈ {1, 3}}. Furthermore,

if p = 2 and d is even, then {I ∈ A(I∗p (O)) | N (I) = p3} = {8Z+ (2k+ f
√
d)Z |

k ∈ {0, 2}}.
CASE 1: p ≡ 1 mod 4 and (d/pp ) = −1. Let I ∈ A(I∗p (O)) be such that

N (I) = p3. Since p is odd, we have I = p3Z + (p2k + εp2+f
√
dK

2 )Z for some
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k ∈ [0, p − 1]. Assume that I is principal. Then there are some a, b ∈ Z such

that I = (p3a+ p2bk + εp2+f
√
dK

2 b)O. We infer that p3 = N (I) = |NK/Q(p3a+

p2bk+ εp2+f
√
dK

2 b)| = 1
4 |p

4(2pa+ 2bk+ εb)2 − f2b2dK |, and hence f2

p2 b
2 dK
p ≡ 4β

mod p for some β ∈ {−1, 1}. Since p ≡ 1 mod 4, we have (−1p ) = 1, and thus

(d/pp ) = (dK/pp ) = ( f
2b2dK/p

3

p ) = ( 4β
p ) = 1, a contradiction.

CASE 2: There is some prime q such that q ≡ 1 mod 4, q | df and (pq ) = −1.

Let I ∈ A(I∗p (O)) be such that N (I) = p3. First let p be odd. Then I = p3Z +

(p2k+ εp2+f
√
dK

2 )Z for some k ∈ [0, p−1]. Assume that I is principal. Then there

are some a, b ∈ Z such that I = (p3a + p2bk + εp2+f
√
dK

2 b)O. This implies that

p3 = N (I) = |NK/Q(p3a+p2bk+ εp2+f
√
dK

2 b)| = 1
4 |p

4(2pa+2bk+εb)2−f2b2dK |,
and thus `2 ≡ 4βp3 mod q for some ` ∈ Z and β ∈ {−1, 1}. Since q ≡ 1

mod 4, we have (−1q ) = 1, and hence (pq )3 = (4βp3

q ) = 1. Therefore, (pq ) = 1, a
contradiction.

Now let p = 2. Then I = 8Z+ (2k+ f
√
d)Z for some k ∈ [0, 3]. Assume that

I is principal. Then there are some a, b ∈ Z such that I = (8a+ 2bk + bf
√
d)O.

Consequently, 8 = N (I) = |(8a + 2bk)2 − b2f2d|, and thus `2 ≡ 8β mod q for
some ` ∈ Z and β ∈ {−1, 1}. This implies that ( 2

q )3 = ( 8β
q ) = 1. Therefore,

( 2
q ) = 1, a contradiction. ut

Proposition 4.19. Let d ∈ N≥2 be squarefree, let K = Q(
√
d), and let O be the

order in K with conductor fOK such that f is a nonempty squarefree product
of ramified primes times a squarefree product of inert primes and |Pic(O)| =
|Pic(OK)| = 2. If for every ramified prime divisor p of f , we have (p ≡ 1 mod 4

and (d/pp ) = −1) or ((pq ) = −1 for some prime q with q ≡ 1 mod 4 and q | df),

then min∆(O) = 2.

Proof. It follows by Lemma 4.18 that for every ramified prime divisor p of f and
every I ∈ A(I∗p (O)) with N (I) = p3, we have I is not principal. It follows by the
claim in the proof of Theorem 4.14 that I ∈ A(I∗p (O)) is principal if and only
if N (I) = p2. Now let p be an inert prime divisor of f and let J ∈ A(I∗p (O)).
Since |Pic(O)| = |Pic(OK)|, it follows that the group epimorphism θ : Pic(O)→
Pic(OK) defined by θ([L]) = [LOK ] for all L ∈ I∗(O) is a group isomorphism.
Set P = pOK . Then JOK is a P -primary ideal of OK , and hence JOK is a
principal ideal of OK . Since θ is an isomorphism, we infer that J is a principal
ideal of O. Now it follows by Theorem 4.14 that min∆(O) = 2. ut

Next we provide two counterexamples that show that the additional assump-
tion on the ramified prime divisors of f in Proposition 4.19 is important.

Example 4.20. There is some real quadratic number field K and some order O
in K with conductor pOK for some ramified prime p such that p ≡ 1 mod 4,
|Pic(O)| = |Pic(OK)| = 2, and min∆(O) = 1.

Proof. Let O = Z + 5
√

30Z be the order in the real quadratic number field
K = Q(

√
30) with conductor 5OK . Observe that 5 is ramified, 5 ≡ 1 mod 4,
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|Pic(OK)| = 2 and α = 11 + 2
√

30 is a fundamental unit of OK . Since α 6∈ O
and (O×K : O×) | 5, we infer that (O×K : O×) = 5, and hence |Pic(O)| =

|Pic(OK)| 5
(O×K :O×) = 2. Let I = 125Z+5

√
30Z. Then I ∈ A(I∗5 (O)) with N (I) =

125. Since I = (12625 + 2305
√

30)O is principal, we infer by Theorem 4.14 that
min∆(O) = 1. ut

Example 4.21. There is some real quadratic number field K = Q(
√
d) with

d ∈ N≥2 squarefree and some order O in K with conductor pOK for some

odd ramified prime p such that (d/pp ) = −1, |Pic(O)| = |Pic(OK)| = 2, and

min∆(O) = 1.

Proof. Let O = Z+ 7
√

42Z be the order in the real quadratic number field K =

Q(
√

42) with conductor 7OK . Note that 7 is an odd ramified prime, ( 42/7
7 ) = −1,

|Pic(OK)| = 2 and α = 13 + 2
√

42 is a fundamental unit of OK . We have
α 6∈ O and (O×K : O×) | 7. Therefore, (O×K : O×) = 7, and thus |Pic(O)| =

|Pic(OK)| 7
(O×K :O×) = 2. Set I = 343Z+7

√
42Z. Then I ∈ A(I∗7 (O)),N (I) = 343,

and I = (825601 + 127393
√

42)O is principal. Consequently, min∆(O) = 1 by
Theorem 4.14. ut

Finally, we provide the examples of orders O in quadratic number fields with
min∆(O) = 2.

Example 4.22. Let K be a quadratic number field and O the order in K with
conductor fOK such that (f, dK) ∈ {(2, 60), (3, 60), (5, 60), (6, 60), (10, 60)}∪
{(15, 60), (30, 60), (10, 85), (35, 40), (195, 65), (30, 365)}.

1. If (f, dK) ∈ {(2, 60), (3, 60), (5, 60)}, then f is a ramified prime.
2. If (f, dK) ∈ {(6, 60), (10, 60), (15, 60)}, then f is the product of two distinct

ramified primes.
3. If (f, dK) = (30, 60), then f is the product of three distinct ramified primes.
4. If (f, dK) ∈ {(10, 85), (35, 40)}, then f is the product of an inert prime and

a ramified prime.
5. If (f, dK) = (195, 65), then f is the product of an inert prime and two distinct

ramified primes.
6. If (f, dK) = (30, 365), then f is the product of two distinct inert primes and

a ramified prime.
7. min∆(O) = 2.

Proof. It is straightforward to prove the first six assertions. We prove the last
assertion in the case that dK = 60 and f ∈ N≥2 is a divisor of 30. The remaining
cases can be proved in analogy by using Proposition 4.19. It is clear that 2, 3,
and 5 are ramified primes. Note that |Pic(OK)| = 2 (e.g., [25, page 22]) and
α = 4 +

√
15 is a fundamental unit of OK .

We have α2 = 31 + 8
√

15, α3 = 244 + 63
√

15, and α5 = 15124 + 3905
√

15.
Moreover, α6 = 119071 + 30744

√
15, α10 = 457470751 + 118118440

√
15, and

α15 = 13837575261124 + 3572846569215
√

15. Set k = (O×K : O×). Then k is
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a divisor of f by (4.1). Observe that α 6∈ Z + 2
√

15Z, α 6∈ Z + 3
√

15Z, α 6∈
Z + 5

√
15Z, α2, α3 6∈ Z + 6

√
15Z, α2, α5 6∈ Z + 10

√
15Z, α3, α5 6∈ Z + 15

√
15Z,

and α6, α10, α15 6∈ Z + 30
√

15Z. This implies that k = f , and hence |Pic(O)| =
f
k |Pic(OK)| = |Pic(OK)| = 2 by (4.1). We have 5 ≡ 1 mod 4 and ( 15/5

5 ) =
( 3
5 ) = (2

5 ) = −1. We infer by Proposition 4.19 that min∆(O) = 2. ut

5 Unions of sets of lengths

The goal of this section is to show that all unions of sets of lengths of the
monoid of (invertible) ideals in orders of quadratic number fields are intervals
(Theorem 5.2). To gather the background on unions of sets of lengths, let H be
an atomic monoid with H 6= H× and k ∈ N0. Then

Uk(H) =
⋃

k∈L∈L(H)

L denotes the union of sets of lengths containing k and

ρk(H) = supUk(H) is the kth elasticity of H .

Then, for the elasticity ρ(H) of H, we have ([12, Proposition 2.7]),

ρ(H) = sup{ρ(L) | L ∈ L(H)} = lim
k→∞

ρk(H)

k
.

Clearly, U0(H) = {0}, U1(H) = {1} and Uk(H) is the set of all ` ∈ N0 with the
following property:

There are atoms u1, . . . , uk, v1, . . . , v` in H such that u1 · . . . ·uk = v1 · . . . ·v`.

Let d ∈ N and M ∈ N0. A subset L ⊂ Z is called an AAP (with difference d and
bound M) if

L = y +
(
L′ ∪ L∗ ∪ L′′

)
⊂ y + dZ ,

where y ∈ Z, L∗ is a non-empty arithmetical progression with difference d and
minL∗ = 0, L′ ⊂ [−M,−1], and L′′ ⊂ supL∗ + [1,M ] (with the convention
that L′′ = ∅ if L∗ is infinite). We say that H satisfies the Structure Theorem
for Unions if there are d ∈ N and M ∈ N0 such that Uk(H) is an AAP with
difference d and bound M for all sufficiently large k ∈ N. If ∆(H) is finite
and the Structure Theorem for Unions holds for some parameter d ∈ N, then
d = min∆(H) ([12, Lemma 2.12]).

The Structure Theorem for Unions holds for a wealth of monoids and domains
(see [2,13,34] for recent contributions and see [12, Theorem 4.2] for an example
where it does not hold). Since it holds for C-monoids ([14]), it holds for the
monoid of invertible ideals of orders in number fields. In some special cases
(including Krull monoids having prime divisors in all classes) all unions of sets of
lengths are intervals, in other words the Structure Theorem for Unions holds with
d = 1 and M = 0 ([15, Theorem 3.1.3], [18, Theorem 5.8], [33]). In Theorem 5.2
we show that the same is true for the monoids of (invertible) ideals of orders in
quadratic number fields.
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Proposition 5.1. Let p be a prime divisor of f and let N = sup{vp(N (A)) |
A ∈ A(I∗p (Of ))}.

1. If p splits, then U`(Ip(Of )) = U`(I∗p (Of )) = N≥2 for all ` ∈ N≥2.

2. If p does not split, then U`(Ip(Of )) ∩ N≥` = U`(I∗p (Of )) ∩ N≥` = [`, b `N2 c]
for all ` ∈ N≥2.

Proof. We prove 1. and 2. simultaneously. By Proposition 3.3.3 we can assume
without restriction that f = pvp(f). First we show that both assertions are true
for ` = 2. It follows from Theorem 3.6 that [2, N ] = [2, 2vp(f)] ∪ {vp(N (A)) |
A ∈ A(I∗p (Of ))}. It is obvious that U2(I∗p (Of )) ⊂ U2(Ip(Of )). It follows from
Lemma 4.9 that U2(Ip(Of )) ⊂ [2, N ].

Let k ∈ [2, N ]. It remains to show that k ∈ U2(I∗p (Of )). If k > 2vp(f),

then there is some I ∈ A(I∗p (Of )) such that N (I) = pk. It follows by Proposi-

tion 3.2.5 that II = (pOf )k, and hence k ∈ U2(I∗p (Of )). Now let k ≤ 2vp(f). By
Proposition 4.8.1 we can assume without restriction that vp(f) ≥ 2 and k ≥ 4.

CASE 1: d 6≡ 1 mod 4 or (d ≡ 1 mod 4, p = 2 and k ≤ 2(v2(f) − 1)).
We set a = vp(NK/Q(pk−2 + τ)) and b = vp(NK/Q(pk−2(p − 1) + τ)). Observe
that if d 6≡ 1 mod 4, then a, b ≥ min{2k − 4, 2vp(f)} ≥ k. Moreover, if d ≡ 1
mod 4, p = 2 and k ≤ 2(v2(f)−1), then a, b ≥ min{2k−4, 2(v2(f)−1)} ≥ k. Set
I = paZ+(pk−2+τ)Z and J = pbZ+(pk−2(p−1)+τ)Z. Then I, J ∈ A(I∗p (Of )),

min{a, b, vp(pk−2 +pk−2(p−1)+ε)} = k−1, and a+b−2(k−1) > 0. Therefore,
there is some L ∈ A(I∗p (Of )) such that IJ = pk−1L, and hence k ∈ L(IJ) ⊂
U2(I∗p (Of )).

CASE 2: d ≡ 1 mod 4 and p 6= 2. We set a = vp(NK/Q(p
k−2−1

2 + τ)) and

b = vp(NK/Q(p
k−2(p2+p−1)−1

2 + τ)). Note that a, b ≥ min{2k − 4, 2vp(f)} ≥ k.

Set I = paZ + (p
k−2−1

2 + τ)Z and J = pbZ + (p
k−2(p2+p−1)−1

2 + τ)Z. Then

I, J ∈ A(I∗p (Of )), min{a, b, vp(p
k−2−1

2 + pk−2(p2+p−1)−1
2 + ε)} = k − 1, and

a + b − 2(k − 1) > 0. Consequently, there is some L ∈ A(I∗p (Of )) such that

IJ = pk−1L, and thus k ∈ L(IJ) ⊂ U2(I∗p (Of )).

CASE 3: d ≡ 1 mod 8, p = 2 and k ∈ {2v2(f) − 1, 2v2(f)}. Set h = v2(f).
If h = 2, then k = 4, and hence k ∈ U2(I∗2 (Of )) by Proposition 4.4. Now let
h ≥ 3. Note that 2 splits. By Theorem 3.6 there are some I, J, L ∈ A(I∗2 (Of ))
such that N (I) = 22h+1, N (J) = 22h+2 and N (L) = 16. By Proposition 3.2.5
we have LL = 16Of , II = 22h+1Of = 22h−3LL and JJ = 22h+2Of = 22h−2LL.
We infer that k ∈ {2h− 1, 2h} ⊂ U2(I∗2 (Of )).

CASE 4: d ≡ 5 mod 8, p = 2 and k ∈ {2v2(f) − 1, 2v2(f)}. Set h = v2(f).
If h = 2, then k = 4, and thus k ∈ U2(I∗2 (Of )) by Proposition 4.4. Now let
h ≥ 3. Set A = 22hZ + (2h−1 + τ)Z, B = 22hZ + (22h−2 − 2h−1 + τ)Z, and
C = 22hZ + (22h−1 − 2h−1 + τ)Z. Then A,B,C ∈ A(I∗2 (Of )), AB = 22h−2I
and AC = 22h−1J for some I, J ∈ A(I∗2 (Of )). Therefore, k ∈ {2h − 1, 2h} ⊂
U2(I∗2 (Of )).

So far we have proved that both assertions are true for ` = 2. If p splits, then
we have N = ∞ by Theorem 3.6, and hence U2(Ip(Of )) = U2(I∗p (Of )) = N≥2.
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The first assertion now follows easily by induction on `. Now let p not split. Then
N <∞. Next we show that 2. is true for ` = 3.

Since [3, N + 1] = {1} + U2(I∗p (Of )) ⊂ U3(I∗p (Of )) ∩ N≥3 ⊂ U3(Ip(Of )) ∩
N≥3 ⊂ [3, b 3N2 c] by Lemma 4.9 and N ∈ {2vp(f), 2vp(f) + 1}, it remains to
show that N + m ∈ U3(I∗p (Of )) for all m ∈ [2, vp(f)]. Let m ∈ [2, vp(f)]. It is
sufficient to show that there are some I, J, L ∈ A(I∗p (Of )) such that IJ = pmL

and N (L) = pN , since then IJL = pN+mOf by Proposition 3.2.5, and thus
N +m ∈ U3(I∗p (Of )).

CASE 1: p is inert. Observe that N = 2vp(f) by Theorem 3.6. Let m ∈
[2, vp(f)]. First let p 6= 2. If d 6≡ 1 mod 4, then set I = p2mZ + (pm + τ)Z and

J = p2vp(f)Z+(p2vp(f)−m+τ)Z. If d ≡ 1 mod 4, then set I = p2mZ+(p
m−1
2 +τ)Z

and J = p2vp(f)Z + (p
2vp(f)−m−1

2 + τ)Z. In any case we have I, J ∈ A(I∗p (Of ))

and IJ = pmL for some L ∈ A(I∗p (Of )) with N (L) = pN .
Next let p = 2. Since 2 is inert, it follows that d ≡ 5 mod 8. If m < v2(f)−1,

then set I = 22mZ+(2m+τ)Z. If m = v2(f)−1, then set I = 22mZ+τZ. Finally,
if m = v2(f), then set I = 22mZ+(2m−1+τ)Z. Set J = 22v2(f)Z+(2v2(f)−1+τ)Z.
Observe that I, J ∈ A(I∗2 (Of )) and IJ = 2mL for some L ∈ A(I∗2 (Of )) with
N (L) = 2N .

CASE 2: p is ramified. It follows that N = 2vp(f) + 1 by Theorem 3.6. Let
m ∈ [2, vp(f)]. First let p 6= 2. Since p is ramified, we have p | d. If d 6≡ 1 mod 4,
then set I = p2mZ + (pm + τ)Z and J = p2vp(f)+1Z + (pvp(f)+1 + τ)Z. If d ≡ 1

mod 4, then set I = p2mZ+(p
m−1
2 +τ)Z and J = p2vp(f)+1Z+(p

vp(f)+1−1
2 +τ)Z.

We infer that I, J ∈ A(I∗p (Of )) and IJ = pmL for some L ∈ A(I∗p (Of )) with

N (L) = pN in any case.
Now let p = 2. Since 2 is ramified, we have d 6≡ 1 mod 4. If d is even or

m < v2(f), then set I = 22mZ + (2m + τ)Z. If d is odd and m = v2(f), then
set I = 22mZ + τZ. If d is even, then set J = 22v2(f)+1Z + τZ. If d is odd, then
set J = 22v2(f)+1Z + (2v2(f) + τ)Z. In any case we have I, J ∈ A(I∗2 (Of )) and
IJ = 2mL for some L ∈ A(I∗2 (Of )) with N (L) = 2N .

Finally, we prove the second assertion by induction on `. Let ` ∈ N≥2 and let
H ∈ {Ip(Of ), I∗p (Of )}. Without restriction we can assume that ` ≥ 4. We infer

by the induction hypothesis that (U`−2(H)∩N≥`−2)+U2(H) = [`−2, b (`−2)N2 c]+
[2, N ] = [`, b `N2 c]. Observe that (U`−2(H) ∩ N≥`−2) + U2(H) ⊂ U`(H) ∩ N≥`. It

follows by Lemma 4.9 that U`(H) ∩ N≥` ⊂ [`, b `N2 c], and thus U`(H) ∩ N≥` =

[`, b `N2 c]. ut

Theorem 5.2. Let O be an order in a quadratic number field K with conductor
fOK for some f ∈ N≥2.

1. If f is divisible by a split prime, then Uk(I(O)) = Uk(I∗(O)) = N≥2 for all
k ∈ N≥2.

2. Suppose that f is not divisible by a split prime and set M = max{vp(f) | p ∈
P}. Then Uk(I(O)) = Uk(I∗(O)) is a finite interval for all k ∈ N≥2, and for
their maxima we have :
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(a) If vq(f) = M for a ramified prime q, then ρk(I(O)) = ρk(I∗(O)) =
kM + bk2 c for all k ∈ N≥2 and ρ(I(O)) = ρ(I∗(O)) = M + 1

2 .
(b) If vq(f) < M for all ramified primes q, then ρk(I(O)) = ρk(I∗(O)) =

kM for all k ∈ N≥2 and ρ(I(O)) = ρ(I∗(O)) = M .

Proof. 1. Let f be divisible by a split prime p and let k ∈ N≥2. Since I∗p (O) is
a divisor-closed submonoid of I∗(O) and Ip(O) is a divisor-closed submonoid of
I(O), it follows from Proposition 5.1.1 that Uk(I(O)) = Uk(I∗(O)) = N≥2.

2. Let k ∈ N≥2 and ` ∈ Uk(I(O)). There are Ii ∈ A(I(O)) for each i ∈ [1, k]

and Jj ∈ A(I(O)) for each j ∈ [1, `] such that
∏k
i=1 Ii =

∏`
j=1 Jj . Note that√

Ii,
√
Jj ∈ X(O) for all i ∈ [1, k] and j ∈ [1, `]. For P ∈ X(O) set kP = |{i ∈

[1, k] |
√
Ii = P}| and `P = |{j ∈ [1, `] |

√
Jj = P}|. If p is a prime divisor

of f , then set kp = kPf,p
and `p = `Pf,p

. Observe that k =
∑
P∈X(O) kP and

` =
∑
P∈X(O) `P . Recall that the P -primary components of

∏k
i=1 Ii are uniquely

determined, and thus `P ∈ UkP (IP (O)) for all P ∈ X(O). If P ∈ X(O) does not
contain the conductor, then IP (O) is factorial, and hence `P = kP . Also note
that if P ∈ X(O) and kP ≤ 1, then `P = kP . If p is an inert prime that divides
f , then it follows from Proposition 5.1.2 and Theorem 3.6 that ρr(Ip(O)) =
ρr(I∗p (O)) = rvp(f) for all r ∈ N≥2. We infer again by Proposition 5.1.2 and
Theorem 3.6 that ρr(Ip(O)) = ρr(I∗p (O)) = rvp(f) + b r2c for all ramified primes
p that divide f and all r ∈ N≥2.

CASE 1: vq(f) = M for some ramified prime q. If P ∈ X(O), then `P ≤
kPM + bkP2 c.

Consequently, ` =
∑
P∈X(O) `P ≤ (

∑
P∈X(O) kP )M+

∑
P∈X(O)b

kP
2 c ≤ kM+

bk2 c. In particular, ρk(I(O)) ≤ kM + bk2 c = max{ρk(I∗p (O)) | p ∈ P, p |
f} ≤ ρk(I∗(O)) ≤ ρk(I(O)). This implies that ρk(I(O)) = ρk(I∗(O)) =
max{ρk(I∗p (O)) | p ∈ P, p | f} = kM + bk2 c.

CASE 2: vq(f) < M for all ramified primes q. Note that `p ≤ kpvp(f) +

bkp2 c ≤ kpM for all ramified primes p that divide f . Therefore, `P ≤ kPM for
all P ∈ X(O). This implies that ` =

∑
P∈X(O) `P ≤ (

∑
P∈X(O) kP )M = kM .

We infer that ρk(I(O)) ≤ kM = max{ρk(I∗p (O)) | p ∈ P, p | f} ≤ ρk(I∗(O)) ≤
ρk(I(O)), and thus ρk(I(O)) = ρk(I∗(O)) = max{ρk(I∗p (O)) | p ∈ P, p | f} =
kM .

By Proposition 5.1.2, we obtain that Uk(I(O)) ∩N≥k = Uk(I∗(O)) ∩N≥k is
a finite interval. Since the last assertion holds for every k ∈ N≥2, we infer that
Uk(I(O)) = Uk(I∗(O)) is a finite interval for all k ∈ N≥2. If vq(f) = M for some
ramified prime q, then

ρ(I(O)) = ρ(I∗(O)) = lim
k→∞

ρk(I(O))

k
= lim
k→∞

M +
1

k

⌊
k

2

⌋
= M +

1

2
.

Finally, let vq(f) < M for all ramified primes q. Then

ρ(I(O)) = ρ(I∗(O)) = lim
k→∞

ρk(I(O))

k
= lim
k→∞

kM

k
= M. ut
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In a final remark we gather what is known on further arithmetical invariants
of monoids of ideals of orders in quadratic number fields.

Remark 5.3. Let O be an order in a quadratic number field K with conductor
fOK for some f ∈ N≥2.

1. The monotone catenary degree of I∗(O) is finite by [20, Corollary 5.14].
Precise values for the monotone catenary degree are available so far only in the
seminormal case ([18, Theorem 5.8]).

2. The tame degree of I∗(O) is finite if and only if the elasticity is finite if
and only if f is not divisible by a split prime. This follows from Equations 2.3
and 2.4, Theorem 5.2, and from [16, Theorem 3.1.5]. Precise values for the tame
degree are not known so far.

3. For an atomic monoid H, the set {ρ(L) | L ∈ L(H)} ⊂ Q≥1 of all elas-
ticities was first studied by Chapman et al. and then it found further atten-
tion by several authors (e.g., [4,7], [22, Theorem 5.5], [23,35]). We say that H
is fully elastic if for every rational number q with 1 < q < ρ(H) there is an
L ∈ L(H) with ρ(L) = q. Since I∗(O) is cancellative and has a prime element,
it is fully elastic by [3, Lemma 2.1]. Since I∗(O) ⊂ I(O) is divisor-closed and
ρ(I(O)) = ρ(I∗(O)) by Theorem 5.2, it follows that I(O) is fully elastic.

4. For an atomic monoid H, let

k∗(H) = {min(L \ {2}) | 2 ∈ L ∈ L(H) with |L| > 1} ⊂ N≥3 .

By definition, we have k∗(H) ⊂ 2+∆(H) and in [11,23] the invariant k∗(H) was
used as a tool to study ∆(H). Proposition 4.1.4 shows that, both for H = I(O)
and for H = I∗(O), we have maxk∗(H) = 2 + max∆(H).
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