THE MONOTONE CATENARY DEGREE OF MONOIDS OF IDEALS

ALFRED GEROLDINGER AND ANDREAS REINHART

ABSTRACT. Factoring ideals in integral domains is a central topic in multiplicative ideal theory. In
the present paper we study monoids of ideals and consider factorizations of ideals into multiplicatively
irreducible ideals. The focus is on the monoid of nonzero divisorial ideals and on the monoid of v-
invertible divisorial ideals in weakly Krull Mori domains. Under suitable algebraic finiteness conditions
we establish arithmetical finiteness results, in particular for the monotone catenary degree and for the
structure of sets of lengths and of their unions.

1. INTRODUCTION

Factoring ideals in integral domains is a central topic in multiplicative ideal theory (for a monograph
reflecting recent developments we refer to [12]). In the present paper we study monoids of ideals, consider
factorizations of ideals into multiplicatively irreducible ideals, and prove finiteness results on the monotone
catenary degree and structural results on sets of lengths. First we recall the concept of the monotone
catenary degree and then we discuss the monoids of ideals under consideration.

Let H be an atomic monoid which is not factorial. Then every non-unit can be written as a finite
product of atoms and there is an element a € H having at least two distinct factorizations, say a =
UL oo UgUL * e Vpy, = UL~ .. .- UgWT - . . .- Wy, Where all u;, v;, wy, are atoms and the v; and wy, are pairwise
not associated. Then ¢ + m and £ 4+ n are the lengths of the two factorizations and max{m,n} > 0 is
their distance. Then for every M € N, the element

aM:(u1~...-ugv1-...~vm)”(u1~...-ww1-...~wn)M_” for all v €0, M]

has factorizations with distance greater than M. However, at least those factorizations, which are powers
of factorizations of a, can be concatenated, step by step, by factorizations whose distance is small and
does not depend on M. This phenomenon is formalized by the catenary degree which is defined as follows.
The catenary degree c(H) of H is the smallest N € Ny U {oo} such that for each a € H and each two
factorizations z, 2’ of a there is a concatenating chain of factorizations z = 2, 21, . .., 2zk+1 = 2’ of a such
that the distance d(z;_1, 2;) between two successive factorizations is bounded by N. It is well-known that
the catenary degree is finite for Krull monoids with finite class group and for C-monoids (these include
Mori domains R with nonzero conductor f = (R: ﬁ) for which the residue class ring ﬁ/ f and the class
group C (1/%) are finite).

In order to study further structural properties of concatenating chains, Foroutan introduced the mono-
tone catenary degree ([I3]). The monotone catenary degree cpon(H) is the smallest N € Ny U {oo} such
that for each a € H and each two factorizations z, 2z’ of a there is a concatenating chain of factorizations
Z=20,21,-.-,2k+1 = 2’ of a such that the distance between two successive factorizations is bounded by
N and in addition the sequence of lengths |zo], ..., |zx+1] of the factorizations is monotone (thus either
|z0] < ... < |zk41] or |20| = ... > |zk11]). Therefore, by definition, we have c(H) < cpmon(H) and
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Foroutan showed that the monotone catenary degree of Krull monoids with finite class group is finite
again. Subsequently the monotone catenary degree, or more generally, monotonic properties of concate-
nating chains were studied in a variety of papers (e.g., [7, 15l 18] 23] 28] [29]). We mention one result in
detail, namely that C-monoids have the following property (|14, Theorem 1.1]):

There exists some constant M € N such that for every a € H and for each two factorizations z, 2’
of a there exist factorizations z = zg, 21, . . ., 2g+1 = 2’ of a such that, for every i € [1,k + 1],

d(Zi_l,Zi) S M and (either |Z1| S S |Zk| or |21| Z Z |Zk| )

Thus the sequence of lengths of factorizations is monotone apart from the first and the last step. How-
ever, there are C-monoids having infinite monotone catenary degree and this may happen even for one-
dimensional local Noetherian domains (see Remark [5.3)).

In Section [4| we study integral domains R with complete integral closure ﬁ, nonzero conductor (R: }A%),
and with an r-Noetherian ideal system r such that r-max(R) = X(R). Under suitable algebraic finiteness
conditions the monoid of nonzero r-ideals Z,.(R) is finitely generated up to a free abelian factor. However,
since the monoid need not be cancellative, its study needs some semigroup theoretical preparations (done
in Section [3)) valid for unit-cancellative monoids. The main arithmetical result on Z.(R) is given in
Theorem and for its assumptions see Theorems [4.8] and

In Section |5| we study the monoid Z;}(H) of v-invertible v-ideals of v-Noetherian weakly Krull monoids
with nontrivial conductor. This is a C-monoid and isomorphic to a finite direct product of finitely primary
monoids and free abelian factor. However, shifting the finiteness of the monotone catenary degree to finite
direct products might not work as it should (see Example . In order to overcome these difficulties
we introduce a new arithmetical invariant, the weak successive distance (Definition [3.4]), and establish a
result allowing to shift the finiteness of the monotone catenary degree to finite direct products (Theorem
3.8). This is done under the additional assumption that the Structure Theorem for Sets of Lengths
holds (which is the case for Z;(H)). Along our way we prove that the Structure Theorem for Unions
holds, both for the monoid Z.(R) (studied in Section [4]) as well as for Z;(H). This is based on a recent
characterization result for the validity of the Structure Theorem for Unions obtained in [10]. The main
results on Z7(H) are given in Theorem and Corollary

2. BACKGROUND ON THE ARITHMETIC OF MONOIDS

We denote by N the set of positive integers, and we put Ny = NU {0}. For s € N, we will consider

the product order on N§ which is induced by the usual order of Ny. For real numbers a,b € R, we set
[a,b) ={x €Z|a<ax<b}. Let L,L’ CZ. Wedenote by L+ L' ={a+b|a€ L,bec L'} their sumset.
Two distinct elements k, £ € L are called adjacent if LN [min{k, ¢}, max{k,¢}] = {k,¢}. A positive integer
d € N is called a distance of L if there exist adjacent elements k, ¢ € L with d = |¢ — k|, and we denote by
A(L) the set of distances of L. If L C N, we denote by p(L) =sup L/ min L € Q> U {oo} the elasticity
of L. We set p({0}) =1 and max® = min() = sup® = 0.
Monoids and factorizations. All rings and semigroups are commutative and have an identity element.
Let H be a semigroup. If not stated otherwise, we use multiplicative notation and 1 = 1y € H means
the identity element of H. We denote by H* the group of invertible elements of H and we say that H
is reduced if H* = {1}. Then Hyeq = {aH* | a € H} denotes the associated reduced semigroup of H.
Furthermore, H is called

o unit-cancellative if a,u € H and a = au, impliesthat w € H*,
e cancellative if a,b,u € H and au = bu implies that a = b.

Obviously, every cancellative semigroup is unit-cancellative. The property of being unit-cancellative is
a frequently studied property both for rings and semigroups. Indeed, a commutative ring R is called
présimplifiable if a,u € R and a = au implies that either a = 0 or v € R*. This concept was introduced
by Bouvier and further studied by D.D. Anderson et al. ([T} 6] 8, [16]).
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If H is cancellative, then q(H) denotes the quotient group of H and
H = {x € q(H) | there is a ¢ € H such that ca” € H for every n € N} C q(H)

is the complete integral closure of H. Let R be a domain with quotient field K. For every subset X C K
we set X® = X\ {0}. Then R*® is a cancellative semigroup, R is the integral closure of R, and R = R*U{0}
is the complete integral closure of R.

Throughout this paper, a monoid will always mean a
commutative unit-cancellative semigroup with identity element.

For a set P, we denote by F(P) the free abelian monoid with basis P. Then every a € F(P) has a
unique representation in the form

a= H p»( @ with v,(a) € Ny and vp(a) =0 for almost all pe P.
peP
We call |a| =3 pvp(a) the length of a and supp(a) = {p € P | vp(a) > 0} C P the support of a.
Let H be a monoid. A submonoid S C H is said to be

e divisor-closed if a € S and b € H with b|a implies that b € S,
e saturated if a,c € S and b € H with a = bc implies that b € S.

Clearly, every divisor-closed submonoid is saturated. An element u € H is said to be irreducible (or an
atom) if uw ¢ H* and an equation v = ab with a,b € H implies that a € H* or b € H*. Then A(H)
denotes the set of atoms of H, and H is said to be atomic if every non-unit can be written as a finite
product of atoms of H. A simple argument shows that H is atomic whenever the ACCP (ascending chain
condition on principal ideals) holds ([I0, Lemma 3.1]). From now on we suppose that H is atomic.
The free abelian monoid Z(H) = F(A(Hyea)) is called the factorization monoid of H, and the homo-
morphism
w: Z(H) = Hyeq satisfying m(u) =u for each u € A(Heq)
is called the factorization homomorphism of H. For a € H and k € N,
Zy(a) =Z(a) = n~ Y (aH*) C Z(H) is the set of factorizations of a,
Zyp(a) =2Zk(a) ={z € Z(a) | |z| =k} is the set of factorizations of a of length k, and
Li(a) =L(a) = {|z| | 2 € Z(a)} C Ny is the set of lengths of a.
If S C H is a divisor-closed submonoid and a € S, then Zg(a) = Zg(a) whence Lg(a) = Lg(a). Then
o L(H)={L(a)|a€ H} is the system of sets of lengths of H,
e A(H) = ULe[:(H) A(L) is the set of distances of H, and
e p(H) =sup{p(L) | L € L(H)} is the elasticity of H.
The monoid H is said to be
o half-factorial if A(H) = 0 (equivalently, |L(a)| =1 for all a € H),

e an FF-monoid if Z(a) is finite for all @ € H,
e a BF-monoid if L(a) is finite for all a € H.

Let z, 2/ € Z(H). Then we can write

Z=UL .. UV ..Uy and 2 =up .. UupWy ... Wy,
where £, m, n € Ng and w1, ... ,up, V1, -, Um, W1, ..., W, € A(Hyeq) are such that
{v1, .- yvm N {wy, ..., w, =0
Then ged(z,2) =wug - ... - ug, and we call

d(z,2") = max{m, n} = max{|z ged(z, 2) 7|, |2' ged(z,2') |} € No
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the distance between z and z’. If w(z) = 7(2’) and z # 2/, then
(2.1) 1+ |z| = 2] <d(2,2') resp. 2+ |[z| = |2'|| <d(z,2') if H is cancellative
(see [10, Proposition 3.2] and [19, Lemma 1.6.2]). For subsets X,Y C Z(H), we set
d(X,Y) = min{d(z,y) |z € X, y € Y} and
Dist(X,Y) = sup{d({z},Y),d(X,{y}) |z € X,y e Y}.
Note that d(X,Y) =0if and only if (X NY #Qor X =0 or Y =0 ). For a factorization z € Z(H),
we denote by §(z) the smallest N € Ny with the following property:

If k € N is such that &k and |z| are adjacent lengths of m(2), then there exists some y € Z(H) such
that 7(y) = 7(2), |y| =k and d(z,y) < N.
We call
§(H)=sup{d(z) | z€ Z(H)} € Ny U {0}
the (strong) successive distance of H. Note that
§(H) = sup {Dist(Zy(a), Z¢(a)) | a € H, k,€ € L(a) are adjacent} .

Chains of factorizations. Let a € H and N € Ny U {co}. A finite sequence zo, ...,z € Z(a) is called

a (monotone) N-chain of factorizations of a if d(z;_1,2;) < N for all i € [1,k] (and |z9| < ... < |zx| or

|z0| > ... > |zk|). We denote by c(a) (or by cmon(a) resp.) the smallest N € NoU{oo} such that any two

factorizations z, z’ € Z(a) can be concatenated by an N-chain (or by a monotone N-chain resp.). Then
c(H) =sup{c(b) |be H} e NgU{oo} and cmon(H) = sup{cmon(d)|b € H} € NyU {c0}

denote the catenary degree and the monotone catenary degree of H. The monotone catenary degree is
studied by using the two auxiliary notions of the equal and the adjacent catenary degrees. Let ceq(a)
denote the smallest N € Ny U {oo} such that any two factorizations z, 2’ € Z(a) with |z| = |2/| can be
concatenated by a monotone N-chain. We call

Ceq(H) = sup{ceq(b) | b€ H} € Ny U {50}
the equal catenary degree of H. We set
cadj(a) = sup{d(Zi(a), Z¢(a)) | k,¢ € L(a) are adjacent},
and the adjacent catenary degree of H is defined as
Cadj(H) = sup{cadj(b) | be H} e NgU {OO} .
Obviously, we have caq;(H) < §(H),
c(a) < cmon(a) = sup{ceq(a), cagj(a)} <supl(a) forall ac H,
and hence
(2.2) C(H) < Conon(H) = sup{ceq(H), coas (H)}
Note that c,gj(H) = 0 if and only if H is half-factorial and if this holds, then c.q(H) = c(H). If H is
not half-factorial, then shows that 1 + sup A(H) < c¢(H). Moreover, ceq(H) = 0 if and only if for
all a € H and all k € L(a) we have |Zj(a)| = 1. A result by Coykendall and Smith implies that for the
multiplicative monoid H of non-zero elements from a domain we have ceq(H) = 0 if and only if H is
factorial ([9, Corollary 2.12]).

Structure of sets of lengths. Let d € N, M € Ny and {0,d} C D C [0,d]. Then L is called an almost
arithmetical multiprogression (AAMP for short) with difference d, period D, and bound M, if

L=y+(LUL*UL") C y+D+dZ

where
e L* is finite and nonempty with min L* = 0 and L* = (D + dZ) N [0, max L*|
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o I/ C[-M,—1] and L” C max L* + [1, M]

e ycZ.
Note that an AAMP is finite and nonempty. It is straightforward to prove that if M € Ny, d € N, L is an
AAMP with bound M and difference d, x € L and y € dZ are such that min L+ M < x+y < maxL—M,
then x +y € L.

We say that the Structure Theorem for Sets of Lengths holds (for the monoid H) if H is atomic and
there exist some M € Ny and a finite nonempty set A C N such that for every a € H, the set of lengths
L(a) is an AAMP with some difference d € A and bound M. Suppose that the Structure Theorem for
Sets of Lengths holds for the monoid H. Then H is a BF-monoid with finite set of distances. The
monoids of ideals (studied in Section [5) satisfy the Structure Theorem for Sets of Lengths and we use
this property to show that their monotone catenary degree is finite (see Theorem [3.8)).

Unions of sets of lengths. For every k£ € N,

Uy (H) = U L

LeL(H) with keL

denotes the union of all sets of lengths containing k, provided that H # H>*. In the extremal case where
H = H*, it is convenient to set Uy (H) = {k} for all k € N. Furthermore,

pr(H) = supUy(H) € Ny U {o0}

denotes the k-th elasticity of H. Unions of sets of lengths are a classic invariant in factorization theory,
and the last decade has seen a renewed interest in the structure of unions (e.g., [10, 17, 33]).

We say that the Structure Theorem for Unions holds (for the monoid H) if there are d € N and
M € Ny such that, for all sufficiently large k € N, U (H) has the form

Up(H) =yp + (L), UL ULY) Cyy + dZ

where L} is a nonempty arithmetical progression with difference d such that min L} = 0, L} C [-M, —1],
LY C sup L} + [1, M] (with the convention that L} = () if L} is infinite), and yi € Z. Note, if Uy (H) is
finite, then Uy (H) is an AAMP with period {1, d} and bound M.

Suppose that A(H) is finite and the Structure Theorem for Unions holds. Then, by [10, Corollary 2.3
and Lemma 2.12], the parameter d in the above definition satisfies d = min A(H) and we have

. U(H)] 1 1
Jim S5 =2 (o) )

3. FINITELY GENERATED MONOIDS AND FINITE DIRECT PRODUCTS

Let H be a monoid and n: Z(H) — H,eq the canonical epimorphism. Its monoid of relations, defined

as
~i =A{(z,y) € Z(H) x Z(H) | m(x) = 7(y)} ,

is a crucial tool for studying the arithmetic of H. Suppose that H is reduced, cancellative, and atomic.
Then ~y C Z(H) x Z(H) is a saturated submonoid and hence a Krull monoid ([30, Lemma 11]). If,
moreover, H is finitely generated, then ~g is finitely generated. However, this need not be true without
the assumption that H is cancellative ([I0, Remarks 3.11]) (although, by Redei’s Theorem, ker(w) is
finitely generated as a congruence and H is finitely presented). A further striking difference between
the cancellative case and the non-cancellative case is, that cancellative finitely generated monoids have
accepted elasticity which need not be the case in the noncancellative setting (for an example we refer
again to [I0, Remarks 3.11]).

In spite of all these differences, we show in our next result that finitely generated monoids have finite
successive distance and finite monotone catenary degree (both results are known in the cancellative
setting, [19] Theorem 3.1.4] and [I3, Theorem 3.9)).
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Theorem 3.1. Let H be a monoid such that Hyeq is finitely generated. Then §(H) < 00 and Cmon(H) <
0.

Proof. By [10, Proposition 3.4], H is a BF-monoid with finite set of distances. Without restriction we
may suppose that H is reduced and that A(H) = {uq,...,us} is nonempty. Let m: Z(H) — H be the
factorization homomorphism. The homomorphism

F1 Z(H) x Z(H) = (N x N3, +), (Huz’“aﬂu;“) = (M), (i)
=1 i=1

is an isomorphism. By Dickson’s Theorem ([I9, Theorem 1.5.3]), every subset A C N3% has only finitely
many minimal points.

1. For every distance d € A(H), we define subsets R}, Ry C Z(H)xZ(H) as follows: let RS consist
of all (z,y) € Z(H)xZ(H) such that

m(z) = 7(y), |z| and |y| are adjacent lengths of 7(z), and |y| = |z| = d.
The sets M;t = Min(f(Rf)) of minimal points of f(R3) are finite. We set
5 = max{\z’|, /] | (z',y') € f_l(M; UM;), de A(H)},
and assert that 0(z) < ¢* for all z € Z(H).
Let z € Z(H) and k € N be such that k and |z| are adjacent lengths of 7(z), and let yo € Z(H) be
any factorization with 7(yo) = 7(z ) and |yo| = k. Then we have k = |z| £ d for some d € A(H) and

(z,90) € Rf. Let (2,y") € f~Y(M ) be such that f(z',y") < f(z,90). Then z = 2’2y and yg = y'y; for
some z1, y1 € Z(H), and we set y =y'z1 € Z(H). Then n(y) = w(y")w(z1) = n(2")w(21) = 7(2),

yl = 1y'[ + laa] = 2] + | = || = [z £d =k, and d(z,y) < max{]'],[y']} < 6.
2. Since caqgj(H) < 6(H) < 00, it remains to show that ceq(H) < co. Consider the monoid
S ={(z,y) € Z(H) x Z(H) | |z| = |y| and w(x2) = m(yz) for some z € Z(H)},

and set S* = S\ {(1,1)}. First we show that S is a saturated submonoid of Z(H) x Z(H). Clearly,
S is a submonoid of Z(H) x Z(H). Let (z,y),(2',y") € S and (2”,y") € Z(H) x Z(H) be such that

! a1 1,01

(z,y) = (x:c Y'Y ). There are some z,z’ € Z(H) such that ’/T(J}Z) = 7(yz) and w(a'z") = w(y'2').
Set 2" = 2'y'z'z. Then w(y"'z") = nw(yza'?’) = w(yz)w(2'2’) = w(zz)w(y'z") = w(xzy'?’) = n(a"2").
Moreover, |z”| = |z| — |2'| = |y| — |¥'| = |¥"|, and thus (z”,y") € S.

Recall that a subset X C Z(H) is an s-ideal of Z(H) if xy € X for all z € X and y € Z(H). Note that
Z(H) and Z(H) x Z(H) are finitely generated reduced cancellative monoids. Consequently, Z(H) satisfies
the ascending chain condition on s-ideals by [19, Proposition 2.7.4] and S is a finitely generated monoid

by [19, Proposition 2.7.5.1]. For (z,y) € S set
A(z,y) ={z € Z(H) | m(x2z) = w(yz)}, and

B(z,y) ={z € Z(H) | («/,¥) |s (z,y) and 7(z'z) = 7(y'z) for some (z',3') € S*\ {(z,y)}}.
Observe that if (z,y), (v,w) € S are such that (v,w) |s (z,y), then A(x,y) and B(x,y) are s-ideals of
2(H), Bv, w) C Bls,y) and it (1,1) # (v,) # (r,3), then A(v,w) C Ba,y).

Al. For allt € N, a € S and (b;)!_; € S* there is some N € N such that for all (k;)!_, € N§ and

j € [1,1] with k; > N it follows that B(a];_, b") = B(ab} [[i_, ., bi").-

Proof of Al. We proceed by induction on ¢t. Let t € N, a € S and (b;)!_; € S*. Note that
(B(a Hf 1 65))ken, is an ascending chain of s-ideals of Z(H). Therefore there is some M € N such that
for all k € Ny with k& > M it follows that B(a Hl 1 b¥) =B(a HL L bM.

By the induction hypothesis there is some (N(r’g))(w) €[l x[0,M—1] € NL*0.M=1} gyeh that for all

e[Lt], ge[0,M —1], (ki)i—, € Nj and j € [1,#]\ {r} such that k, = g and k; > N(, ) it follows that
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qu

B(a[l;_, bf*) = B(ab, " [I;_ 12 Ui M), Set N = max{N,. 4 | (r,9) € [1,¢] x [0, M — 1]} U{M}. Let
(ki)i_, e Nl and j € [1 t] be such that k; > N.
CASE 1: k. > M for all r € [1,1].

Set k = max{k; | i € [1,#]}. Tt follows that B(a[;_, b)) C B(ab) [[i_, ,; b*) € B(a i, b") C
B(a HZ A (aHl L bM), and thus B(aHl LUy = (abN Hl Lt bh).
CASE 2: k, < M for some r € [1,1].

Note that k; > N > M >k, hencej # r and k: > N > Ni,)- We infer that B(a]_[Z LUy =

NT T TR

B(ab]( T 1z Ui ¥). Since B(ab; N T 1z Ui ) CB(abNHz 1Z;éjbf)CB( alll_, bf") we have
B( Hz 1bi€) B(abN Hz 1,i#j bf ) D(Al)

Since S is finitely generated, there are some ¢ € N and by,...,b; € S* such that S is generated by
bi,...,b;. By A1l there is some N € N such that if (k ) _, €N} andj E [1,t] are such that k; > N, then
B(H'L lbf:) B(bN H’L 1,i#j bf) and thus A(H’L 1 7 )CB(b H’L 1 7 ):B(H: 1bf)

This implies that {a € S | A(a) ¢ B(a)} C {ITi, 0% | (k)i_, € Ni, k;j < N for all j € [1,]}, hence
{a € S| A(a) ¢ B(a)} is finite. Set K = max{d(z,y) | (z,y) € S, A(x,y)  B(z,y)}.

A2. For all r € Ny, (z,y) € S and z € A(z,y) such that |z| = r it follows that zz and yz can be

concatenated by a monotone K-chain of factorizations of 7(zz).

Proof of A2. We proceed by induction on r. Let r € Ny, (x,y) € S and z € A(x,y) be such that
|x] = r.
CASE 1:  A(z,y) € B(x,y).

We have d(zz,yz) = d(z,y) < K, and thus the assertion is trivially satisfied.

CASE 2: A(z,y) C B(x,y).
There are some (z/,y'), (z”,y") € S*\ {(z,y)} such that z = 2’2", y = ¥’y and n(2'z) = 7(y'2).
Clearly, |2'| < r and |2”] < r. Observe that w(z'z"z) = 7T($/Z)7T(IN) =7y z)m(z") = ﬂ(y’x”z) and
m(z"y'z) = ﬂ(x"a:’z) = w(y"y'z), where the last equality holds because z € A(z,y). We have 2"z €

A(z',y') and y'z € A(2”,y"”). Consequently, xz = 2’2"z and y'z"z can be concatenated by a monotone
"y'z and

K-chain of factorizations of m(xz) by the induction hypothesis. It follows by analogy that x

y"'y'z = yz can be concatenated by a monotone K-chain of factorizations of 7w(z"y’z) = w(xz). Therefore,

xz and yz can be concatenated by a monotone K-chain of factorizations of m(zz). 0O(A2)
It is sufficient to show that ceq(H) < K. Let a € H and =,y € Z(a) be such that |z| = |y|. Then

(z,y) € Sand 1 € A(x,y). We infer by A2 that x and y can be concatenated by a monotone K-chain of
factorizations of a. Therefore, ceq(b) < K for each b € H, hence ceq(H) < K. O

We will apply Theoremto finitely generated monoids of ideals in Section 4] We refer to [10, Section
3.3] and to [24] for a discussion of finitely generated (not necessarily cancellative) semigroups of modules.

We continue with an example (due to S. Tringali) of a finitely generated monoid whose monoid of

equal-length relations is not finitely generated, although the monoid .S, defined in the proof of Theorem
B.1]2, is finitely generated and its equal catenary degree is finite.

Example 3.2. For an atomic monoid H,
~eq = {(2,y) € Z(H) x Z(H) | 7(x) = 7(y) and [z] = |y[}

is the monoid of equal-length relations of H. If H is cancellative, then ~p.q C ~pg is a saturated
submonoid and hence a Krull monoid and it is finitely generated whenever H,eq is finitely generated ([7,
Proposition 4.4]). We provide an example showing that ~ 4 need not be finitely generated if H is not
cancellative. Let

PﬁnoNo {ACNO|0€A ACNolbﬁnlte}
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be the monoid of finite subsets of Ny containing 0, with set addition as operation. Clearly, {0} is the
zero-element of the monoid, and for every A C Ny and every k € N, kA = A+ ...+ A means the k-fold
sumset of A. Consider the submonoid H generated by

{0,1}, A=1{0,1,3}, and B={0,2,3}.

Of course, H is a reduced, finitely generated, commutative semigroup with identity element, and it is
unit-cancellative by [I1, Theorem 2.22(ii) and Proposition 3.3]. Moreover, we have (by induction) that
{0,1} + kA = {0,1} + kB = [0,3k + 1] for all & € Ny. Since the monoid H is written additively,
Z(H) x Z(H) and ~p eq will be written additively too. For every k € Ny, we define

ap = ({0,1} + kA, {0,1} + kB) € ~geq

and assert that aj is an atom in ~p eq.

Assume to the contrary that there are k € N and b, ¢ € ~p o4, distinct from the zero-element ({0}, {0})
of ~p eq, such that ay = b+ c. Since {0,1} + ¢A, {0,1} + ¢B are intervals for all £ € N but /A and ¢B
are not intervals for any ¢ € N, it follows that ({0,1},{0,1}) must divide (in ~p ¢q) either b or ¢, say it
divides b. Thus we obtain that for some ¢ € [0,k — 1],

b= ({0, 1} +qA,{0,1} + qB) which implies that ¢ = ((k; —q)A, (k- q)B) )
However, since k — ¢ > 0, we obtain that 1 € (k — ¢)A but 1 ¢ (k — ¢)B, a contradiction to ¢ € ~g eq-

The monoid of v-invertible v-ideals studied in Section [5| is isomorphic to a finite direct product of
finitely primary monoids and a free abelian factor. Our next goal in this section is to shift the finiteness
of the monotone catenary degree of given monoids H; and Hs to their direct product H; x Hs. However,
this may not be true in general. We start with an example highlighting the problem.

Example 3.3. Let k,d € N with d > 10, y,1,¥x,2 € N>o and let
Lig=ypa+ ({vd|ve [0k} U{kd+2}) and Lyo=yr2+ ({vd|ve[0,k]}U{kd+1,kd+3}).

We claim that both, yi + kd + 1 and yi + kd + 2, have a unique representation in the sumset, where
Yk = Yk,1 + Yk,2. Indeed, if yp + kd+ 1 = a1 + ax with a1 € L1 and ag € Ly 2, then a1 = y;,1 + 0 and
a2 = Yg,2 + kd+ 1. If yp + kd + 2 = by + by with by € Lk,l and by € Lk,g, then b; = Yk,1 + kd + 2 and
by = yr,2 + 0. Thus |a; — b1| > kd and |as — ba| > kd.

Now suppose that Ly 1 and Ly o are realized as sets of lengths, say Ly ; = L(ax;) with ax, € H; for
some atomic monoids H; and ¢ € [1,2], and set ay = ag 1ax,2 (there is a variety of realization results for
sets of lengths guaranteeing the existence of H; and Ha; see, for example, [19, Proposition 4.8.3], [20]
Theorem 4.2]). Then

d(Zyetkar1(an), Zy, +rata(ar)) > 2kd.

For a further analysis of the problem, consider an atomic monoid H. If ¢ € H and k,¢ € L(a) are
adjacent lengths with k& < ¢, then by definition we have d(Zj(a), Z¢(a)) < caqj(a) < caqj(H). However, if
£,m € L(a) are adjacent with £ < m, then we cannot conclude that

d(Zk(a),Zm(a)) < d(Zk(a),Zg(a)) + d(Zg(a), Zm(a)) .

In order to be able to obtain an inductive upper bound for d(Zy, (a), Zy, (a)) for pairwise adjacent lengths
ko < ... <k, in L(a), we introduce a new invariant.

Definition 3.4. Let H be an atomic monoid. For an element a € H, the (weak) successive distance
b (a) is the smallest N € No U {oo} such that for all k,¢ € L(a) we have d(Zi(a),Z¢(a)) < N|¢ — k|.
Then

dw(H) =sup{dy(a) | a € H} € NgU {cc}

is called the (weak) successive distance of H.
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Note that d,(H) = 0 if and only if H is half-factorial. The invariant d,,(H) is bounded above by
d(H) (as we outline in the next lemma). However, in Section [5| we will meet monoids having finite
weak successive distance but infinite strong successive distance (see Corollary Proposition and
Remark [5.3]4).

Lemma 3.5. Let H be an atomic monoid.
1. 6,(H) <46(H).
2. Suppose that A(H) is finite. Then caq;(H) < 0, (H)max A(H). In particular, if §,(H) < co and
Ceq(H) < 00, then cmon(H) < 0.

Proof. If H is half-factorial, then A(H) = () and caqj(H) = max A(H) = 6,,(H) = 0 whence all assertions
hold. Now we suppose that H is not half-factorial.

1. Clearly, it is sufficient to show that d,,(a) < §(H) for every a € H. Let a € H and k,¢ € L(a)
be given, say k < ¢. Then there are pairwise adjacent lengths k = ko < k1 < ... < k. = £ of L(a). By
definition of §(H ), there are factorizations 2y, . . ., z, such that |z;| = k; fori € [0,7] and d(z;_1, 2z;) < §(H)
for all ¢ € [1,7]. Therefore, it follows that

d(Zk, (), Zx, (a)) < d(z0,20) <Y d(zi-1,2) < r6(H) < |¢ — k|5(H).
i=1

2. If a € H and k,{ € L(a) are adjacent, then d(Zx(a),Z¢(a)) < 6, (a) max A(L(a)) whence cagj(a) <
6w(a)max A(L(a)). Thus it follows that caqj(H) < 6,,(H)maxA(H), and the in particular statement
follows immediately. O

Lemma 3.6. Let H be an atomic monoid satisfying the Structure Theorem for Sets of Lengths and
suppose that the following conditions hold:

(a) There are some My,Cy € N such that for each a € H and all adjacent k,¢ € L(a) such that
max{k, (} + My < maxL(a) it follows that Dist(Z(a),Z¢(a)) < C.
(b) For every N € N there is some Cy € N such that for all a € H and k,{ € L(a) for which
min{k, £} + N > maxL(a) it follows that d(Zx(a),Z¢(a)) < Cao|l — k|.
Then 6, (H) < 00.

Proof. Without restriction we may suppose that H be reduced. We start with the following assertion.

A. There is some My € N such that for all « € H and k € L(a) with k¥ + 2My < maxL(a) we have
k+ My € L(a)

Proof of A. Since H satisfies the Structure Theorem for Sets of Lengths there is some IV € N and some
finite nonempty A C N such that for all a € H, L(a) is an AAMP with bound N and difference in A. Set
My = N]]send. Let a € H and k € L(a) be such that k +2My < maxL(a). There is some d € A such
that L(a) is an AAMP with bound N and difference d. Note that min L(a)+My < k+ My < max L(a)— M.
Since k € L(a) and My € dZ we infer that k + M, € L(a). O(A)

Set M = MyM;. Tt follows easily by induction that for all @ € H and k € L(a) such that k + 2M <
max L(a) it follows that k + M € L(a). There is some Cy € N such that for all k,¢ € L(a) for which
min{k, £} + 2M > maxL(a) it follows that d(Z(a),Z¢(a)) < Co|l — K|

We assert that §,,(H) < max{Cy,Cs}. Let a € H and k,¢ € L(a), say k < £. Let L(a) N[k, (] =
(kos .o key ) with k= ko < ... < ky = 0.

CASE 1: (+ M <maxL(a).

Note that Dist(Zy,(a),Zy,.,(a)) < C; for all i € [0,r — 1]. By definition, there are factorizations

2 € Zy,(a) for every i € [0,7] such that d(z;,2;41) = d({2;}, Zk,,,(a)) for all j € [0,r — 1] whence we
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infer that
r—1

d(Zk(a), Ze(a)) < d(zo, 2r) < Zd(zj,zj_H) < Cyr < max{Cy,Ca}|¢ — k| .
7=0
CASE 2: k4 2M > maxL(a).
It is clear that d(Zy(a), Ze(a)) < Call — k| < max{Cy, Ca}|l — k|.
CASE 3: {+ M > maxL(a) and k +2M < maxL(a).

There is some maximal n € [0,7] such that k, +2M < maxL(a). Observe that k, + M € L(a).
Therefore, there is some m € [1,r — 1] such that k,, = k,, + M. There are factorizations zg, .. ., Zy,+1 such
that 2o € Zy(a), z; € Zy,,,_,(a) for every i € [1,m + 1], d(20, 21) = d(Zs,,(a),Z¢(a)) and d(zj,2zj41) =
d({2;}, Zk,,_,(a)) for every j € [1,m]. If j € [1,m], then k,,_;;1 + M < maxL(a), and thus d(z;, zj41) <
C. Moreover, since k,, + 2M > maxL(a) we have d(z0,21) < C2(£ — ky,). This implies that

d(Zk(a),Zg(a)) é d(Zo,Zm+1) S Zd(zi,zlurl) é Cg(g - km) + Clm S maX{Cl,Cg}|£ - k| .
=0

Lemma 3.7. Let H= H; X ... x H,, wheren € N and Hy,...,H, are atomic monoids.
1. A(H) is finite if and only if A(H;) is finite for every i € [1,n].
2. The Structure Theorem for Sets of Lengths holds for H if and only if it holds for Hy,..., H,.

Proof. Without restriction we may suppose that H is reduced. Then Hi,..., H, are reduced and they
are divisor-closed submonoids of H. Thus, if A(H) is finite (or if the Structure Theorem for Sets of
Lengths holds for H, then the same is true for each divisor-closed submonoid.

If A(Hy),...,A(H,) are finite, then A(H) is finite (a proof in the cancellative setting can be found in
[19, Proposition 1.4.5], and the proof in the general setting runs along the same lines). Clearly, we have

L(H)={Li+...+ Ly, | L; € L(H;) for all i € [1,n]}

whence sets of lengths in H are sumsets of sets of lengths in Hy, ..., H,,. Thus if the Structure Theorem
for Sets of Lengths holds for Hy, ..., H,, then it holds for H by [19] Theorem 4.2.16]. O

Theorem 3.8. Let H = Hy x ... x H, where n € N and Hy,...,H, are atomic monoids. Then the
following statements are equivalent:

(a) H satisfies the Structure Theorem for Sets of Lengths, ceq(H) < 00, and d,,(H) < cc.

(b) For every i € [1,n], H; satisfies the Structure Theorem for Sets of Lengths, ceq(H;) < oo, and
6w(Hz) < 00.

Proof. We may suppose that H is reduced. Then Hy,..., H, are reduced divisor-closed submonoids of
H and hence (a) implies (b). In order to show that (b) implies (a) it suffices to handle the case n = 2.

Therefore, we suppose that Hy and H, satisfy the Structure Theorem for Sets of Lengths and that
Ceq(H1), Ceq(H2), 04 (H1), and d§,,(Hz2) are all finite. Lemma implies that the Structure Theorem for
Sets of Lengths holds for H. Now we proceed in two steps.

1. We show that d,,(H; X Ha) < oo. For every i € [1,2], there is a finite nonempty set A; and a bound
M; € N such that for every a; € H;, L(a;) is an AAMP with bound M; and difference in A; and for all
k.l € L(a;), we have d(Z(a;), Ze(a;)) < 80 (H;) € — k|-

We set e = max{Mi, M2} [[4cn,un, 4> and assert that

8o (Hy % H) < max{0u(H,), 6, (Hz)}(de +1).

Let a € H and k, ¢ € L(a) be distinct. Then there are some a; € Hy and as € Hs such that a = ajas.
Obviously, there are some k1,41 € L(a1) and ko, l5 € L(az) such that k = ky + ko, £ = £1 + {2 and for all
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vy, wy € L(ay) and vg, wy € L(az) with k& = vy + vy and £ = wy + ws it follows that [ — k1| + [la — ko] <
|vr — w1 | + |va — wa|. We proceed by proving the following assertion.

A. ‘El — k‘1| + |€2 — k‘2| < (46 + 1)‘5— k|

Proof of A. We distinguish two cases.

CASE 1: |€1 — k1| S 2e or |€2 — k2| S 2e.

Without restriction we may suppose that |¢; — k1| < 2e. Since ko — lo = k — € — (k1 — £1) we infer
that |€2 — k2| < |£ — k| + |€1 - kl‘ < M— k‘| + 2e < (26 + 1)|£ — k| It follows that ‘61 — k1| + |£2 — /ﬂ2| <
2e+ (2e+1)[0 — k| < (4de+ 1) — K|
CASE 2: |€1 — kll > 2e¢ and |€2 — k‘2| > 2e.

First, suppose that k1 < ¢, and ky > 5. We set

vi=ki+te wy =¥ —e vy=ky—e, and wyg=~_» +e¢,
and observe that
minL(a;) + M; <v; <w; <maxl(a;) —M; and minl(as) + My < wy < vy <maxl(az) — Ms.

Since e is a multiple of the differences of the AAMPs L(aq) and L(az), it follows that vy, w; € L(a;) and
vy, wa € L(ag). Therefore, since k = vy + vy and £ = wy + wsy, our minimality choice of kq, ko, £1, and £o
implies that

|£1 —k’l‘ + |€2—]€2| < |’Ul —’LUl‘ + |’U2 —w2| = |k‘1 —£1+2€| + ‘kz—fg —2€|
=0 — k1 —2e+ky— Ly —2e = |£1 —](31|—|—|€2—k‘2|—467
a contradiction.

Second, if k1 > ¢ and kg < {3, then we again obtain a contradiction. Thus we infer that (k; < ¢; and
ko < {s) or (ky > £1 and ko > £5). In both cases it is obvious that

|69 — k1| + [la —ko| = |0 — k| < (4de+ 1)L — k. O(A)
Clearly, there are some x1 € Zy, (a1), y1 € Zp,(a1), 2 € Zy,(az), and ya € Zy,(az) such that d(x1,y1) =
d(Zg, (a1),Ze, (a1)) and d(z2,y2) = d(Zg,(a2), Zs,(az)). Therefore, A implies that
d(Zk(a), Ze(a)) < d(z122,3192) < d(z1,91) + d(22,Y2)
< Ouw(H1) b1 — k1| + 60 (Ha) €2 — k2
< max{dy (H1), 6w (H2)} (|01 — k1| + |62 — k2)
< max{dy,(H1), b, (H2)}(de + 1) — K]

2. We assert that ceq(Hy X Ha) < N, where
N = max{?e(éw(Hl) + (Sw(HQ)), Ceq(H1>,Ceq(H2)} .

To prove that ceq(H1 x Hz) < N it is sufficient to show that for all a1 € Hi, as € Hs, 7 € Ny,
21,01 € Z(a1), z2,v2 € Z(az) such that |vi| — |z1| = r and |z1| + |22| = |v1| + |v2]| it follows that z129 and
v1v9 can be concatenated by a monotone N-chain. Let a; € H; and ay € Hy. We prove the assertion by
induction on 7. Let r € Ny be such that for every s € Ny with s < r and all z1,v1 € Z(a1), 22,v2 € Z(asz)

such that |v1| — |z1] = s and |z1| 4 |22| = |v1] + |v2] it follows that z;29 and v1vs can be concatenated by a
monotone N-chain. Let z1,v1 € Z(a1), z2,v2 € Z(az) be such that |v1|—|z1| = r and |z1]|+|22| = |v1|+]|v2|.
Obviously, |z2| — |va| = |v1| — |z1]. We distinguish two cases.

CASE 1:  |zg| — |vg| < 2e.

Observe that d(Z;,(a1),Z},,)(a1)) < 2ed,(H1) and d(Z|.,|(az2), Zjy, (a2)) < 26, (Hz). Note that
there are some z; € Z;,((a1), y1 € Zjy,|(a1), v2 € Z|;,(a2) and y2 € Z},,|(az) such that d(x1,y1) =
d(Z2,(a1),Zjv,)(a1)) and d(z2, y2) = d(Z).,|(a2), Zjy,|(a2)). There is some monotone ceq(H1)-chain which
concatenates z; and x1, and thus there is some monotone ceq(Hi)-chain which concatenates z1ze and



12 ALFRED GEROLDINGER AND ANDREAS REINHART

2122. Moreover, there is some monotone Ceq(Hz)-chain which concatenates z2 and z3, and thus there
is some monotone Ceq(Hz)-chain which concatenates 122 and zq2z2. Therefore, there is some monotone
N-chain which concatenates z1zo and x1xs. Along the same lines one can show that there is some
monotone N-chain which concatenates y;y2 and v1ve. Observe that d(z1x2,y1y2) < d(z1, y1)+d(22,y2) <
2e(0,(H1) + 64 (H2)) < N. Therefore, there is some monotone N-chain which concatenates zqzo and
V1V2.

CASE 2:  |zg| — |va| > 2e.

Note that |vi]| — |z1] > 2, minL(a1) + My < |z1| + ¢ < maxLl(a;) — My and minl(az) + My <
|z2] — e < maxL(az) — Ms. Since e is a multiple of the differences of the AAMPs L(a1) and L(az) we
have |z1| + e € L(ay) and |23] — e € L(az). There are some wy; € Z(ay) and we € Z(az) such that
|wi] = |z1| + e and |wa| = |22 — e. It follows that 0 < |v1| — |w1| = r —e < r and |wy| + |wa| =
|21| + |22| = |vi| + |v2]. By the induction hypothesis, wiws and vivy can be concatenated by a monotone
N-chain. Note that there are some 1 € Z|;,|(a1), y1 € Zjw,|(a1), T2 € Z|25(a2), y2 € Zju,|(az) such
that d(x1,91) = d(Z).,((a1), Zjw,|(a1)) and d(22,y2) = d(Z|.,|(az2), Zjw,|(az)). There is some monotone
Ceq(H1)-chain which concatenates z; and z1, and thus there is some monotone ceq(Hi)-chain which
concatenates 2122 and x122. Moreover, there is some monotone ceq(H2)-chain which concatenates zo
and 2, and thus there is some monotone ceq(Hz)-chain which concatenates z122 and xjx3. Therefore,
there is some monotone N-chain which concatenates z1zo and x1x2. Along the same lines one can show
that there is some monotone N-chain which concatenates y1y2 and wiws. Observe that d(xiza, y1y2) <
d(z1,y1) + d(x2,y2) < e(6w(H1) + 04 (H2)) < N. Consequently, there is some monotone N-chain which
concatenates z1zo and wiws, and thus there is some monotone N-chain which concatenates z1zo and
V1V3. O

4. FINITELY GENERATED MONOIDS OF 7r-IDEALS

Our notation of ideal theory follows [20] with the modifications stemming from the fact that the
monoids in this paper do not contain a zero element. We recall some basics in the setting of commutative
monoids and will use all notations also for integral domains.

Let H be a cancellative monoid. An ideal system on H is a map r: P(H) — P(H) such that the
following conditions are satisfied for all subsets X,Y C H and all ¢ € H:

X C X,

X CY, implies X, C Y,.

cH C {c},.

X, = (cX),.

Let r be an ideal system on H. A subset I C H is called an r-ideal if I, = I. We denote by Z,.(H) the
set of all nonempty r-ideals, and we define r-multiplication by setting I -. J = (IJ), for all I, J € Z,.(H).
Then Z,.(H) together with r-multiplication is a reduced semigroup with identity element H. Let F,.(H)
denote the semigroup of fractional r-ideals, F,.(H)* the group of r-invertible fractional r-ideals, and
IX(H) = FX(H)NZI.(H) the cancellative monoid of r-invertible r-ideals of H with r-multiplication. We
say that H satisfies the r-Krull Intersection Theorem if

(N U™)r=0 forall IeZ.(H)\{H}.

n€Ny
For subsets A, B C q(H), we denote by (A: B) = {x € q(H) | zB C A}, by A=l = (H : A), by
Ay, = (A1) tand by 4y = UECA,\EKOO E,. We will use the s-system, the v-system, and the t-system.
By X(H), we denote the set of minimal nonempty prime s-ideals of H. If r and ¢ are ideal systems on
H, then we say that r is finer than ¢ (resp. ¢ is coarser than r) if Z,(H) C Z,(H) (equivalently, X, C X,
for all X C H). Recall that X,. C X,,, and if r is finitary, then X,. C X; for all X C H.
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We need the following classes of monoids (see [19, Section 2.10], also for the correspondence to ring
theory). Let H be a monoid and m = H \ H*. Then H is said to be
archimedean if Ny,>0a™H = () for every a € m,
primary if H # H* and s-spec(H) = {0, m},
strongly primary if for every a € m there is an n € N such that m”™ C aH,
a G-monoid if the intersection of all nonempty prime s-ideals is nonempty.

To recall some well-known properties, note that every monoid satisfying the ACCP is archimedean, that
every v-Noetherian primary monoid is strongly primary, that every primary monoid is a G-monoid, and
that overmonoids of G-monoids are G-monoids.

In order to give the definition of C-monoids we need to recall the concept of class semigroups which
are a refinement of ordinary class groups in commutative algebra (a detailed presentation can be found
in [19, Chapter 2]). Let F' be a cancellative monoid and H C F a submonoid. Two elements y,y’ € F
are called H-equivalent, if y 'HNF =9/ “'HNF. H -equivalence is a congruence relation on F. For
y € F, let [y]f; denote the congruence class of y, and let

CHH,F)={lyliy |y € F} and C*(H,F)={lyly |ye (F\F*)u{l}}.

Then C(H, F) is a semigroup with unit element [1]%; (called the class semigroup of H in F') and C*(H, F) C
C(H,F) is a subsemigroup (called the reduced class semigroup of H in F). If H is a submonoid of a
factorial monoid F' such that H N F* = H* and C*(H, F) is finite, then H is called a C-monoid. A
C-monoid H is v-Noetherian with (H: H ) # 0 and its complete integral closure H is Krull with finite
class group ([I9, Theorems 2.9.11 and 2.9.13]). If H is a Krull monoid with finite class group, then H is
a C-monoid and the class semigroup coincides with the usual class group of a Krull monoid.

Let R be a domain with quotient field K and r an ideal system on R (clearly, R® is a monoid and r
restricts to an ideal system 7’ on R® whence for every subset I C R we have I, = (I*),»U{0}). We denote
by Z,(R) the semigroup of nonzero r-ideals of R and Z;(R) C Z,(R) is the subsemigroup of r-invertible
r-ideals of R. The usual ring ideals form an ideal system, called the d-system, and for these ideals we
omit all suffices (i.e., Z(R) = Z4(R), and so on).

Throughout the rest of the paper, every ideal system r on a domain R
has the property that Z,.(R) C Z(R).

A domain R is said to be archimedean (primary, strongly primary, a G-domain, a C-domain) if its
multiplicative monoid R® has the respective property. Recall that a domain is primary if and only if
it is one-dimensional local. To give an example for a C-domain, let R be a Mori domain with nonzero
conductor §f = (R: R). If the class group C(R) and the factor ring R/f are both finite, then R is a
C-domain by [19] Theorem 2.11.9] (for more on C-domains see [22] [32]).

In the first part of this section we establish sufficient criteria for the r-ideal semigroup Z,(R) to be
unit-cancellative.

Lemma 4.1. Let R be a domain and r an ideal system on R.
1. If R satisfies the r-Krull Intersection Theorem, then I.(R) is unit-cancellative.

2. T.(R) is unit-cancellative if and only if Z,.(R) has no nontrivial idempotents and for every I €
Z,(R), {J € Z.,(R) | (IJ), = I} has a minimal element with respect to inclusion.

Proof. 1. Let I,J € Z.(R) be such that (I.J), = I. We infer that (IJ"), = I for all n € Ny, hence
{0} # I CN,en, (J")r- Since R satisfies the r-Krull Intersection Theorem we have J = R.

2. First let Z,(R) be unit-cancellative. It is clear that R is the only idempotent element of Z,.(R) and
for every I € Z,(R), {J € Z,(R) | (IJ), = I} = {R}.

To prove the converse, suppose that Z,.(R) has no nontrivial idempotents and let for every I € Z,.(R),
{B € Z,(R) | (IB), = I} have a minimal element with respect to inclusion. Let I, J € Z.(R) be such
that (IJ), = I. We have to show that J = R. Let A € Z,(R) be minimal such that (IA), = I. Since
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(IA?), = I and (A42%), C A, we infer that A is an idempotent of Z,(R), and thus A = R. Note that
(IJA), =1 and (JA), C A. Therefore, J = (JA), = A=R. O

Proposition 4.2. Let R be a domain and r an ideal system on R.
1. If R is strongly primary, then R satisfies the r-Krull Intersection Theorem.

2. Let R be archimedean such that R is a semilocal principal ideal domain. If (R : R) # {0} orr is
finitary, then Z,.(R) is unit-cancellative.

3. If R is an r-Noetherian G-domain, then Z.(R) is unit-cancellative.

Proof. 1. Set m = R\ R*. Let I € Z,(R) be such that (), .y (I")» # {0}. There is some nonzero
z € ,yen, I™)r. We infer that mk C 2R for some k € Ny, and thus (m*), C xR. Assume that I # R.
Then I C m, hence (m*), C R C MNnene™)r € Nypen, (M™)r C (m*),.. This implies that (m*), = zR.
It follows that (m2?*), = (m*),, hence 22R = zR. Consequently, z € I N RX, and thus [ = R, a
contradiction.

2. Let (R : R) # {0} or let r be finitary. We start with the following assertion.

A. (ﬁ tA) = (E : A,) for every ideal A of R.

Proof of A. Let A be an ideal of R. It is sufficient to show that (]:’, tA) C (1/% : A,), since the other
inclusion is trivially satisfied. Let = € (ﬁ : A). Then A C R. Recall that the v system is the coarsest
ideal system on R and the ¢ system is the coarsest finitary ideal system on R.

CASE 1: (R:R)# {0}. L
We have R is a fractional divisorial ideal of R, and thus zA, C zA, = (z4), C (R), = R.
CASE 2: r is finitary. R R
It follows that A, C x4, = (zA); C (R), = R. O(A)

Note that A, = AR for every ideal A of R, since Risa principal ideal domain. Now let I, J € Z,.(R)
be such that (IJ) = I. We infer by A that IRJR = (I.J),, = (({J)y)v; = L, = IR. Consequently,
JR = R since R is a prlnclpal ideal domain. Note that J is addltlvely and multlphcatwely closed and
J ¢ m for every m € max(R). Therefore, J ¢ UmEde(R) m=R \ RX by prime avoidance, since R is
semilocal. Since R is archimedean, we have ) # JNR* = JN RN R*=Jn R*, and thus J = R.

3. Let I,J € Z,.(R) be such that (I.J), = 1. Set S = (I : I). It follows by [31, Theorem 4.1(b)] and its
proof that S is a Mori domain and JS = S. Observe that S is also a G-domain, and thus spec(S) is finite.
Since J is an ideal of R and J ¢ m for all m € max(S) we have J ¢ | ym =S5\ 5% by prime

avoidance. Therefore, JNS* # (). Clearly, R is archimedean (since R is a Mori domain). Since S C ﬁ, we
have R* C S*NR C R*NR = R*, hence S*NR = R*. We infer that () # JNS* = JNRNS* = JNR*,
and thus J = R. ]

memax(S

Lemma 4.3. Let R be a domain and r a finitary ideal system on R.

1. If Ry, satisfies the ro-Krull Intersection Theorem for every m € r-max(R), then R satisfies the
r-Krull Intersection Theorem.

2. If I, (Rw) is unit-cancellative for every m € r-max(R), then Z,.(R) is unit-cancellative.
Proof. 1. Let I € Z,(R) be such that I # R. Since r is finitary, there is some m € r-max(R) such that
I Cm. We have Iy, € 7, (Rw) and Iy C My & Riy. Therefore, (), ey, (1™)r C MNpen, (Im)re = {0}

2. Let I,J € Z.(R) be such that (IJ), = I. Then (IwJun)r, = (IJ)r)m = I for all m € r-max(R),
and thus Jy, = Ry, for all m € r-max(R). Consequently, J = R. O

Corollary 4.4. Let R be a domain and r a finitary ideal system on R.
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1. If R is a Mori domain, then T,(R) is unit-cancellative if and only if Z,(R) has no nontrivial
idempotents.

2. Let R be a Mori domain or let R be a Krull domain. If r-max(R) = X(R), then I,.(R) is unit-
cancellative.

Proof. 1. Let R be a Mori domain and I € Z,(R). Note that R € {J € Z,(R) | (IJ), = I} C {J €
Z,(R) | I C J}. Since R is a Mori domain we infer that {J € Z,(R) | (IJ), = I} has a minimal element
with respect to inclusion. Now the assertion follows from Lemma [£.1]2.

2. Let r-max(R) = X(R). By Lemma [£.3]2 it is sufficient to show that Z,, (Rw) is unit-cancellative
for all m € X(R). Let m € X(R).

CASE 1: R is a Mori domain. Then R, is a one-dimensional local Mori domain.

It follows that Ry, is a strongly primary domain, hence Z, (Ry,) is unit-cancellative by Lemma 1
and Proposition [1.2]1.

CASE 2: R is a Krull domain.

Clearly, Ry, is a one-dimensional local domain, and thus Ry, is an archimedean G-domain. Moreover,
we have ISL; = Ry is a Krull domain and a G-domain. Therefore, ISL; is a semilocal principal ideal domain.
(A Krull domain that is a G-domain has finite prime spectrum. Therefore, it is semilocal and it is at
most one-dimensional by prime avoidance (since a Krull domain satisfies Krull’s principal ideal theorem).
A Krull domain that is at most one-dimensional is a Dedekind domain and a semilocal Dedekind domain
is a principal ideal domain.) It is clear that ry, is a finitary ideal system on R,. We infer by Proposition
[£.2]2 that Z,, (Rw) is unit-cancellative. O

A domain is called a Cohen-Kaplansky domain if it is atomic and has only finitely many atoms up to
associates. Our next result is well-known for usual ring ideals (see [5, Theorem 4.3] and [3]).

Proposition 4.5. Let R be a domain and r an ideal system on R. Then the following statements are
equivalent :

(a) R is a Cohen-Kaplansky domain.
(b) Z.(R) is a finitely generated semigroup.
(¢) ZX(R) is a finitely generated semigroup.

Proof. First let R be a Cohen-Kaplansky domain. We know that Z(R) is a finitely generated semigroup
by [B, Theorem 4.3], and thus there is some finite E C Z(R) such that Z(R) = [E]. Set F = {J,. | J € E}.
Then F is finite and it suffices to show that Z,.(R) = [F]. It is clear that [F] C Z,.(R). Let I € Z,(R).
Then I € Z(R), and thus there is some (oy)jep € N§ such that I = [],.5J*. We infer that
I'=1.= (HJEE(JT)QJ)T € [F].

Next let Z,.(R) be a finitely generated semigroup. Then there is some finite £ C Z,.(R) such that
Z.(R) = [E]. Set F = ENZf(R). Then F is finite and it suffices to show that Z*(R) = [F]. Obviously,
[F] C Z¥(R). Let I € Z;(R). Then I € Z.(R) and hence there is some (a;)jep € N¥ such that I =
(ITyer J%7)r- Recall that if A € Z)(R) and B,C € Z,(R) are such that A = (BC),, then B,C € T} (R).
This implies that ay = 0 or J € F for all J € E. Therefore, I = ([];cp J*), € [F].

Finally let Z}(R) be a finitely generated semigroup. Note that Z}(R) is a cancellative monoid and
{zR | x € R*} is a saturated submonoid of Z(R). We infer that {zR | z € R*} is a finitely generated
monoid, and thus the monoid of principal ideals of R is finitely generated. Consequently, R is a Cohen-
Kaplansky domain by [5, Theorem 4.3]. O

Let R be a domain, r an ideal system on R and I, J € Z,.(R). We say that I and J are r-coprime if R
is the only r-ideal containing I and J.

Lemma 4.6. Let R be a domain and r a finitary ideal system on R. Let I,J,L € ZT.(R), n € Ny and
(I, a finite sequence of elements of Z.(R).
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1. I and J are r-coprime if and only if /I and \/J are r-coprime. If these equivalent condition are
satisfied, then (IJ),. =1NJ.

2. If I and J are r-coprime and I and L are r-coprime, then I and J N L are r-coprime.

3. If for all distinct i,j € [1,n], I; and I; are r-coprime, then ([}, I)r = iz L.

Proof. 1. Since r is finitary, every proper r-ideal of R is contained in an r-maximal r-ideal. Moreover,
the radical of every r-ideal is again an r-ideal. Therefore, I and J are not r-coprime if and only if there is
some m € r-max(R) such that I, J C M if and only if there is some m € r-max(R) such that vI,v/.J C m
if and only if v/I and v/J are not r-coprime.

Now let I and J be r-coprime. Then (I U J), = R. Clearly, (IJ), C INJ. Let x € INJ. Then
zx€xR=x(IUJ), = (xIUzJ), C (IJ),.

2. Let I and J N L be not r-coprime. Then there is some m € r-max(R) such that I,J N L C m.
Therefore, J C m or L C m. Without restriction let J C m. Then I and J are not r-coprime.

3. This follows by induction from 1 and 2. O

Proposition 4.7. Let R be a domain and r an r-Noetherian ideal system on R with r-max(R) = X(R).
Then Z.(R) is an atomic monoid and v/J € X(R) for every J € A(Z.(R)).

Proof. First we show that Z,.(R) is an atomic monoid. Since R is r-Noetherian, we infer that R is a Mori
domain and 7 is a finitary ideal system. Therefore, Z,.(R) is unit-cancellative by Corollary [4.4]2.

Next we show that Z,.(R) satisfies the ACCP. Let (J;);en be an ascending chain of principal ideals of
Z,(R). There is some sequence (I;);en of elements of Z,.(R) such that J; = {([;A), | A € Z,(R)} for
each i € N. Let j € N. Then I; = (I;R), € J; C J;11, and thus there is some B € Z,(R) such that
I; = (Ij+1B),. We infer that I; C I;; for every i € N. Since R is r-Noetherian, there is some m € N
such that I,, = I,,, for all n € N,,,. This clearly implies that J,, = J, for all n € N>,,. Therefore, Z,(R)
satisfies the ACCP. It follows from [I0, Lemma 3.1(1)] that Z.(R) is atomic.

Let I € Z,(R). We show that I = ([[,exr),rcp(Ip N R))r and \/IgN R = q for every q € X(R)
with I C q. Clearly, R is a weakly Krull domain, and thus {q € X(R) | I C q} is finite. Moreover,
I'=Npexmy Ie = Mpexry,rcp Ie = Npex(r),rcpp N R). Let q € X(R) with I C q. Since r is finitary
it is straightforward to prove that I N R is an r-ideal of R. Moreover, \/E = (q (since Ry is a one-
dimensional local domain), and hence /I; N R = q. Therefore, ﬂp €X(R).ICP
of pairwise r-coprime r-ideals of R by Lemma 1 (since their radicals are pairwise r-coprime r-ideals
of R). Consequently, I = (J[,cx(r),rcp(lp N R))r by Lemma 3.

Let J € A(Z,(R)). Then J = (J[,ex(r),scp(Jp N R))r, hence J = J, N R for some p € X(R) such that

J C p. We infer that v/J = /J, N R=p € X(R). O

(I,NR) is a finite intersection

Theorem 4.8. Let R be a domain with (R : ﬁ) # {0} and r an r-Noetherian ideal system on R with
r-max(R) = X(R). Weset P={p e X(R)|p 2 (R:R)}, P* = X(R)\ P, and let T be the subsemigroup
of T.(R) generated by {I € A(Z.(R)) | VI € P*}.

1. T is a monoid and Z,(R) 2 F(P) x T.

2. T is finitely generated if and only if {I € A(Z.(R)) | VI € P*} is finite.

Proof. We start with the following assertion.

A. For every p € P, p is r-invertible and {I € A(Z.(R)) | VI = p} = {p}.

Proof of A. Let p € P. It follows from [I9] Theorem 2.10.9] that R, is a discrete valuation domain.
This implies that pq is a principal ideal of R, for every q € r-max(R), and thus p is an r-invertible
r-ideal of R by [26, 12.3 Theorem] (since R is r-Noetherian). Clearly, p € {I € A(Z.(R)) | VI = p}.
Let I € A(Z.(R)) be such that /T = p. It is sufficient to show that I = (p*), for some k € N (then
I = p, since I € A(Z.(R))). There is some ¢ € N such that (p®), C I (note that p = J,. for some
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finite J C p). Since p is r-invertible there is some greatest k& € N such that I C (p¥), (otherwise we
have (p®), c I C (p**'),, which contradicts the fact that p is a proper r-invertible r-ideal). Suppose
that I C (p*),. Then (Ip~*),. C R, and thus there is some q € X(R) such that (Ip~*), C q. We have
I C (p*q), C q, hence p = q and I C (p**1),, a contradiction. O(A)

1. By definition, T is a semigroup with identity R and since Z,.(R) is a reduced monoid by Proposition
[4.7] it follows that T is unit-cancellative, and thus T' is a monoid.

Let f : F(P) x T'" — Z.(R) be defined by f(([[,epp®,A4)) = (I[,epp®" A)r where (ap)pep is a
formally infinite sequence of nonnegative integers. Clearly, f is a well-defined monoid homomorphism. It
remains to show that f is bijective.

First we show that f is injective. Let (ayp)pep and (Bp)pep be formally infinite sequences of nonnegative
integers and A, B € T be such that ([[,cp p**A)r = ([[,ep p?» B),.. Since every q € P is r-invertible it
is sufficient to show that aq = 4 for all g € P (then it clearly follows that A = B). Let q € P. Suppose
that aq # Bq. Without restriction let aq < B4. Since q is r-invertible we have (HpGP,p;éq perA),. =
(Ipep prq pPrqfa—@aB), C q. Consequently, A C q. Since A is a finite r-product of elements of {I €
A(Z.(R)) | VI € P*}, there is some B € A(Z.(R)) such that v’B € P* and B C q. We infer that
q =B € P*, a contradiction.

Next we show that f is surjective. Let I € Z,(R). Since Z.(R) is atomic (by Proposition [4.7),
we have I = ([[\_; I;), for some n € Ny and some I; € A(Z.(R)). Set A = (Hie[l,n],\/TiEP I;), and
B = (ILieq1 n),vrep~ Li)r- Then B € T. It follows by Proposition that I = (AB),. It follows by A
that A = (Hp op P*?), for some formally infinite sequence of nonnegative integers (a)per. Consequently,
f((HpeP pap ) B)) =1

2. Tt follows by 1 that A(Z,(R))NT = A(T) and {I € A(Z.(R)) | VI € P*} = A(T). This immediately
implies that T is finitely generated if and only if {I € A(Z.(R)) | VI € P*} is finite. O

If R is an order in a quadratic number field and the r-ideals are the usual ring ideals, then there is
a very explicit number theoretic characterization of when the set {I € A(Z(R)) | VI € P*} is finite
([I0, Corollary 3.8]). Here we continue with a discussion of generalized Cohen-Kaplansky domains which
provide a further setting where the set {I € A(Z(R)) | VI € P*} is finite (see Theorem .

A domain is called a generalized Cohen-Kaplansky domain if it is atomic and has only finitely many
atoms up to associates that are not prime elements. Generalized Cohen-Kaplansky domains were intro-
duced by D.D. Anderson, D.F. Anderson, and M. Zafrullah who proved the following characterization
(2, Corollary 5 and Theorem 6]).

Lemma 4.9. For an integral domain R the following statements are equivalent:
(a) R is a generalized Cohen-Kaplansky domain.
(b) R is factorial, R C R is a root extension (i.e., for every * € R there is some k € N such that
z* € R), (R: R) is a principal ideal of R, and R/(R : R) is finite.

If these conditions hold, then R is weakly factorial whence in particular a weakly Krull domain.

Lemma 4.10. Let R be an archimedean domain such that R is factorial, and R/(R : R) is finite. Then
R is a C-domain.

Proof. Observe that {z7'RNR | z € R*} C {I | I is an R-submodule of R with (R : R) C I}. Therefore,
{x7'R* N R* | z € R*} is finite (since R/(R : R) is finite), and thus C(R®, R®) is finite by [19, Lemma
2.8.2.2]. Since R* N R = R*, we infer that R* is a C-monoid. O

Proposition 4.11. Let R be a generalized Cohen-Kaplansky domain and v a finitary ideal system on R.
1. R is a C-domain and a Mori domain, and v-max(R) = X(R).
2. If T C R* a multiplicatively closed subset, then T™'R is a generalized Cohen-Kaplansky domain.
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3. R is a Cohen-Kaplansky domain if and only if R is a G-domain. In particular, if p € X(R), then
R, is a Cohen-Kaplansky domain.

4. If r-max(R) = X(R), then R is r-Noetherian.

Proof. 1. Clearly, R is factorial and R/(R : R) is finite by Lemma Consequently, R = E, (R: E) *
{0}, and R*NR=TR"NR = R*. We infer by Lemma that R is a C-domain, and hence R is a Mori
domain by [19, Theorem 2.9.13]. It follows from Lemma that R is a weakly Krull domain. Since R is
a Mori domain, we infer that v-max(R) = X(R) (note that v-max(R) =0 = X(R) if R is a field).

2. By Lemma we know that R is factorial, R C R is a root extension, (R : R) is a principal
ideal of R and R/(R : R) is finite. Again by Lemma it is sufficient to show that 'R is factorial,
T~'R C T-1Ris aroot extension, ('R : T—1R) is a principal ideal of T-'Rand T-1R/(T"*R : T-'R)
is finite.

It is clear that T-1R = T~ 'R is factorial. Let z € T-1R = T~'R. Then tz € R for some t € T,
and hence (tz)* € R for some k € N. This implies that ¥ € T~1R. Therefore, T"'R C T~1R is a root
extension. We have R is a Mori domain by 1, (R : R) # {0} and R = R is a fractional divisorial ideal of
R. Therefore, T"'(R: R) = (T"'R:T7'R) = (T"'R : T-'R) by [19, Proposition 2.2.8.1]. Because of
this it is clear that (T-'R: T—1R) is a principal ideal of T—1R.

Finally, we have T-1R/(T"'R: T-1R) =T 'R/T"Y(R: R) = (T+ (R: R)/(R: R)) "' (R/(R: R))
is finite (since both T+ (R : R)/(R: R) and R/(R : R) are finite).

3. If R is a Cohen-Kaplansky domain, then R is semilocal and dim(R) < 1 by [B, Theorem 4.3], and
thus R is a G-domain. Now let R be a G-domain. Since R is also a Mori domain by 1, R has only finitely
many prime ideals. Therefore, R has only finitely many prime elements up to associates, hence R has
only finitely many atoms up to associates. We infer that R is a Cohen-Kaplansky domain.

Now let p € X(R). Then R, is a G-domain and it is a generalized Cohen-Kaplansky domain by 2.
Therefore, R, is a Cohen-Kaplansky domain.

4. Let r-max(R) = X(R). If m € X(R), then it follows by 3 that Ry is a Cohen-Kaplansky domain,
hence Ry, is Noetherian by [B, Theorem 4.3]. Let (I;);cn be an ascending chain of r-ideals of R. Without
restriction let I; # {0}. Set @ = {m € X(R) | Iy C m}. Then Q is finite, and for all m € X(R) with
I, ¢ mand all £ € N we have (I;)m = (I1)m. Clearly, there is some (ng)meo € N such that for all
m € Q and ¢ € N3, it follows that (Ip)m = (In,)m. Set n = max({nn, | m € Q} U {1}). Obviously,
(Ie)m = (In)m for all m € X(R) and ¢ € N>,,. We infer that I, = I, for all £ € N>,,. O

If R is an integral domain, r is an ideal system on R, and m € r-max(R), then let 2, ,(R) be the set
of all I € Z,.(R) with v/I = m such that for all J,L € Z.(R) with I = (JL), it follows that J = R or
L = R. Note that if Z,(R) is unit-cancellative, then 2,  (R) is the set of atoms of Z,(R) whose radical
is equal to m.

Lemma 4.12. Let R be a domain, r a finitary ideal system on R, and m € r-max(R). Let p: A m(R) —
A, mm (Bm) be defined by o(I) = Iy for all I € A n(R) and let ¢: Ay m, (Rm) = Lrm(R) be defined
by (J)=JNR forall J € Up, m, (Rm). Then ¢ and ¢ are mutually inverse bijections.

Proof. Let f: {I € T,(R) | VI = m} = {J € T, (Rn) | V.J = my} be defined by f(I) = I, for each
I € Z,(R) such that VT =m. Let g: {J € Z,,(Rm) | VJ = mn} = {I € Z.(R) | VI = m} be defined by
f(J) =JNR for each J € Z,_ (Ry) such that v/J = my. It is straightforward to prove that f and g are
mutually inverse bijections. For instance, note that if I € Z,.(R) with v/I = m, then I is m-primary, and
hence I, N R = I. To prove the assertion it is sufficient to show that f(, m(R)) = Ar, mu, (Bm)-

First let I € 2, w(R) and J',L’ € I, (Rm) be such that I, = (J'L'),,,. Assume to the contrary
that J', L' # Ry. Then vJ' = VL' = my. Set J = J' NRand L = L’ R. Then J,L € Z,(R) and
V/J =L =m, and hence \/(JL), = m. Observe that I, = (J'L), = (JuLu)r, = (JL);)m. We infer
that I = (JL),, and thus J = R or L = R. Therefore, J' = Ry, or L' = Ry, a contradiction.
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Next let J € A, m,.(Rm) and set I = JN R. Let A, B € Z,(R) be such that I = (AB),. Then
J = Iy = (AnBm)r,, and hence Ay, = Ry or By = Ry. It follows that A = R or B = R (since
VA, VB> m). O

Theorem 4.13. Let R be a generalized Cohen-Kaplansky domain, and r an ideal system on R. Let
P={pecX(R)|p2(R:R)Y}, P"=X(R)\P, and let T be the subsemigroup of I.(R) generated by
{I € A(Z,(R)) | VI € P*}. Suppose that one of the following conditions is satisfied:

(a) r is finitary and r-max(R) = X(R).

(b) r=w.

(¢) R is a G-domain.
Then R is r-Noetherian, {I € A(Z.(R)) | VI € P*} is finite, T is a finitely generated monoid, and
I,(R) = F(P) x T.

Proof. CASE 1: r is finitary and r-max(R) = X(R).

By Proposition 4 we have R is r-Noetherian. Clearly, (R : ﬁ) # {0}. Consequently, T is a monoid
and Z,(R) = F(P) x T by Theorem [£.8]1. Let m € P*. Then Ry is a Cohen-Kaplansky domain by
Proposition [4.11]3. We infer by Proposition that Z,., (Rwm) is finitely generated, hence A(Z,  (Rum))
is finite. It follows by Lemma that {I € A(Z,(R)) | VI = m} is finite. Since P* is finite, we have
{I € A(Z,(R)) | VI € P*} is finite, and thus T is finitely generated by Theorem 2.

CASE 2: r=w.

By Proposition [£.11]1 we have R is a Mori domain and v-max(R) = X(R). This implies that v is
finitary, and hence the assertion follows from CASE 1.

CASE 3: R is a G-domain.

By Proposition [£.11]3 it follows that R is a Cohen-Kaplansky domain. Without restriction we may
suppose that R is not a field. By [5, Theorem 4.3], R is one-dimensional Noetherian whence r-max(R) =
X(R) and R is r-Noetherian. Thus we are back to CASE 1. O

We continue with an example of a domain R for which Z,(R) is not unit-cancellative (whence the
statements of Theorem do not hold) but R satisfies three of the four conditions in Lemma [4.9](b)
characterizing generalized Cohen-Kaplansky domains.

Example 4.14. There is a two-dimensional Noetherian domain R satisfying the following properties:
e R is local Noetherian and factorial.
e R, is a discrete valuation domain for all p € X(R).
e (R:R) is a nontrivial idempotent of Z,(R) and Z,(R) is not unit-cancellative.
e R/(R: R) is finite and R C R is a root extension.

Proof. Let S be a discrete valuation domain, and d € S®\ S* such that S/dS is finite. Let X be an
indeterminate over S and R = {f € S[X] | the linear coefficient of f is divisible by d}. As shown in
[31, Example 5.5.1], R is a two-dimensional Noetherian domain, R is local Noetherian and factorial, R,
is a discrete valuation domain for all p € X(R), and (R : R) is a nontrivial idempotent of Z,(R). Clearly,
Z,(R) is not unit-cancellative. Along the same lines as in the proof of [31, Lemma 5.3.3] it follows that
R/(R: R) is finite. Set k = |S/dS|. Tt is straightforward to prove that f* € R for all f € S[X] = R, and

thus R C R is a root extension. O

We end this section with our main arithmetical result. It combines the semigroup theoretical work in
Section [3| with the ideal theoretic results of the present section.

Theorem 4.15. Let R be a domain with (R : R) # {0}, v an r-Noetherian ideal system on R with
r-max(R) = X(R), and suppose that {I € A(Z,(R)) | VI D (R: R)} is finite.
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1. Z.(R) has finite monotone catenary degree and finite successive distance. In particular, the cate-
nary degree and the set of distances are finite.

2. Z,(R) satisfies the Structure Theorem for Unions.

Proof. We use all notation as in Theorem [4.8]and that Z,(R) = F(P) x T where T is a finitely generated
monoid.

1. Since cmon (F(P) X T) = mon(T) and §(F(P) x T) = 6(T), it suffices to prove the assertion for the
monoid 7. Theorem implies that 6(7T) < oo and that cpen(T) < 00. Since 1 +sup A(T) < ¢(T) <
Cmon(T"), the remaining assertions follow.

2. It can be seen from the definitions that
A(F(P)xT)=A(T) and pp(F(P) x T) = pi(T)

for every k € N. By [10, Proposition 3.4], there exists a constant M € N such that py1(T) < p(T)+ M
for all k € N whence pj41(F(P) x T) < pi(F(P) x T) + M for all k € N. Since A(T) is finite by 1, it
follows that A(F(P) x T) is finite. Therefore, all assumptions of [10, Theorem 2.2] are satisfied whence
F(P) x T satisfies the Structure Theorem for Unions. O

5. MONOIDS OF v-INVERTIBLE v-IDEALS IN WEAKLY KRULL MONOIDS

Weakly Krull domains were introduced by Anderson, Anderson, Mott, and Zafrullah [2] [4]. Halter-
Koch gave a divisor-theoretic characterization and showed that a domain is weakly Krull if and only if its
multiplicative monoid of non-zero elements is a weakly Krull monoid ([25]). We will restrict to the setting
of v-Noetherian monoids and domains and recall that a (commutative cancellative) v-Noetherian monoid
H is weakly Krull if and only if v-max(H) = X(H) ([26, Theorem 24.5]). Thus one-dimensional Mori
domains are weakly Krull, and by Proposition [4.11] generalized Cohen-Kaplansky domains are weakly
Krull Mori domains.

In this section we study the monotone catenary degree of the monoid Z*(H) of v-invertible v-ideals,
where H is a weakly Krull Mori monoid with nonempty conductor (H : H ). This monoid is a direct
product of a free abelian part and of finitely many finitely primary monoids (see ) The seminormal
case has already been studied in detail. Indeed, if H is a seminormal v-Noetherian weakly Krull monoid
with proper nonempty conductor such that H, is finitely primary for all p € X(H), then the monotone
catenary degree of Z*(H) is either 2,3, or 5, and it is well-understood which case occurs ([2I, Theorem
5.8]).

However, in general and even in the local case (thus for finitely primary monoids), the monotone
catenary degree may be infinite (Remark . We study a special class of finitely primary monoids,
called strongly ring-like, which was introduced by Hassler in [28]. Strongly ring-like monoids of rank
at most two (the restriction on the rank is essential, as outlined in Remark have finite monotone
catenary degree (Proposition and the same is true for Z7(H) provided that the localizations H,, are
strongly ring-like of rank at most two (Theorem .

We begin with the local case. A monoid H is said to be finitely primary if there are s, € N and a
factorial monoid F' = F* X F({p1,...,ps}) such that H C F with

(5.1) H\H*Cpy-...-psF and (p1-... ps)*F CH.

Let H C F be finitely primary as above. Then s is called the rank of H, « is called an exponent of
H, and v: H — N§, defined by (a > (vp,(a),...,vp,(a)) for all a € H, denotes the map from H to its
value semigroup v(H). It is well-known ([I9, Theorems 2.9.2 and 3.1.5]) that H is primary, that F is the
complete integral closure of H, and that s = |%(f[ )|. Clearly, every finitely primary monoid is strongly
primary.
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The following two lemmas gather the main arithmetical properties of finitely primary monoids and the
connection to ring theory.

Lemma 5.1. Let H be a finitely primary monoid. Then H has finite catenary degree, finite set of
distances, and it satisfies the Structure Theorem for Sets of Lengths. Moreover, if the rank of H is
greater than one, then H is not half-factorial.

Proof. By [19] Corollary 4.5.5] we have H satisfies the Structure Theorem for Sets of Lengths. It follows
from [19 Theorems 2.9.2.4, 3.1.5.2, 3.1.1.2] that A(H) is finite. O

Lemma 5.2. Let R be a domain.
1. R® is finitely primary if and only if R is one-dimensional local, (R:]/%) #+ {0}, and R is a semilocal
principal ideal domain.
2. If R is a one-dimensional local Mori domain such that (R:}A%) # {0}, then R® is finitely primary
of rank |X(R)).

Proof. See [19] Proposition 2.10.7]. O

Remark 5.3.

1. Let H C F be a finitely primary monoid as in . By [19, Corollary 2.9.8], H is a C-monoid if
and only if the following two conditions are fulfilled:

(a) There exists a subgroup V C H* of finite index such that V(H \H*)CH.

(b) There exists some « € N such that, for every j € [1,s] and a € p?‘ﬁ, we have a € H if and only if

pjac H.
In general, finitely primary monoids need neither be v-Noetherian nor C-monoids (see [27, 32]).

2. Let H C F be a finitely primary monoid as above. Then H,.q is finitely generated if and only if
s=1and (F*:H*) < oo ([19, Theorem 2.9.2]). If H,eq is finitely generated, then d6,,(H) < §(H) < o0
and Cpon(H) < 0o by Theorem (3.1

3. In contrast to Lemma[5.1} there is a finitely primary monoid of rank one with cyon(H) = 0(H) = oo.
Furthermore, there are finitely primary monoids of rank two and exponent two having infinite monotone
catenary degree (see [I3] Remark 4.6, Examples 4.5 and 4.16]).

4. There are one-dimensional local Noetherian domains R with maximal ideal m such that:

e R is a finitely generated R-module and R/m is finite.
e (R has 2 maximal ideals and 6(R*) = 00) or (R has 3 maximal ideals and cyon(R®) = 00).
([28, Examples 6.3 and 6.5]). By Lemma R* is finitely primary of rank two or three.

The examples discussed in Remark show that finitely primary monoids need to satisfy further
structural properties if we want their monotone catenary degree to be finite. Such properties were
introduced by Hassler in [28], and we recall the definition.

Definition 5.4. Let H be a finitely primary monoid of rank s € N such that there exist some exponent
a € N of H and some system {p; | ¢ € [1,s]} of representatives of the prime elements of H with the
following property: for all ¢ € [1,s] and for all a € H with vp,(a) > a we have p;a € H if and only if
a € H. Then H is said to be
o ring-like if H* /H* is finite or {(vp,(a))i_; | @ € H\ H*} C N° has a smallest element with
respect to the partial order.
o strongly ring-like if H* /H* is finite and {(vp,(a))i_; | a € H\ H*} C N° has a smallest element
with respect to the partial order.
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Let H be a ring-like monoid of rank s and exponent a and {p; | i € [1, s]} a system of representatives
of the prime elements of H. We say that a and {p; | i € [1,s]} are suitably chosen if for all i € [1,s] and
for all a € H with vp, (@) > o we have p;a € H if and only if a € H.

We continue with a ring theoretical analysis which one-dimensional local domains are strongly ring-like
(Propositions and . The characterization mentioned in Remark 1 shows that strongly ring-like
monoids are C-monoids and hence in particular they are v-Noetherian.

Lemma 5.5. Let S be a commutative ring, a,b € S, and R C S such that x —y € S* for all distinct
x,y € R. If J is a finite set of ideals of S such that |J| < |R| and b & I for all I € T, then there is some
n € R such that a+nb & ;s 1

Proof. 1t is sufficient to show by induction that for all £ € Ny and all sets of ideals J of S such that
k=13 <|R|and b ¢ I for all I € J it follows that there is some 1 € R such that a +nb & ;5.

The assertion is clear for &k = 0. Now let k € Ny and J a set of ideals of S be such that k+1 = |J| < |R]
and b & I for all I € J. By the induction hypothesis there is some (7)7e3 € R such that for all I € J
it follows that a +n:b & U jeq\ (13 J-

CASE 1: a+nyb ¢ J for some J € 7.

Then a +nsb & J;eq 1
CASE 2: a+nbelforal Iel.

There is some n € R\ {n; | I € J}. Assume that a +nb € J for some J € J. Then (n — ns)b
a+nb—(a+nsb) € J, hence b € J, a contradiction. Therefore, a +nb & (J;c5 I

Ol

If R is a domain such that R® is finitely primary and m = R \ R*, then set V(m®)
{(V4(@)) (i) | @ € M}

Proposition 5.6. Let R be a domain such that R® is finitely primary and m = R\ R*.

1. If |max(R)| < |R/m|, then V(m®) has a smallest element.

2. The following statements are equivalent:
(a) R*/R* is finite.
(b) R is a discrete valuation domain or (R is Noetherian and |R/m| < o).
(¢) R is a discrete valuation domain or (R is a finitely generated R-module and |R/m| < cc).
(d) R is an FF-domain.

3. There are some a, s € N and some system {p; | i € [1,s]} of representatives of prime elements of
R such that forallie[l,s] anda € R with vp, (@) > a it follows that p;a € R if and only if a € R.

Proof. 1. Let |max(R)| < |R/m|. By [19, Theorem 1.5.3] it suffices to show that [Min(V(m®))| < 1.
Assume to the contrary that there are distinct z,y € Min(V (m®)). There are some e, f € m® such that
r = (vq(e))quaX@) and y = (Vq(f))qemax(ﬁ)' Since R is a principal ideal domain, there is some d €

GCDgl(e, f). Seta = §and b= 5. There is some R C R* such that |R| = |R/m|—1 and v—w € RX C R*
for all distinct v,w € R. Set J = {q € max(R) | vg(e) = vq(f)}. We have J C {q € max(R) | b & q}.
Since z,y € Min(V (m®)) are distinct it follows that |J| < |max(R)| — 1 < |R/m| — 1 = |R|. By Lemma
Wthere is some 1 € R such that a + nb ¢ quj q.

Next we show that v, (e + nf) = min{v,(e),va(f)} for all n € max(R). Let n € max(R).
CASE 1:  vq(e) # val(f).

Since vy (e) # va(nf) it follows that vy (e + nf) = min{v,(e),va(nf)} = min{v,(e), va(f)}.
CASE 2:  vq(e) = va(f).

Since n € J we obtain that a+nb & n. Consequently, vy(e+nf) = va(d(a+nb)) = va(d) +va(a+nb) =
Vi (d) = min{vn(e)a Vn(f)}

Since (vq(e + 1)) gemax(B) € V(m®) we infer that 2 = (vq(e + nf))quax(ﬁ) =y, a contradiction.
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2. (a) = (b) Let R* /R be finite and R not a discrete valuation domain. It follows from [32, Theorems
4.2 and 4.3] that R is Noetherian and R/(R : R) is finite. Since R is not a discrete valuation domain we
have (R : R) C m, and thus |R/m| < co.

(b) = (c) This is clear, since (R : R) # {0}.

(¢) = (a) The assertion is clear if R is a discrete valuation domain. Now let R be a finitely generated
R-module and |R/m| < co. We have R/q is a finite-dimensional R/m-vector space for all q € max(R),
hence R/q is finite for all g € max(R R). Since R is a principal ideal domain we infer that R/I is finite for
every nonzero ideal I of R. Consequently, R/(R: R) is finite, and thus R/R is finite. Since R is local it
follows from [32) Proposition 3.5] that R*/R* is finite.

(a) & (d) This is an immediate consequence of [19, Theorem 2.9.2.4].
3. This follows from [27, Theorem 2.7]. O

Corollary 5.7. Let (R, m) be a one-dimensional local domain with (R : R) # {0}.
1. If R is a semilocal principal ideal domain and | max(R)| < |R/m|, then R® is ring-like.
2. If R is Noetherian, then R® is ring-like.
3. If R is Noetherian and | max(R)| < |R/m| < oo, then R® is strongly ring-like.

Proof. 1. This follows from Proposition

2. By Lemma [5.2] R*® is a finitely primary monoid. By Proposition [5.6]3 it is sufficient to show that
RX /R* is finite or V( *) has a smallest element. Let R*/ R De infinite. It follows from Proposition
2 that R/m is infinite. Since R is semilocal we have | max(R)| < |R/m|, and thus V (m®) has a smallest
element by Proposition [5.6] 1.

3. It is an immediate consequence of Proposition [5.6] that R® is strongly ring-like. ]

The next example shows that Corollary [5.7]3 does not hold true for Mori domains.

Example 5.8. There are one-dimensional local seminormal Mori domains R with (R : ﬁ) # {0} satisfying
the following properties:

Risa discrete valuation domain,

| max(R )| < |R/m| < co and RX /R* is infinite,

R is integrally closed or R = R

R® is finitely primary but not strongly ring-like.

Proof. Let K be a finite field and L an infinite extension field of K. Let X be an indeterminate over L.
Set R = K + XL[X] and m = XL[X]. Then m is the unique nonzero prime ideal of R. In particular,
R is one-dimensional and local. Clearly, R = L[[ ] is a discrete valuation domain. Observe that R is
seminormal, hence R is a Mori domain and (R ) {0}. We obtain that R*® is finitely primary. Observe
that R/m 2 K, and thus | max(R)| = 1 < |R/m| = |K| < o0. Since K is finite and L is infinite, it follows
that EX/RX >~ [*/K* is infinite. Therefore, R® is not strongly ring-like.

CASE 1: L/K is purely transcendental (e.g., L = K(Y") for some indeterminate Y over K). It is easy
to prove that R is integrally closed.

CASEi 2:  L/K is an algebraic field extension (e.g., L is an algebraic closure of K). Observe that
R=R. O

Proposition 5.9. Let R be a Mori domain such that (R : R) # {0} and p € X(R).

1. Ry is a finitely primary monoid.
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2. For all m € spec(R) with m N R = p it follows that m € X(R). In particular, {m € spec(R) |
mNR=p}={meX(R) | mNR=np}.

3. IfpD(R: E), then Ry is strongly ring-like of rank at most two if and only if Ry is Noetherian,
|IR/p| < o0 and [{m € X(R) |[mNR=p} <2.

Proof. Clearly, R, is a one-dimensional local Mori domain, 1/%\,3 = ﬁp (since R is a Krull domain) and
{0} # (R: R) C (Ry : Rp). If m € spec(R), then set my, = (R\ p)~'m.
1. It follows from Lemma 1 that R is finitely primary.

2. Let m € spec(ﬁ) with m N R = p. Since R is a Krull domain, there is some q € .’{(ﬁ) such that
g C m. This implies that {0} # q, C m,. Since R\p is a semilocal principal ideal domain it follows that
qp = my, and thus g = m. We infer that m € X(R).

3. Let p D (R : ﬁ) Note that ]/%.; is a semilocal principal ideal domain. We infer by 2 that

X(Rp) = spec(Ry) \ {(0)} = spec(Ry) \ {(0)} = {m, | m € spec(R) \ {(0)},mN R C p} = {m, | m €

spec(R),mN R =p} = {m, | m € X(R),mN R = p}. Note that ¢ : {m € X(R) [mNR=p} — {m, |me
X(R),mN R = p} defined by ¢(m) = m, for all m € X(R) with mN R = p is a bijection. Consequently,
[X(Rp)| = {m € X(R) | mN R = p}|. ~

First suppose that RJ is strongly ring-like of rank at most two. Then Ry /Ry is finite. It follows by
[19, Theorem 2.6.5.3] that R, is not a discrete valuation domain. Therefore, we obtain by Proposition

that R, is Noetherian and |R,/p,| < co. Since f : R/p — R,/p, defined by f(z +p) = = + p, for
all z € R is a ring monomorphism, we have |R/p| < co. We infer that [{m € X(R) | mN R = p}| =
[X(Ry)| = [X(Ry ) < 2. ~

Conversely suppose that R, is Noetherian, |R/p| < oo and [{m € X(R) |mNR=p}| <2. Thenpisa
maximal ideal of R whence R/p = Ry, /p,. Thus we obtain that have

|max(Ry,)| = |X(Ry )| = |X(Ry)| = {m € X(R) | mN R =p}| <2< |Ry/py| = |R/p| < 0.

Therefore, it follows from Corollary that Ry is strongly ring-like. Clearly, Ry is of rank at most
two. ]

Our next goal is to show that for strongly ring-like monoids of rank at most two the weak successive
distance d,,(-) is finite (see Proposition [5.12)).

Lemma 5.10. Let H be a ring-like monoid of rank s and exponent o and {p; | i € [1,s]} a system of
representatives of the prime elements ofﬁ[ such that « and {p; | i € [1,s]} are suitably chosen and such
that either s > 2 or H* /H* is finite.
1. Ifue H, i € [1,s] and vy, (u) > 2c, then u € A(H) if and only if piu € A(H).
2. There are some M;,C1 € N such that for each a € H and all adjacent k,¢ € L(a) such that
max{k, £} + M; < maxL(a) it follows that Dist(Zy(a),Z(a)) < C;.

Proof. 1. This follows from [28, Proposition 4.4].
2. We distinguish two cases.
CASE 1: s=1.

Then H,qq is finitely generated by Remark 2. Thus Theorem implies that 6(H) < oo whence
the assertion follows.

CASE 2: s> 2.

We infer by [19, Theorem 3.1.5] that minL(a) < 2« for all « € H. It follows by [28, Theorem
4.14] that there are some M;,Cy € N such that for all @ € H and all adjacent k,¢ € L(a) for which
minL(a) + M7 < min{k, ¢} < max{k, ¢} < maxL(a)— M; it follows that Dist(Z(a),Z¢(a)) < Cy. By
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Lemma A(H) is finite and nonempty. Set C7 = max{Ca, M7 + 2a + max A(H)}. Let a € H and
k,¢ € L(a) be adjacent such that max{k, ¢} + M; < maxL(a).

CASE 2.1: min{k, ¢} > M;+42a. Obviously, min L(a)+M; < min{k, ¢}, and thus Dist(Z(a), Zs(a)) <
Cy < Ch.

CASE 2.2: min{k, £} < M; + 2a. It is easy to see that Dist(Z(a), Z¢(a)) < max{k,(} < min{k, {} +
max A(H) < My + 2a+ max A(H) < 4. O

Lemma 5.11. Let H be a strongly ring-like monoid of rank 2 and exponent o, {p1,p2} a system of

representatives of the prime elements of H such that o and {p1,p2} are suitably chosen and (u1, p2) is the
smallest element of {(vp,(a),vp,(a)) | a € H\ H*}. Set A(H) ={q € A(H) | vp,(q) < 2a,vp,(q) < 20a}.

1. For every a € H we have min{v,, (a) — p;maxL(a) | i € {1,2}} < a.

2. There are L,E € N such that for allu € A(H), r € N and (u;)j_; € AH)" with vp, (u) = p1,
{i € [1,r] | vp, (wi) = pa}| > L and max{vy,(uw;) | i € [1,r]} > E it follows that u | [];_, wi and
r—1lel(u I, u).

3. For every N € N there is some D € N such that for all a € H and k,¢ € L(a) for which
min{k, ¢} + N > maxL(a) it follows that d(Zx(a),Ze(a)) < D|€ — K.

Proof. 1. This follows from [28, Lemma 5.1].

2. It follows from [28, Lemma 5.2] that there are some L,E € N such that for all u € A(H),
(u))E, € A(H)Y with vy, (u) = p1, vp,(u;) = p1 for all i € [1,L] and v € A(H) with v,,(v) > E
it follows that unle w; = vnle u; for some (w;)k, € A(H)E. Now let v € A(H), » € N and
(u;)i—; € A(H)" be such that vy, (u) = p1, [{i € [1,7] | vp, (w;) = p1}] > L and max{vp,(u;) | i €
[1,7]} > E. There are some j € [1,r] such that vp,(u;) = max{vy,(u;) | i € [1,r]} and I C [1,7]\ {j}
such that |I| = L and vy, (u;) = p1 for all i € I. Consequently, there is some (w;)~; € A(H)* such that

ulr, wi = u; [];c; wi- This implies that [T/_, u; = u[[, w; [Licpn\(rugsy) wis and thus u |7 [T, wi
andr—1=L+4+r—(L+1)eL(u T u).

3. Let N € N. Without restriction let H be reduced. By 2 there are some L1, F; € N such that
for all w € A(H), r € N and (u;)}_; € A(H)" with vy, (u) = p1, |{¢ € [1,7] | vp, (w;) = pa}| > L1 and
max{vyp, (u;) | i € [1,r]} > E it follows that u |5 []_; u; and r — 1 € L(u™ [T\, ;).

Analogously, it follows by 2 that there are some Lo, F5 € N such that for all u € A(H), r € N and
(w1 € ACH)" with vy, () = i, [{i € [1,7] | Vpa (i) = i2}| > Lo and max{up, () | § € [Lr]} > B it
follows that u |g [[;_, wi and r — 1 € L(u™ [];_; u;).

Set E = max{F1, Eo, u(N +1) + a, po(N+ 1)+ a} and B = {qg € A(H) | vp,(¢) < E,vp,(q) < E}.
Let H(B) be the submonoid of H generated by B. Note that A(H(B)) = B. Since B is finite we
have H(B) is (quasi) finitely generated. By Theorem and Lemma there is some C' € N such
that for all @ € H(B) and all k,/ € Lyg)(a) it follows that d(Zgm)k(a), Zam)(a)) < C|€ — k|. Set
D =max{C,N(u1 +1)+ L1 +a, N(u2 + 1) + Ly + a}. It suffices to show by induction that for all r € Ny
and a € H such that maxL(a) = r we have for all k,¢ € L(a) for which min{k, ¢} + N > maxL(a) it
follows that d(Zy(a),Ze(a)) < D|¢ — k|. Let r € No, a € H and k,¢ € L(a) be such that maxL(a) = r
and min{k, ¢} + N > maxL(a). We have to show that d(Zy(a),Zs(a)) < D|¢ — k|. Without restriction
let £ < £. By 1 we can assume without restriction that v,, (a) — g1 maxL(a) < . If maxL(a) < D, then
d(Zk(a),Zi(a)) < max{k,¢} < maxL(a) < D < D|¢{ — k|. Now let maxL(a) > D.

Next we show that for all s € Ny and (w;);_, € A(H)* with a = [[[_, w; and s + N > maxL(a) it
follows that |[{i¢ € [1, 5] | vp, (wi) = p1}| > L1 and v, (w;) < pi (N +1) +a for all j € [1,s]. Let s € Ny
and (w;)i_, € A(H)® be such that a = [[}_, w; and s + N > maxL(a). We have |{i € [1, 5] | v, (w;) =
it = 510 € (18] [V (w5) # 1}] > 5 30y (v (13) — ) = 5 (v (0) — sp12) = (11 +1) ~ vy, () >
s(p1+1) —a—prmaxl(a) > (maxL(a) — N)(p1+1) —a— maXL(a) maxL(a) = N(pu1 +1) —a >
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D—N(u1+1)—a> L. Let j € [1,s]. Then vy, (w;) = vy, (a) — Zf:u;éj Vp, (Wi) < vy (a) = (s = 1Dps <
a+ pymaxl(a) — (s — 1)pg = pr(maxl(a) —s+1)+a < pu (N +1)+a.
We continue with the following two assertions.
A1. There are some u; € A(H) and (u;)¥_, € A(H)*~1 such that v, (u1) = p1 and a = Hle ;.
A2. There are some vy € A(H) and (v;)_, € A(H)*~* such that v,, (v1) =y and a = H§:1
Proof of Al. and A2. By symmetry it is sufficient to prove Al. Since k + N > maxL(a) there is
some (w;)¥_; € A(H)¥ such that v,, (w1) = v,, (wa) = p; and a = Hle wj. It is obvious that p; < 2a.
If vy, (w1) < 2a or vy, (we) < 2, then wy € A(H) or wy € A(H) and we are done. Now suppose that

’Uj.

Vo (w1) > 20 and vy, (wy) > 2. We have w; = Bplph and wy = yplp§ for some 8,7 € H* with

t = vp,(w1) and s = v,, (wa). Set uy = Bk p3, ug = yph ph 2% and u; = w;, for all i € [3, k]. We infer
by Lemma 1 that uq,us € A(H). It is clear that u; € A(H) and a = Hle Uj. O(A1 and A2)

CASE 1:  max({vp,(w;) |7 € [1,k]} U{vp,(v;) | ¢ € [1,]}) < E1.

Observe that {u; | i € [1,k]} U{v; | j € [1,£]} C B. Therefore, we have k,£ € Lgg)(a), and thus
d(Zr(a), Ze(a)) < d(Zum)k(a), Zam)(a)) < Cl— k| < DI — k|
CASE 2: max{vp,(u;) | i € [1,k]} > En.

We have k — 1,¢ — 1 € L(v] "a), max L(v; 'a) < maxL(a) and min{k — 1,/ — 1} + N > maxL(v; 'a).
Therefore, it follows by the induction hypothesis that d(Z;,_1(vy *a),Ze—1(v] *a)) < D|(k—1)— (£ —1)| =
D|¢ — k|. There are some = € Zj_1(v; *a) and y € Z,_(vy *a) such that d(Zy_1(v; 'a), Ze—1(v; ta)) =
d(z,y). Clearly, viz € Zp(a) and v1y € Zy(a). Consequently, d(Zx(a),Zs(a)) < d(viz,v1y) = d(z,y) <
DIt~ k|.

CASE 3: max{vp,(v;) | i € [1,4]} > E4.
This follows by analogy with CASE 2. ]

Proposition 5.12. Let H be a strongly ring-like monoid of rank s < 2. Then cpon(H) < oo and
dw(H) < 0.

Proof. If s =1, then the assertion follows from Remark 2. Now suppose that s = 2. We infer by [28],
Theorem 5.3] that cpon(H) < 0o. Both Lemmas, 2 and 3, together with Lemma show that
the assumptions of Lemma [3.6] are satisfied whence we obtain that &, (H) < co. d

Now we formulate the main result of the present section. The crucial point in its proof is that the
finiteness of the weak successive distance (achieved in Proposition and the validity of the Structure
Theorem for Sets of Lengths preserve the finiteness of the monotone catenary degree when passing to
direct products (see Theorem |[3.8]).

Theorem 5.13. Let H be a v-Noetherian weakly Krull monoid with ) # § = (H : fI) such that Hy is
strongly ring-like of rank s, < 2 for each p € X(H) with p D f.
1. Z*(H) is a C-monoid and if C,(H) is finite, then H is a C-monoid.
2. IX(H) satisfies the Structure Theorem for Sets of Lengths and the Structure Theorem for Unions.
3. 6w (Z;(H)) < 00, and cmon (73 (H)) < 0.
Proof. By [21], Theorem 5.5], there is a monoid isomorphism
(5.2) x: In(H) = F(P) x H (Hp)rea satisfying x|P =idp.
peP*
where P = {p € X(R) | p 2 f} and P* = X(H) \ P. Observe that P* is finite.
1. Clearly, F(P) is a C-monoid. It follows from [I9, Corollary 2.9.8] that all H, (and thus all (H})red)
with p € P* are C-monoids. Since B;X/pr is finite for all p € P* we infer by [19, Theorem 2.9.16] that
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F(P) x [1pep- (Hp)rea = (F(P) x [I,ep- Hp)red is a C-monoid. Therefore, Z;(H) is a C-monoid. Now
let C,(H) be finite. We have Hyeq = {aH | a € H}, {aH | a € H} C T} (H) is a saturated submonoid
and Z}(H)/{aH | a € H} C C,(H) is finite. Therefore, it follows by [19, Theorems 2.9.10 and 2.9.16]
that H is a C-monoid.

2. and 3. Note that all H, (and thus all (Hp)req) With p € P* satisfy the Structure Theorem for
Sets of Lengths by Lemma [5.1] and they have finite weak successive distance and finite equal catenary
degree by Proposition By (5.2)) and Theorem T*(H) satisfies the Structure Theorem for Sets of
Lengths, 6, (Z;(H)) < oo, and &; (H)) < oo. We infer by Lemma [3.5( that cuon(Z;(H)) < oo. Since
Z}(H) is a C-monoid by 1, and C-monoids satisfy the Structure Theorem for Unions by [I7, Theorems
3.10 and 4.2], 7 (H) satisfies the Structure Theorem for Unions. O

Corollary 5.14. Let R be a weakly Krull Mori domain with (R : R) # {0} such that R, is Noetherian,
|R/p| < o0, and |[{m € X(R) |mNR = p}H < 2 for each p € X(R) with p O (R : R). Then the monoid
IX(R) has finite weak successive distance and finite monotone catenary degree.

In particular, if R is an order in a quadratic number field, then T*(R) has finite weak successive distance
and finite monotone catenary degree.

Comment. The example given in Remark 4 shows that the assumption, that |[{m € f{(ﬁ) |mNR=
p}| <2 for each p € X(R), is crucial.

Proof. This follows from Theorem and Proposition [5.9]3. Suppose that R is an order in a quadratic
number field. Then R is one-dimensional Noetherian whence Z*(R) = Z}(R), and Z;(R) has finite weak
successive distance and finite monotone catenary degree by the main statement. O
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